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Abstract
Angiotensin (Ang)-(1–7) is now recognized as a biologically active component of the renin–

angiotensin system (RAS). Ang-(1–7) appears to play a central role in the RAS because it

exerts a vast array of actions, many of them opposite to those attributed to the main effector

peptide of the RAS, Ang II. The discovery of the Ang-converting enzyme (ACE) homolog

ACE2 brought to light an important metabolic pathway responsible for Ang-(1–7) synthesis.

This enzyme can form Ang-(1–7) from Ang II or less efficiently through hydrolysis of Ang I to

Ang-(1–9) with subsequent Ang-(1–7) formation by ACE. In addition, it is now well established

that the G protein-coupled receptor Mas is a functional binding site for Ang-(1–7). Thus, the

axis formed by ACE2/Ang-(1–7)/Mas appears to represent an endogenous counterregulatory

pathway within the RAS, the actions of which are in opposition to the vasoconstrictor/

proliferative arm of the RAS consisting of ACE, Ang II, and AT1 receptor. In this brief review, we

will discuss recent findings related to the biological role of the ACE2/Ang-(1–7)/Mas arm in

the cardiovascular and renal systems, as well as in metabolism. In addition, we will highlight

the potential interactions of Ang-(1–7) and Mas with AT1 and AT2 receptors.
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Introduction
Santos et al. (1988) described the formation of the

heptapeptide angiotensin (Ang)-(1–7) from Ang I by an

Ang-converting enzyme (ACE)-independent pathway. In

the same year, Schiavone et al. (1988) published the first

report of a biological action of this heptapeptide in vitro,

release of vasopressin from hypothalamus–neurohypo-

physeal explants. One year later, Chappell et al. (1989)

discovered the peptide in the rat brain and Campagnole-

Santos et al. (1989) described the first in vivo action of

Ang-(1–7) using microinjection in the nucleus tractus

solitarii (nTS) of anesthetized rats. These seminal studies
and many others that followed led to the recognition of

Ang-(1–7) as a biologically active peptide of the renin–

angiotensin system (RAS; Carey & Siragy 2003, Santos et al.

2005, Ferrario 2006, Bader 2010).

The identification of the ACE homolog, ACE2, as a

key Ang-(1–7)-forming enzyme unravels the existence of a

distinct enzymatic pathway for the production of this

peptide (Donoghue et al. 2000, Tipnis et al. 2000). This

monocarboxypeptidase can remove the amino acid

leucine from the C-terminus of Ang I to form the

biologically active peptide Ang-(1–9) (Donoghue et al.
 from Bioscientifica.com at 08/22/2022 08:31:24PM
via free access

http://joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-12-0341


Jo
u
rn
a
l
o
f
E
n
d
o
cr
in
o
lo
g
y

Review R A S SANTOS and others ACE2/Ang-(1–7)/Mas axis 216 :2 R2
2000, Ocaranza et al. 2006), which is subsequently cleaved

to generate Ang-(1–7) through ACE and neutral endo-

peptidase 24.11 (NEP) hydrolysis (Rice et al. 2004).

However, apparently the generation of Ang-(1–7) directly

from Ang II through the cleavage of the C-terminal amino

acid phenylalanine is physiologically and biochemically

more relevant (Vickers et al. 2002). Therefore, ACE2 plays a

pivotal role in the body as an endogenous regulator of the

RAS, once it can degrade Ang II, a vasoconstrictor/proli-

ferative peptide, and produce Ang-(1–7), a vasodilator/

antiproliferative peptide. It should be pointed out,

however, that other enzymes can form Ang-(1–7) from

Ang I or Ang II, including prolylendopeptidase, prolyl-

carboxypeptidase, thimet oligopeptidase, and NEP

(Chappell et al. 1998, Stanziola et al. 1999, Campbell

et al. 2004; Fig. 1). In particular NEP may contribute

substantially to the plasma levels of the heptapeptide

(Chappell et al. 2000).

Another important step to establish the relevance of

Ang-(1–7) was achieved with the identification of its

receptor, the G protein-coupled receptor Mas (Santos

et al. 2003b). This finding confirmed previous evidence

obtained in functional studies (Campagnole-Santos et al.

1992, Santos et al. 2000) and with the use of the Ang-(1–7)

antagonists A-779 (Ambuhl et al. 1994, Santos et al. 1994)

and D-Pro7-Ang-(1–7) (Santos et al. 2003a), suggesting that

this peptide exerts its actions through binding to a

receptor distinct from AT1 and AT2 receptors.

It is now accepted that the ACE2/Ang-(1–7)/Mas axis

is able to counteract most of the deleterious actions of the
Tonin, Cathepsin G

Aog Ang I Ang II

Ang-(1–9)

Ang-(1–7)

Ang-(1–5)

AT2 AT1

? ?

Mas

AMP

AM

P
E

P,
 P

C
P

P
E

P,
N

E
P

A
C

E
,N

E
P

Renin

(P)RR

ACE,
Chymase,

Cathepsin A
ACE2

A
C

E
2

A
C

E

Figure 1

Detailed representation of the renin–angiotensin system cascade. The

metabolic pathways involved in the generation of the main products of this

system are focused in the insert. ACE, angiotensin-converting enzyme;

Ang, angiotensin; Aog, angiotensinogen; AMP, aminopeptidase; AT1,
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ACE/Ang II/AT1 receptor axis especially in pathological

conditions (Ferreira & Santos 2005; Fig. 2). However, the

role of Ang-(1–7) is not limited to its counterregulatory

action. Indeed, genetic deletion of Mas produces an

extremely rich phenotype which includes cardiac dysfunc-

tion (Santos et al. 2006), increased blood pressure (genetic

background dependent) (Xu et al. 2008), decreased

baroreflex function (de Moura et al. 2010), endothelial

dysfunction (Xu et al. 2008), reduced reproductive

function, increased thrombogenesis (Fraga-Silva et al.

2008) and, depending on genetic background, marked

changes in lipid and glucose metabolism leading to a

metabolic syndrome like state (Santos et al. 2006; Fig. 3).

Most of these observations are corroborated by data

obtained with ACE2-deficient mice (Crackower et al.

2002, Yamamoto et al. 2006, Jin et al. 2012).

In this review, we will briefly highlight recent findings

concerning the cardiovascular, renal, and metabolic roles

of the ACE2/Ang-(1–7)/Mas axis. Furthermore, we will

address the potential interactions of Ang-(1–7) and Mas

with AT1 and AT2 receptors.
Cardiac actions of the ACE2/Ang-(1–7)/Mas
axis

The presence and synthesis of RAS components in the

heart suggest that locally produced bioactive Ang peptides

modulate cardiac function and structure (Grinstead &

Young 1992, Dostal & Baker 1999). Ang-(1–7) is among the

RAS components present in hearts. The localization and
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Opposing cardiovascular effects of the two major peptides of the renin–

angiotensin system, Ang II and Ang-(1–7). The intersection between these

two arms of the system is the angiotensin-converting enzyme 2 (ACE2),

since this enzyme can cleave the vasoconstrictor/proliferative peptide

Ang II to form the vasodilator/antiproliferative fragment Ang-(1–7).

AT1, Ang II type 1 receptor; Mas, Ang-(1–7) receptor. Ang, angiotensin.
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Phenotypic changes observed in mice with gene-targeted deletion of Mas.
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local generation of Ang-(1–7) have been demonstrated

in hearts from dogs (Santos et al. 1990), rats (Neves et al.

1995, Mahmood et al. 2002, Averill et al. 2003, Mendes

et al. 2005) and human (Zisman et al. 2003, Campbell et al.

2004). Immunoreactive Ang-(1–7) was found in aortic

root, coronary sinus and right atrium of dogs at basal

conditions and its levels were markedly reduced following

treatment with the ACE inhibitor CGS-14831 (Santos et al.

1990). Ang I is extensively metabolized during a single

pass through the coronary bed leading to the generation of

Ang II, Ang III, Ang IV and Ang-(1–7) in isolated hearts

from normal (Neves et al. 1995, Mahmood et al. 2002) and

diabetic rats (Mahmood et al. 2002). In addition, immuno-

histochemical staining revealed that Ang-(1–7) is

expressed in rat cardiac myocytes (Averill et al. 2003) and

sinoatrial node cells (Ferreira et al. 2012). Ang-(1–7) is also

formed in human hearts and ACE inhibitors markedly

decrease Ang-(1–7) generation, suggesting a substrate

preference for Ang II (Zisman et al. 2003) although

contrasting evidence has also been presented (Campbell

et al. 2004), which may be due to the different tissue

preparations (homogenates or coronary bed) used in both

studies. Of note, the Ang-(1–7) receptor Mas, mRNA and
http://joe.endocrinology-journals.org � 2013 Society for Endocrinology
DOI: 10.1530/JOE-12-0341 Printed in Great Britain
protein (Metzger et al. 1995, Santos et al. 2006, Ferreira

et al. 2012), is localized in cardiac tissues as well as ACE2,

the main Ang-(1–7)-forming enzyme utilizing Ang II as

substrate (Harmer et al. 2002, Garabelli et al. 2008, Ferreira

et al. 2012).

Recent studies report that ACE2 is an important

regulator of cardiac pathophysiology (Crackower et al.

2002, Yamamoto et al. 2006). However, it should be

stressed that the role of ACE2 in heart function and

structure might depend on the species (Gurley et al. 2006).

Interestingly, ACE2 expression has been reported to be

increased in failing human heart ventricle (Zisman et al.

2003, Goulter et al. 2004, Burrell et al. 2005). Nevertheless,

there are contrasting findings in rat hearts. While an

increase of both ACE and ACE2 was found by Burrell et al.

(2005) in hearts from Sprague–Dawley rats after myo-

cardial infarction, Ishiyama et al. (2004) observed an

increase in ACE2 expression only after AT1 blockade in

Lewis normotensive rats. These divergent results further

suggest that ACE2 effects are strain dependent. ACE2 gene

transfection using lentiviral vectors significantly attenu-

ated cardiac damage in SHR (Diez-Freire et al. 2006) and in

Ang II-infused Sprague–Dawley rats (Huentelman et al.

2005). Also, the stage of the disease apparently influences

the expression of ACE2. At the early phase of myocardial

infarction, ACE2 activity in plasma and left ventricles is

increased in rats while the plasma and left ventricular

ACE2 activities and mRNA levels are lower than in

controls at 8 weeks postinfarction (Ocaranza et al. 2006).

Similar findings were observed regarding the cardiac

expression of Mas, i.e. it changes depending on the nature
Published by Bioscientifica Ltd.
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and duration of the physiological and pathological stimuli

(Dias-Peixoto et al. 2012).

The actions of Ang-(1–7) in coronary vessels include

biochemical and functional alterations leading to vaso-

dilatation either directly in artery rings or indirectly

through bradykinin (BK) potentiation or by opposing

Ang II actions (Santos et al. 2000). In isolated canine

coronary artery rings precontracted with the thrombox-

ane A2 analog, U46619, Ang-(1–7) elicited a dose-

dependent vasorelaxation, which was completely blocked

by the nonselective Ang II antagonist [Sar1,Thr8]-Ang II,

but not by the selective AT1 or AT2 antagonists, CV11974

and PD 123319 respectively (Brosnihan et al. 1996). This

heptapeptide induced a concentration-dependent dilator

response in porcine coronary artery rings, which were

markedly attenuated by nitric oxide (NO) inhibition

(Porsti et al. 1994). However, Gorelik et al. (1998) observed

a vasodilator effect of Ang-(1–7) only in BK-stimulated pig

coronary artery rings. Furthermore, Ang-(1–7) elicited an

increase in the vasodilator effect of BK in isolated perfused

rat hearts. This effect was dependent on Mas and NO and

prostaglandin release (Almeida et al. 2000). Ang-(1–7) also

evoked vasodilation in isolated perfused mouse hearts

involving interaction of Mas with AT1- and AT2-related

mechanisms (Castro et al. 2005). Together, these data

suggest that Ang-(1–7) is a vasorelaxant peptide in the

coronary bed and that this effect involves coupling to Mas

and release of NO and prostaglandins. Nevertheless,

because Neves et al. (1997) found that, at high concen-

trations (O25 nM), Ang-(1–7) induces a concentration-

dependent decrease in coronary flow in isolated perfused

rat hearts, it remains to be demonstrated whether Ang-

(1–7) directly causes vasodilation in the coronary bed. This

effect was not accompanied by consistent changes in

contraction force and heart rate. A similar finding was

observed in isolated hamster hearts (Kumagai et al. 1990).

Thus, low concentrations of Ang-(1–7) should be tested to

clarify this important issue.

Recent reports have indicated that heart tissue is also

an important target for ACE2/Ang-(1–7)/Mas actions. It

has been demonstrated that Ang-(1–7) decreases the

incidence and duration of ischemia–reperfusion arrhyth-

mias in isolated perfused rat hearts (Ferreira et al. 2001)

apparently involving activation of the sodium pump

(De Mello 2004). These effects were abolished by ouabain

(De Mello 2004). Additionally, Ang-(1–7) decreased total

(NaC, KC, Mg2C)-ATPase activity in sheep atrium (Lopez

Ordieres et al. 1998). Also, the antiarrhythmogenic effect

of Ang-(1–7) was blocked by the Ang-(1–7) antagonist

A-779 and by the cyclooxygenase (COX) inhibitor
http://joe.endocrinology-journals.org � 2013 Society for Endocrinology
DOI: 10.1530/JOE-12-0341 Printed in Great Britain
indomethacin (Ferreira et al. 2001). Importantly, it has

been reported that all components of the ACE2/Ang-(1–

7)/Mas axis are expressed in sinoatrial cells of rats, thereby

providing morphological support to the antiarrhythmo-

genic effect of Ang-(1–7) (Ferreira et al. 2012). This peptide

also improved postischemic contractile function in

isolated heart preparations by a mechanism involving

Mas and the release of BK and prostaglandins (Ferreira

et al. 2002). However, at concentrations w10 000-fold

higher, Neves et al. (1997) found that Ang-(1–7) facilitated

reperfusion arrhythmias in isolated perfused rat hearts. In

keeping with this latter data, transgenic mice overexpres-

sing ACE2 in the heart presented sudden death due to

cardiac arrhythmias (Donoghue et al. 2003). These

observations suggest that only very high local concen-

trations of Ang-(1–7) exert deleterious effects in the heart

possibly through activation of NADPH oxidase (Oudot

et al. 2005) or release of norepinephrine (Gironacci et al.

1994). In fact, transgenic rats presenting a local increase of

Ang-(1–7) of up to 20-fold in the heart did not show any

sign of arrhythmias (Ferreira et al. 2010).

Ang-(1–7) produced a significant increase in cardiac

output and stroke volume in Wistar rats, partially

attenuated by A-779 (Sampaio et al. 2003). These effects

were also observed in transgenic rats that express a fusion

protein capable of releasing Ang-(1–7) into circulating

blood, increasing plasma concentration of this peptide

2.5-fold (Botelho-Santos et al. 2007). In addition, these

animals showed a slight, but significant, increase in daily

and nocturnal dP/dt, more resistance to isoproterenol-

induced cardiac hypertrophy, reduced duration of reperfu-

sion arrhythmias, and improved postischemic function in

isolated perfused hearts (Santos et al. 2004), further

supporting a beneficial role for Ang-(1–7) in cardiac

function at physiological concentrations. According to

Loot et al. (2002) chronic infusion (8 weeks) of Ang-(1–7)

improved coronary perfusion and preserved cardiac

function in an experimental rat model of heart failure

induced by ligation of the left coronary artery. The

vascular endothelial dysfunction observed in aortic rings

from rats with myocardial infarction was also reversed

by chronic infusion of Ang-(1–7) (Loot et al. 2002). In

addition, Ang-(1–7) immunoreactivity was significantly

increased in the tissue surrounding the infarct area of rat

hearts with myocardial infarction (Averill et al. 2003).

Wiemer et al. (2002) published the first study

demonstrating that the compound AVE 0991 is a

nonpeptide and orally active Ang-(1–7) receptor agonist

that mimics the Ang-(1–7) effects in bovine endothelial

cells. Pinheiro et al. (2004) and Lemos et al. (2005) reported
Published by Bioscientifica Ltd.
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that this compound acts as a Mas agonist in the kidney

and isolated aortic rings respectively. We have observed

that AVE 0991 preserved cardiac function and attenuated

the development of hypertrophy and fibrosis in hearts

from rats chronically treated with isoproterenol (Ferreira

et al. 2007b). This nonpeptide Ang-(1–7) analog also

significantly improved the cardiac function in hearts

subjected to myocardial infarction and preserved the

myocardium after ischemia (Ferreira et al. 2007a). Further-

more, long-term treatment with AVE 0991 prevented

the end-organ damage in hearts from spontaneously

hypertensive rats treated with L-NAME (Benter et al. 2006).

Recently, it has been shown that the inclusion of

Ang-(1–7) into the cavity formed by the oligosaccharide

hydroxypropyl b-cyclodextrin (HPbCD) could protect the

peptide during the passage through the gastrointestinal

tract. Taking advantage of this formulation, Marques et al.

(2011, 2012) found that chronic oral administration of

HPbCD/Ang-(1–7) significantly attenuated the impair-

ment of heart function and cardiac remodeling induced

by isoproterenol treatment and myocardial infarction in

rats. Furthermore, CGEN-856S, a Mas agonist, promoted

antiarrhythmic effects and produced a small dose-

dependent decrease in arterial pressure in conscious SHR

(Savergnini et al. 2010). Interestingly, activation of

intrinsic ACE2 using the compound XNT improved the

cardiac function of spontaneously hypertensive rats (SHR;

Hernandez Prada et al. 2008) and of diabetic rats (Murca

et al. 2012a,b).

One of the most important beneficial effects of

Ang-(1–7) is its ability to regulate the expression of

extracellular matrix proteins and cardiac remodeling.

Iwata et al. (2005) reported that Ang-(1–7) binds to isolated

adult rat cardiac fibroblasts, which play a critical role in

cardiac remodeling. Treatment of these cells with Ang-

(1–7) inhibited Ang II-induced increases in collagen

synthesis. Ang-(1–7) also attenuated either fetal bovine

serum- or endothelin 1-stimulated 3H-leucine incorpor-

ation into isolated neonatal rat cardiac myocytes through a

mechanism involving inhibition of serum-stimulated

ERK1/2 MAP kinase activity and activation of Mas (Tallant

et al. 2005). Chronic administration of this peptide

significantly attenuated left ventricular hypertrophy and

fibrosis in pressure-overloaded rats (Wang et al. 2005) and

fibrosis in Ang II-infused and deoxycorticosterone acetate

(DOCA)–salt rats (Grobe et al. 2006, 2007). Importantly,

deletion of Mas produced impairment of cardiac function

associated with a significant increase in collagen type I, III

and fibronectin content in the heart (Santos et al. 2006,

Gava et al. 2012). On the other hand, ACE2 activation
http://joe.endocrinology-journals.org � 2013 Society for Endocrinology
DOI: 10.1530/JOE-12-0341 Printed in Great Britain
using XNT decreased cardiac fibrosis induced by high

blood pressure through a mechanism involving reduction

of ERK1/2 expression (Hernandez Prada et al. 2008, Ferreira

et al. 2011). Altogether, these findings indicate that the

ACE2/Ang-(1–7)/Mas axis is a functional cardioprotective

arm of the RAS (Fig. 2).

The signal transduction pathways following activation

of Mas in the heart are not fully characterized, but probably

involve release of prostacyclin and/or NO release (Almeida

et al. 2000, Ferreira et al. 2001, Castro et al. 2005) since Ang-

(1–7) stimulated NO production and activated endothelial

NO synthase (eNOS) and Akt in cardiomyocytes (Dia-

s-Peixoto et al. 2008). Of note, the antihypertrophic effects

of Ang-(1–7) on Ang II-treated cardiomyocytes were

prevented by the blockade of the NO/cGMP pathway

(Gomes et al. 2010). Moreover, amplification of the actions

of BK (Gorelik et al. 1998, Almeida et al. 2000) and decrease

of Ang II levels in the heart (Mendes et al. 2005, Nadu et al.

2008) may also be possible mechanisms involved in the

beneficial cardiac effects of Ang-(1–7).
Vascular actions of the ACE2/Ang-(1–7)/Mas
axis

Blood vessels are an important site for the formation and

actions of Ang-(1–7) (Santos et al. 2000, Santos & Ferreira

2007). Endothelial cells are not only involved in the

production but also in the metabolism of this hepta-

peptide (Velez et al. 2012). The ACE2/Ang-(1–7)/Mas axis

induces the release of vasodilators, including prostanoids,

NO and endothelium-derived hyperpolarizing factor

(Porsti et al. 1994, Brosnihan et al. 1996, Li et al. 1997,

Muthalif et al. 1998, Iyer et al. 2000, Fernandes et al. 2001,

Heitsch et al. 2001). Accordingly, Ang-(1–7) elicits relax-

ation in several vascular beds (see Santos et al. (2000) for

review). In line with these observations, activation of

endogenous ACE2 provokes reductions in arterial blood

pressure of normal and hypertensive rats (Hernandez Prada

et al. 2008). However, contradictory effects of Ang-(1–7)

have been reported in human vessels. While Sasaki et al.

(2001) reported vasodilation in the human forearm, Davie

& McMurray (1999) did not observe any effect of Ang-(1–7)

in the same territory in ACE inhibitor-treated patients.

Because plasma levels of Ang-(1–7) are increased

during treatment with ACE inhibitors or AT1 receptor

blockers part of their effects might be dependent on

Ang-(1–7) (Ferrario 2006). Indeed a role for Ang-(1–7) in

mediating the decrease in blood pressure produced by

treatment with losartan in normal rats has been proposed

(Collister & Hendel 2003).
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Several mechanisms are involved in the Ang-(1–7)

vasodilatory effect, depending on the vessel diameter, the

vascular regional bed, and the species. A complex

interaction between Mas, BK B2, AT1R and AT2R appears

to be involved in mediating the Ang-(1–7) effects in some

blood vessel preparations (Brosnihan et al. 1996, Gorelik

et al. 1998, Soares de Moura et al. 2004).

Ang-(1–7) potentiates BK in several vascular beds and

species. This BK-potentiating effect of Ang-(1–7) may

contribute for its cardiovascular effects in normotensive

(Paula et al. 1995, Oliveira et al. 1999, Greco et al. 2006)

and hypertensive (Lima et al. 1997, Fernandes et al. 2001)

rats. Several mechanisms have been proposed to explain

the BK-potentiating activity of Ang-(1–7), including ACE

inhibition since Ang-(1–7) is an ACE substrate (Li et al.

1997, Tom et al. 2001), allosteric changes in ACE (Erdos

et al. 2002), and Mas-mediated changes in the BK signaling

(Paula et al. 1995, Oliveira et al. 1999, Fernandes et al.

2001, Ferreira et al. 2001). In addition, vascular Ang-(1–7)

actions could involve modulation of vascular effects of

Ang II (Roks et al. 1999, Stegbauer et al. 2004).

Mas is involved in most of the known vascular effects

of Ang-(1–7) and is present in human endothelial cells

(Santos et al. 2005, Sampaio et al. 2007b). The endo-

thelium-dependent relaxation induced by Ang-(1–7),

AVE 0991 and CGEN-856S in mouse aortic rings is absent

in vessels derived from Mas-deficient mice and is blocked

by A-779 (Santos et al. 2003a, Lemos et al. 2005, Savergnini

et al. 2010). A link between Mas and NO release was

described by Pinheiro et al. (2004) and Sampaio et al.

(2007b). Sampaio et al. (2007b) found that in both Mas-

transfected Chinese hamster ovary (CHO) cells and

human aortic endothelial cells (HAECs) Ang-(1–7) induces

the release of NO through coordinated phosphorylation/-

dephosphorylation of eNOS. According to these authors,

Ang-(1–7) induced phosphorylation of the stimulatory site

Ser1777 and dephosphorylation of the inhibitory site

Thr495 (Sampaio et al. 2007b). This effect could involve

the activation of the PI3K–AKT pathway. The Mas

antagonist A-779 blocked all the effects of Ang-(1–7) on

eNOS in both cell types. These in vitro observations are

in keeping with the effects of Ang-(1–7) on endothelial

function in vivo (Faria-Silva et al. 2005).
Renal actions of the ACE2/Ang-(1–7)/Mas axis

A number of evidences substantially support the import-

ant role of ACE2/Ang-(1–7)/Mas axis in renal function.

The renal concentration of Ang-(1–7) and Ang II is

comparable (Joyner et al. 2007), and it is possible to detect
http://joe.endocrinology-journals.org � 2013 Society for Endocrinology
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Ang-(1–7) in the human urine. Interestingly, untreated

patients with essential hypertension present decreased

amounts of Ang-(1–7) in the urine when compared with

healthy volunteers (Ferrario et al. 1998). Moreover, the

enzymes involved in the formation of Ang-(1–7) are

abundant in the kidney (Erdos & Skidgel 1990). By using

mass spectrometry, Grobe et al. (2012) studied the

distribution of the enzymatic machinery involved in

Ang II metabolism within the mouse kidney. They

reported that Ang-(1–7) and Ang-(1–4) were predomi-

nantly formed in the renal cortex, while Ang III was

mainly produced in the renal medulla. The colocalization

of Ang-(1–7) and Ang-(1–4) suggests that ACE2 and NEP

are mainly found in the renal cortex. Indeed, in the kidney

NEP plays a key role in the degradation of Ang-(1–7) to

form its metabolite Ang-(1–4). Alike in the circulation,

renal NEP also catalyzes the formation of Ang-(1–7) from

Ang I or Ang-(1–9) (Allred et al. 2000, Chappell et al. 2001,

Dilauro & Burns 2009, Pinheiro & Simoes 2012). In

another recent study, which investigated the localization

of the renal RAS components by immunohistochemistry,

ACE2 was predominantly found along the proximal

nephron (Pohl et al. 2010). Moreover, ACE2 was reported

to be 20-fold more active in the mouse renal cortex than in

cardiac tissue (Wysocki et al. 2006). Although most of the

studies reported that ACE2 is predominantly expressed in

the renal cortex, there are still some controversies

regarding its localization since i) semiquantitative

RT-PCR analysis revealed that ACE2 mRNA is found in

all nephron segments – including the medulla with the

exception of the medullary thick ascending limb of

Henle’s loop (mTAL); and ii) ACE2 protein was detected

by western blot and immunohistochemistry in the

outer medulla and inner medulla, besides the renal cortex

(Li et al. 2005).

Recently, Pohl et al. (2010) studied the ability of the

scavenger receptor megalin to modulate the expression

of ACE and ACE2 in the brush border membrane of the

proximal tubule. The authors observed that megalin-

deficient mice had a higher immunofluorescence staining

for ACE2 when compared with megalin-positive cell

populations. By contrast, ACE staining was weaker in

brush border membranes of megalin-deficient proximal

tubular cells. This result suggests that megalin itself or

megalin-related pathways regulate the expression of both

isoforms in proximal tubular cells.

Mas seems to have a broad localization in the

kidney. Alenina et al. (2008) reported that Mas mRNA

is predominantly found in the renal cortex of male mice.

Indeed, functional Mas is detected in proximal tubules,
Published by Bioscientifica Ltd.
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as well as in the afferent arterioles, collecting ducts and

the thick ascending limb of Henle and its expression

is upregulated in renal ischemia (Ren et al. 2002,

Gwathmey et al. 2010, Silveira et al. 2010, Zimmerman

& Burns 2012).

Ang-(1–7) is known to induce an antiproliferative

and protective effect by counterregulating the MAP

kinase signaling induced by Ang II via AT1 receptors

(Sampaio et al. 2007a). Interestingly, Liu et al. (2012)

recently reported that Ang-(1–7) induced ERK1/2 acti-

vation in glomerular mesangial cells via Mas. However,

the authors demonstrated that, diverging from Ang II

that induces ERK1/2 activation via NADPH oxidase

activation or epidermal growth factor receptor

(EGFR) transactivation, Ang-(1–7)/Mas leads to ERK1/2

phosphorylation in a cAMP/PKA-dependent manner (Liu

et al. 2012), suggesting that, in these cells, Mas is coupled

to Gsa. Rakusan et al. (2010) found that Mas deletion

exacerbated renal hypertension in mice that was reversed

with tempol or apocynin again suggesting a role in

oxidative stress.

The Ang-(1–7) effects in the kidney are quite

complex and controversial. A diuretic/natriuretic action

of Ang-(1–7) due to inhibition of sodium reabsorption

at the proximal tubule was proposed. In this context,

Ang-(1–7) seems to limit transcellular sodium flux by

modulating the activity of transporters via phospho-

lipase A2 activation in tubular epithelial cells (Andreat-

ta-van Leyen et al. 1993). Moreover, this heptapeptide

appears to be a potent inhibitor of NaC–KC-ATPase

activity in the renal cortex and in isolated convoluted

proximal tubules (Handa et al. 1996, Lopez Ordieres et al.

1998, Burgelova et al. 2002, De Souza et al. 2004, Dilauro

& Burns 2009, Pinheiro & Simoes 2012). This inhibitory

effect is reversed by the AT2 receptor antagonist

PD 123319 in a dose-dependent manner in the inner

cortex basolateral membrane from pig kidney. Interest-

ingly, neither A-779 nor losartan affected this process,

indicating that the inhibition of the NaC–KC-ATPase

activity by Ang-(1–7) is mediated by AT2 or another PD

123319-sensitive mechanism (De Souza et al. 2004).

In vitro studies indicated that Ang-(1–7) reverses the

stimulatory effect of Ang II on the NaC-ATPase activity

in proximal tubule via Mas (Burgelova et al. 2002).

In contrast to that, an antidiuretic/antinatriuretic

effect of Ang-(1–7) was observed in water-loaded rats (for

review, see Joyner et al. (2008), Dilauro & Burns (2009)

and Pinheiro & Simoes (2012)) and this effect seems to

be at least partially mediated by Mas activation since

A-779 blocks the Ang-(1–7) antidiuretic effect (Santos
http://joe.endocrinology-journals.org � 2013 Society for Endocrinology
DOI: 10.1530/JOE-12-0341 Printed in Great Britain
et al. 1996). Simoes e Silva et al. (1998) reported that

chronic administration of A-779 in both normotensive

and SHR rats leads to natriuresis and diuresis. In

addition, A-779 treatment in virgin female rats leads to

increased urinary volume and decreased osmolality with

no changes in water intake (Joyner et al. 2008). On the

other hand, the Mas agonist AVE 0991 significantly

reduced urinary volume (Pinheiro et al. 2004). All these

data suggest that the diuretic/natriuretic effect observed

in water-loaded animals are induced by the Mas activation.

However, it is important to point out that other Ang

receptors than Mas (e.g. AT1 and AT2) could also be

involved in this process. A study on tubular bicarbonate

transport implicated the AT1 receptor in a biphasic

response to Ang-(1–7) (Garcia & Garvin 1994).

The above-mentioned discrepancies between the

Ang-(1–7) actions in the kidney may be explained by

differences in experimental design (for example, in vitro vs

in vivo), animal model (e.g. conscious vs anesthetized

animals), Ang-(1–7) concentration, nephron segment,

species, level of RAS activity, and water and salt status.

Moreover, Ang-(1–7) can induce opposite effects in

different physiological situations of an animal. For

example in pregnant rats, Ang-(1–7) induces diuresis

associated with downregulation of aquaporin-1 while in

virgin females this heptapeptide leads to antidiuresis and

upregulation of aquaporin-1 (Joyner et al. 2008). It is

evident that the renal RAS depicts an intricate regulatory

mechanism far more complex than expected. Nonethe-

less, further studies need to clarify the mechanisms

underlying the renal actions of Ang-(1–7).

Besides its physiological relevance for kidney

homeostasis, the ACE2/Ang-(1–7)/Mas axis also has an

important and controversial role in renal diseases, acting

as a renoprotective (Oudit et al. 2006, 2010, Soler et al.

2007, Pinheiro et al. 2009, Burns et al. 2010, Dilauro

et al. 2010, Zhang et al. 2010, Giani et al. 2011, 2012, Liu

et al. 2011b, Moon et al. 2011, Stegbauer et al. 2011,

Zhong et al. 2011, Barroso et al. 2012, Kim et al. 2012,

Nadarajah et al. 2012, Zhou et al. 2012) or a pro-

inflammatory (Esteban et al. 2009, Velkoska et al. 2011)

agent. Briefly, Pinheiro et al. (2009) reported that mice

with genetic deletion of Mas developed renal dysfunc-

tion with an increase of glomerular tuft diameter and

enhancement of fibronectin and collagen IV and III

deposition, besides an increase of AT1 and TGF-b

expression. Moreover, Ang-(1–7) infusion counter-

regulates Ang II to reduce glomerulosclerosis in experi-

mental glomerulonephritis (Zhang et al. 2010). In

addition, chronic inhibition of ACE2 with MLN-4760
Published by Bioscientifica Ltd.
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in both healthy and diabetic mice led to glomerular

injury and albuminuria (Soler et al. 2007). It is

important to highlight that the ACE levels were notably

increased in this study (Soler et al. 2007). Moreover,

ACE2 was downregulated in the cortex of mice

subjected to subtotal nephrectomy (Dilauro et al. 2010).

Administration of recombinant ACE2 diminished fibrosis,

i.e. glomerular mesangial matrix, smooth muscle actin and

collagen III expression in diabetic AKITA mice (Oudit et al.

2010) and in wild-type mice infused with Ang II (Zhong

et al. 2011). Accordingly, knockout mice for ACE2

infused with Ang II showed enhanced collagen I depo-

sition and expression of genes related to fibrosis, such as

smooth muscle actin, TGF-beta, and procollagen I,

probably through activation of ERK1/2 and enhancement

of protein kinase C levels (Zhong et al. 2011). Taken

together, these data suggest that renal pathogenesis is

driven by a disruption in the ACE–ACE2 balance.

Nonetheless, there are some studies suggesting a deleter-

ious role for the renal ACE2/Ang-(1–7)/Mas axis that are

conflicting with the above-mentioned studies. For

example, Esteban et al. found that Mas knockout mice

presented an attenuation of renal damage in a renal

insufficiency model. The authors reported that Ang-(1–7)

infusion led to NF-kB activation and inflammation via

Mas (Esteban et al. 2009). Tikellis et al. described that

ACE2 knockout mice exhibit an increased albuminuria

in a streptozotocin-induced diabetes model, but at the

same time an attenuated expression of marker genes for

diabetic nephropathy. Moreover, Velkoska et al. (2011)

reported that Ang-(1–7) treatment of male Sprague–

Dawley rats after subtotal nephrectomy induced deleter-

ious cardiovascular effects as well as increasing levels of

fibrosis when compared with controls. By contrast, no

aggravation of renal injury produced by kidney ische-

mia–reperfusion was observed in MasK/K mice, and in

the same model the Mas agonist AVE 0991 reduced renal

injury (Barroso et al. 2012). Ang-(1–7) was also reported

to stimulate (Burns et al. 2010) or to inhibit (Zhou et al.

2012) the epithelial-to-mesenchymal transformation in

tubular cells.

These conflicting findings are probably due to

differences in the models used and to cell-specific

Ang-(1–7) signaling in the kidney, for example the

dependency of each model on COX-2-mediated events,

which can be differentially modulated by Ang-(1–7)

(Albrecht 2007, Menon et al. 2007), and highlight the

need for further in vivo studies related to the RAS and its

novel axis in kidney disease.
http://joe.endocrinology-journals.org � 2013 Society for Endocrinology
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Metabolic actions of the ACE2/Ang-(1–7)/Mas
axis

The existence of local RAS has already been reported in

the endocrine and exocrine pancreas (Chappell et al. 1991,

Leung et al. 1997, 1999), as well as in the adipose tissue

(Schling et al. 1999). The components of these local RAS

are highly regulated by food intake. High sugar diet

increased the expression levels of angiotensinogen, ACE

and AT1 in pancreas (Lupi et al. 2006). Similarly, a diet rich

in fat or sugar increased the concentration of ACE2 and

Ang-(1–7) in adipose tissue (Gupte et al. 2008, Coelho et al.

2010). Therefore, the RAS is considered a potential target

for treating the metabolic syndrome, which is charac-

terized by obesity, insulin resistance, hypertension,

dyslipidemia, and other symptoms (Grundy et al. 2004).

The observation that insulin resistance is frequently

associated with cardiovascular impairments suggests inter-

play between the RAS and insulin. Such a relationship

was prompted by clinical trials (Hansson et al. 1999, Brenner

et al. 2001, Yusuf et al. 2001, Dahlof et al. 2002) and

experimental studies (Oliveira et al. 2002, Furuhashi et al.

2004, Lupi et al. 2006) where the overall observation was an

improvement in hyperglycemia by inhibiting the RAS either

with ACE inhibitors or AT1 antagonists. Moreover, it has

already been shown that the upregulation of ACE2 also

improves hyperglycemia in diabetic rats (Bindom et al.

2010). Therefore, it is clear that, together with BK, Ang-(1–7)

has an important antihyperglycemic effect while Ang II acts

in the opposite way. Indeed, many studies have reported

that Ang-(1–7) attenuates the manifestations of the meta-

bolic syndrome, increases glucose uptake and protects cells

against the oxidative stress that can induce insulin resistance

(Santos et al. 2008, Giani et al. 2009, Liu et al. 2011a).

The molecular mechanisms underlying the positive

regulation of insulin promoted by Ang-(1–7) are now

being revealed. It has been reported that Ang-(1–7) and

insulin have some common downstream signaling effec-

tors in HAEC (Sampaio et al. 2007b) and in the hearts

(Giani et al. 2007). Ang-(1–7) induces the phosphorylation

of the insulin downstream effectors PI3K and AKT via Mas

in HAEC (Giani et al. 2007, Sampaio et al. 2007b) and IRS-1

and JAK2 via AT1 receptor in hearts (Giani et al. 2007).

Moreover, Ang-(1–7)/Mas negatively regulates Ang II/AT1

signaling in HAEC by promoting dephosphorylation of

c-Src and ERK1/2 and inhibition of NADPH oxidase

activity (Sampaio et al. 2007a). Recently, our group used

a phosphoproteome approach to study Ang-(1–7) signal-

ing in human endothelial cells. This study revealed novel

downstream components of Ang-(1–7)/Mas signaling and
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provided additional evidence for an interplay between

insulin and Ang-(1–7) networks (Verano-Braga et al. 2012).

Lipid metabolism is also regulated by Ang-(1–7). Mas

knockout mice on FVB/N background had impairments in

lipid metabolism, leading to dyslipidemia, lower glucose

tolerance and insulin sensitivity, hyperinsulinemia,

hyperleptinemia, lower adiponectin secretion, decreased

glucose uptake and increased abdominal fat mass when

compared with the wild-type phenotype (Santos et al.

2008). On the other hand, despite the normal food intake,

TGR(A1–7)3292 animals with increased plasmatic levels of

Ang-(1–7) showed reduced fat mass and decreased

triglycerides and cholesterol levels. In addition to that,

the expression levels of adiponectin and adipose lipid-

binding protein (AP2) were increased while there was a

remarkable decrease in the angiotensinogen expression

in these animals. Adiponectin is a key adipokine that

regulates insulin sensitivity and tissue inflammation and

its plasmatic level is inversely proportional to body fat

content, and AP2 is an important protein in adipose tissue

metabolism involved in fatty acid esterification (Santos

et al. 2010). In the same way, ACE knockout mice presented

reduced fat mass due to an increased lipid metabolism and

energy expenditure as a consequence of higher expression

levels of key genes involved in the hydrolysis of lipids into

free fatty acids (lipoprotein lipase (LPL)), translocation of

fatty acids to the mitochondria (carnitine palmitoyltrans-

ferase 1 (CPT-1)), and b-oxidation inside mitochondria and

peroxisomes (long-chain acyl-CoA dehydrogenase (LCAD);

Jayasooriya et al. 2008).

Thus, considering that comparable results were

obtained using different animal models and technical

approaches, we believe that there is enough evidence

proving a key role of the ACE2/Ang-(1–7)/Mas axis in the

regulation of carbohydrate and lipid metabolism.
Ang-(1–7) as an AT1 receptor antagonist

Mahon et al. (1994) described that Ang-(1–7) can

antagonize the pressor effect of Ang II in anesthetized

rats. This was achieved with very high doses of Ang-(1–7).

Lately, Rowe et al. (1995) reported that Ang-(1–7) binds

to AT1 receptors. Again, this was observed at high

concentrations of Ang-(1–7) (R10K6 mol/l). However,

Gironacci et al. (1999) reported that Ang-(1–7) may

compete for the binding of AT1 receptors with high

affinity (KiZ8.0G3.2 nM) in kidney slices. Moreover,

Ang-(1–7), which was without effect on basal [Ca2C]i,

reduced Ang II- and Ang IV-dependent [Ca2C]i increases in

mesangial cells (Chansel et al. 2001). In common, most of
http://joe.endocrinology-journals.org � 2013 Society for Endocrinology
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these studies used pharmacological concentrations of

Ang-(1–7), suggesting that, in this condition, Ang-(1–7)

could compete for AT1 receptors (Oudot et al. 2005).

At physiological concentrations, Ang-(1–7) is an

endogenous modulator of the AT1-mediated Ang II

responses. This phenomenon is clearly observed at the

intracellular level. Ang-(1–7) antagonized the Ang II-

induced activation of protein kinase C and ERK1/2 in

vascular smooth muscle cells (VSMCs; Zhu et al. 2002).

This peptide also significantly attenuated the Ang II-

induced reactive oxygen species generation, c-Src and

ERK1/2 activation, and stimulated SHP-2 in CHO cells

transfected with Mas and in HAEC (Sampaio et al. 2007a).

Tallant & Clark (2003) demonstrated that Ang-(1–7)

inhibits Ang II stimulation of ERK1/2 in cultured rat aortic

VSMCs through a prostacyclin-mediated production of

cAMP and activation of cAMP-dependent protein kinase.

In addition, Ang II-induced ERK1/2 phosphorylation was

also inhibited by Ang-(1–7) in rat cardiomyocytes. This

effect was abolished by transfection of cells with an

antisense oligonucleotide to Mas (Tallant et al. 2005). In

proximal tubular cells, Ang II-stimulated phosphorylation

of three MAP kinases (p38, ERK1/2 and c-Jun) was also

inhibited by Ang-(1–7), an effect that was also completely

blocked by the Mas antagonist A-779 (Su et al. 2006).

Furthermore, a Mas-dependent inhibition of Ang II-

induced EGFR transactivation by Ang-(1–7) has also been

demonstrated in rat VSMCs (Akhtar et al. 2012).

Additionally, it could be possible that Ang-(1–7)

modulates Ang II effects at the molecular level during

AT1 mRNA synthesis and/or translation. Actually, AT1

receptor expression appears to be downregulated in CHO

cells stably transfected with the AT1a receptor pretreated

with 1 or 10 mM Ang-(1–7) (Clark et al. 2001b). This effect

was also observed in rat aortic VSMCs (Clark et al. 2001a)

and in the cortical tubulointerstitial area of the kidney

(Clark et al. 2003). However, Neves et al. (2000) have found

that Ang-(1–7) upregulates the mRNA expression of the

AT1 receptor in VSMCs. A similar upregulation was

reported by Canals et al. (2006) in cells overexpressing Mas.

Several studies have also described a direct physical

interaction with a possible antagonistic effect between

Mas and the AT1 receptor (Kostenis et al. 2005, Santos et al.

2007). Future studies are obviously necessary to clarify the

nature of the interaction between both receptors.
Ang-(1–7) and the AT2 receptor

Ang-(1–7) has a very low affinity for AT2 receptors (Rowe

et al. 1995). Indeed, many of the Ang-(1–7) effects were not
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influenced by AT2 receptor antagonists (Brosnihan et al.

1996, Santos et al. 2000, Tallant et al. 2005, Dharmani et al.

2007, Silva et al. 2007). However, in certain circumstances

and in some tissues AT2 receptors appear to be involved

in Ang-(1–7) actions. For instance, in isolated mouse

hearts treated with the AT2 antagonist PD 123319,

Ang-(1–7) produced an increase in the perfusion pressure

that could not be attributed to interaction with AT1 or Mas

receptors (Castro et al. 2005). In this preparation, blockade

of AT1 receptors unmasked a vasodilator effect of Ang-

(1–7) at a subpicomolar concentration, which was Mas

dependent. Another intriguing observation was reported

by Walters et al. (2005) in candesartan-treated SHR.

In these animals, Ang-(1–7) produced a substantial

decrease in blood pressure, which was not modified by

the Ang-(1–7) receptor antagonist A-779 but was fully

blocked by the AT2 antagonist PD 123319. There are few

other reports in which an effect of Ang-(1–7) was blocked

or attenuated by PD 123319 but not by A-779 (De Souza

et al. 2004, Lara et al. 2006, Pereyra-Alfonso et al. 2007).

In sharp contrast with these observations are several

studies describing a complete or, less frequently, partial

inhibition of Ang-(1–7) effects with A-779 (Santos et al.

2000, Ferreira et al. 2001, Santos et al. 2005, Ferrario 2006,

Gallagher et al. 2006). In some studies a partial blockade

was obtained with the AT2 antagonist PD 123319 when

a partial inhibition was also seen with A-779 and the B2

receptor antagonist Hoe 140. Likewise, some BK effects are

attenuated by PD 123319 (Bergaya et al. 2004) and some

AT2-mediated effects are attenuated by B2 receptor

blockade (Munk et al. 2007). These observations illustrate

the intricate relationship between Ang and kinin

receptors, suggesting intracellular interactions via com-

mon signaling pathways or heterodimerization. The

mechanisms of such interaction are currently only elusive.

However, physical interactions between Mas and AT2 or B2

receptors in selected tissues should be considered as

explanation for some of the puzzling observations with

the use of receptor antagonists.
Concluding remarks

The complexity of the RAS is far beyond what we could

suspect few years ago. New elements have recently been

added to the system (ACE2, Ang-(1–7), Mas, (Pro)renin

receptor) (Ferreira & Santos 2005, Ferrario 2006, Santos &

Ferreira 2007, Sihn et al. 2010) and have completely

changed its perception. It is now generally accepted that

the RAS is dual and that, besides the well known mainly

deleterious arm (ACE/Ang II/AT1), there is a second
http://joe.endocrinology-journals.org � 2013 Society for Endocrinology
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beneficial axis consisting of ACE2, Ang-(1–7), and Mas.

The evidence summarized in this review clearly shows a

participation of this new RAS axis in the regulation of

blood pressure and metabolism, and, even more impor-

tantly, in the pathogenesis of, at least, cardiovascular,

renal, and metabolic diseases. Therefore, the novel

concept of the dual RAS is invigorating the development

of new cardiovascular drugs activating the beneficial arm

of the RAS (Ferreira et al. 2012).
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