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Abstract

Angiotensin II (AngII) participates in the pathogen-
esis of renal diseases, through the regulation of two
key processes inflammation and fibrosis. AT1 and
AT2 are the main receptors of AngII. AT1 mediates
most of the actions of AngII. This receptor regulates
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the expression of profibrotic factors, such as
connective tissue growth factor (CTGF). The Smad
signalling pathway and the Rho/Rho kinase system
are two novel mechanisms involved in AngII-induced
matrix regulation recently described. The role of AT2

receptors in renal pathophysiological processes is not
fully elucidated. Experimental data suggest that AT2

receptors through activation of nuclear factor-�B
participate in renal inflammatory cell recruitment.
Studies in animal models of kidney injury have shown
that the combined blockade of both AT1 and AT2

receptors, as well as the inhibition of the NF-�B
pathway are necessary to stop the inflammatory
process fully. On the whole, these data highlight the
complex signalling systems activated by AngII and
suggest novel potential targets to block fibrosis and
inflammation in renal diseases.

Keywords: angiotensin II; fibrosis; inflammation;
proinflammatory cytokines; growth factors

Introduction

Angiotensin II (AngII), the main peptide of the
renin–angiotensin system (RAS), is involved in the
pathogenesis of renal diseases [1,2]. This peptide acts
through its binding to two specific receptors, AT1

and AT2 [2]. AT1 is responsible for most of the patho-
physiological actions of AngII. By promoting
proliferation, inflammation and fibrosis, AngII con-
tributes to chronic diseases, such as hypertension,
atherosclerosis, cardiac hypertrophy and renal injury,
The role of the AT2 receptor is not completely defined.

AT2 is involved in cell growth inhibition and
inflammatory cell recruitment in the kidney [2–4].
We will review here the information regarding
the novel mechanisms involved in the fibrotic and
inflammatory response caused by AngII.

AngII regulates fibrosis via the AT1 receptor:
role of CTGF and the Smad signalling pathway

AngII via AT1 regulates extracellular matrix (ECM)
accumulation mediated by the endogenous production
of profibrotic growth factors, such as transforming
growth factor-b (TGF-b). Angiotensin-converting
enzyme (ACE) inhibitors and AT1 antagonists decrease
tissue expression of TGF-b and fibrosis; furthermore,
blockade of TGF-b diminishes AngII-induced ECM
production [2,3]. Although TGF-b is one of the main
regulators of fibrosis, therapeutic strategies blocking
TGF-b actions have not afforded the expected bene-
ficial effects probably because of its anti-inflammatory
properties [5]. This is one of the reasons why novel
antifibrotic targets are under active investigation.
Connective tissue growth factor (CTGF) is a novel
profibrotic factor that is upregulated in different
human kidney diseases and contributes to renal
fibrosis and tubuloepithelial transdifferentiation [6].
In models of renal injury, ACE inhibitors and AT1

antagonists diminished CTGF upregulation and
fibrosis [7,8]. We have also demonstrated that the
blockade of CTGF, by an antisense CTGF oligo-
nucleotide, diminished AngII-induced fibrosis, shown
by diminution of fibronectin production [7,9]. These
results suggest that CTGF could be a novel antifibrotic
target (Figure 1).

Fig. 1. Potential novel therapeutic strategies to block AngII-induced fibrosis. AngII via AT1 activates the Smad signalling system and the
Rho/Rho kinase pathway that upregulates CTGF production and fibrosis.
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The Smad proteins are essential components of the
intracellular signalling pathways, acting as transcrip-
tion factors of TGF-b-mediated responses, including
fibrosis [10]. We have recently shown that AngII via
AT1 activates the Smad signalling system, indepen-
dently of TGF-b [11]. In vascular smooth muscle cells
(VSMCs), AngII caused a rapid and direct activation
of Smad2 phosphorylation, nuclear translocation of
phosphorylated Smad2 and Smad4, increased DNA-
binding activity and Smad-dependent gene transcrip-
tion. In AngII-infused rats, aortic Smad overexpression
was associated with CTGF induction and occurred
before ECM accumulation [11]. Smad7 may function as
a general negative regulator of TGF-b receptor
signalling [12]. Transient transfection with Smad7,
which interferes with receptor-mediated activation of
Smad2 and Smad3, diminished CTGF, fibronectin
and type 1 procollagen upregulation caused by
AngII [11]. Moreover, Smad7 overexpression blocks
TGF-b-induced ECM production and renal fibrosis
[13–15]. AT1 blockade diminishes Smad pathway
activation and fibrosis in the model of renal injury
caused by unilateral ureteral obstruction (UUO),
in myocardial infarction in rats and in the aorta of
AngII-infused rats [11,16,17]. These data indicate that
Smad signalling could be a common mechanism of
AngII-mediated fibrosis in cardiovascular and
renal diseases and that the blockade of Smad activation
could be another important anti-fibrotic target
(Figure 1).

The small G protein Rho and AngII responses

The AT1 are G-coupled receptors and activate small G
proteins, including RhoA and the Rho kinase system
[18]. The Rho/Rho kinase signalling pathway partici-
pates in the development of fibrotic lesions in several
tissues including the kidney. In different experimental
models, such as hypertensive glomerulosclerosis,
UUO, nephrectomized spontaneously hypertensive
rats and L-NAME-treated rats, administration of Rho
kinase inhibitors diminished glomerular and tubuloin-
terstitial injury, inflammation and fibrosis, and down-
regulated smooth muscle a-actin gene overexpression,
as well as the TGF-b and ECM proteins [19–24].
In rats infused with AngII, we have shown that the
Rho kinase inhibitor Y-27632 diminished tubular
damage, the number of inflammatory cells, and renal
overexpression of CTGF and proinflammatory para-
meters [25]. All these data suggest that Rho kinase
inhibitors could be novel targets for renal therapy
(Figure 1).

AngII and the inflammatory response: role of
AngII receptors and the NF-�B pathway

AngII contributes to the recruitment of infiltrating
cells into the kidney; AngII causes the adhesion of

circulating cells to endothelial and mesangial cells, and
the migration of inflammatory cells into the kidney.
This process is mediated by upregulation of adhesion
molecules, cytokines and chemokines [1].

ACE inhibitors have been shown to diminish
inflammatory cell infiltration and inflammatory mark-
ers in many animal models of renal injury [1]. AngII
via AT1 receptors upregulates many proinflammatory
genes, such as vascular cell adhesion molecule-1
(VCAM-1), intercellular adhesion molecule-1 (ICAM-
1), interleukin-6 (IL-6) and monocyte chemoattractant
protein-1 (MCP-1), through the activation of several
intracellular signalling systems, including the nuclear
factor-�B (NF-�B), mitogen-activated protein kinase
(MAPK) cascade, Rho proteins and redox pathways
[1]. Some experimental data suggest that AT2 receptors
are involved in the inflammatory cell recruitment in the
kidney. Only AT2, but not AT1, antagonists diminished
the number of inflammatory cells in different animal
models, including systemic infusion of AngII and UUO
[3,4,8,26,27]. We have recently demonstrated that
combined treatment with AT1 and AT2 antagonists
blocked the inflammatory response, and lowered the
number of infiltrating cells and the overexpression of
proinflammatory genes to control levels in those
models [8,27]. In the UUO model, AT2 blockade
diminished tumour necrosis factor-a (TNF-a) and
RANTES overexpression, and the simultaneous block-
ade of both receptors abolished MCP-1 gene upregula-
tion [8]. NF-�B activation has been described in kidney
diseases [1]. In vivo, AngII activates the renal NF-�B
pathway that was partially diminished by AT1 or AT2

antagonists alone, and was abolished by combination
of both receptor antagonists or ACE inhibition [4,8,27].
In mesangial cells, NF-�B activation was mediated by
both AT1 and AT2 receptors [4]; in tubuloepithelial
cells, this was mainly by AT1 [4], while in endothelial
cells it was via AT2 [28]. In the UUO model, we have
found that blockade of renal NF-�B activation
by treatment with two different NF-�B inhibitors,
pyrrolidine dithiocarbamate (PDTC) and parthenolide,
diminished the inflammatory cell infiltration and
downregulated gene expression of several proin-
flammatory factors [8]. In spontaneously hypertensive
rats, NF-�B inhibition attenuated renal interstitial
inflammation and hypertension [29]. These data suggest
that in some experimental renal diseases, the blockade
of AngII generation by an ACE inhibitor or by
combined blockade of both AT1 and AT2 receptors,
as well as by the inhibition of the NF-�B pathway, is
necessary to stop the inflammatory process fully
(Figure 2).

In human kidney diseases, the activated renal
renin–angiotensin system has been described. In
diabetic nephropathy, elevated AngII generation did
correlate with the presence of inflammatory cell
infiltration, the activation of NF-�B and proinflamma-
tory gene overexpression [30]. These observations
emphasize the importance of treatments that block
the AngII-induced inflammatory process in human
renal diseases.
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Conclusion

Drugs that modulate the renin–angiotensin system,
such as ACE inhibitors and AT1 antagonists, have
demonstrated protective renal effects and can amelio-
rate fibrosis. Current strategies in clinical practice
combine treatments with ACE inhibitors and AT1

blockers, due to their potential additive beneficial
effects [31]. However, these treatments did not cause
regression of renal damage, suggesting that novel
approaches are needed. The data presented here high-
light potential interesting candidates for antifibrotic
treatments, including CTGF, the Smad signalling
system and the Rho/Rho kinase pathway. Future
studies are necessary to evaluate their potential
beneficial effects fully in kidney diseases.

The Ang receptor subtype, AT1 or AT2, involved in
the inflammatory response in the kidney is not
completely elucidated. Our results show that the
blockade of both AT1 and AT2 receptors is necessary
to stop the inflammatory process completely, at least in
experimental models. The inhibition of the NF-�B
pathway also prevents inflammation and experimental
renal damage. All these experimental studies provide a
rationale to investigate further the involvement of the
AT2/NF-�B pathway in the inflammatory response in
kidney diseases. These results could have potential
clinical consequences in the treatment of severe human
nephritis.
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25. Rupérez M, Sánchez-López E, Blanco-Colio LM et al. The
Rho-kinase pathway regulates AngII-induced renal damage
Kidney Int 2005; 68 [Supp 99]

26. Morrissey JJ, Klahr S. Differential effects of ACE and AT1
receptor inhibition on chemoattractant and adhesion molecule
synthesis. Am J Physiol 1998; 274: F580–F586

27. Esteban V, Ruperez M, Vita JR et al. Effect of simultaneous
blockade of AT1 and AT2 receptors on the NFkappaB
pathway and renal inflammatory response. Kidney Int 2003; 86:
S33–S38

28. Wolf G, Wenzel U, Burns KD, Harris RC, Stahl RA, Thaiss F.
Angiotensin II activates nuclear transcription factor-�B through
AT1 and AT2 receptors. Kidney Int 2002; 61: 1986–1995

29. Rodriguez-Iturbe B, Ferrebuz A, Varegas V et al. Early and
sustained inhibition of nuclear factor kappa B prevents
hypertension in spontaneously hypertensive rats. J Pharmacol
Exp Ther 2005; 315: 51–77

30. Mezzano S, Aros C, Droguett A et al. NF-kappaB activation
and overexpression of regulated genes in human diabetic
nephropathy. Nephrol Dial Transplant 2004; 19: 2505–2512

31. Wolf G, Ritz E. Combination therapy with ACE inhibitors and
angiotensin II receptor blockers to halt progression of chronic
renal disease: pathophysiology and indications. Kidney Int
2005; 67: 799–812

Nephrol Dial Transplant (2006) 21: 20–23

doi:10.1093/ndt/gfi237

Advance Access publication 1 November 2005

Hypertensive myocardial fibrosis

Cesare Cuspidi1,2, Michele Ciulla1,2 and Alberto Zanchetti2,3

1Istituto di Medicina Cardiovascolare, 2Centro Interuniversitario di Fisiologia Clinica e Ipertensione,
Universita’ di Milano, Ospedale Maggiore Policlinico, IRCCS and 3Istituto Auxologico Italiano IRCCS, Milano, Italy

Keywords: fibrosis; hypertension;
left ventricular hypertrophy

A variety of cardiac structural and functional changes,
such as increased left ventricular mass (LVM), left
atrial and aortic root enlargement, LV dysfunction,
impairment of coronary reserve and prolonged

ventricular repolarization, have been described in
patients with long-standing arterial hypertension [1,2].
However, subtle modifications in LV structure
and geometry may occur also in the early phases
of the natural history of essential hypertension [3].
Among these manifestations of target organ
damage, most attention has been devoted to LV
hypertrophy (LVH), because the prevalence of this
phenotype is relatively high and is associated with
an increased risk of cardiovascular morbidity and
mortality [4,5].
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