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ABSTRACT

Using a Monte Carlo method, we derive approximations to Green’s functions for the
Compton reflection of X-rays and y-rays by cold electrons. In Compton reflection, X-
rays and y-rays emitted by a source impinge upon a slab (e.g., an accretion disc) and
re-emerge with a spectrum altered by Compton scattering and bound-free absorption.
The obtained Green’s functions are dependent on the viewing angle of the reflecting slab,
which extends the previous treatments of the problem, in which the reflected spectra were
integrated over all viewing angles. The dependence on the viewing angle is especially
important in hard X-rays and soft y-rays, in which regime the reflected spectrum strongly
hardens with increasing viewing angle. This is an important effect for modelling y-ray
spectra of active galactic nuclei and Galactic black hole candidates, where the presence
of Compton reflection has been established before from X-ray data.

Key words: radiation mechanisms: nonthermal — scattering — galaxies: Seyfert — X-rays:
general — gamma-rays: theory.

1 INTRODUCTION

The process of reflection of X-rays and y-rays from cold matter has become in recent years one of the most important diagnostics
of astrophysical Galactic and extragalactic compact sources. The process causes a characteristic hardening in the X-ray spectrum
above ~ 10 keV (Lightman & White 1988, hereafter LW88). The hardening is due to the onset of the reflected component,
which appears above ~ 10 keV as a result of the increased importance of Compton scattering in comparison with bound-free
absorption. The cross-section of the latter, gy, exhibits an overall decrease with increasing energy (except for absorption edges)
and becomes less than the Compton cross-section, a¢, just at energies 2 10 keV in neutral matter of cosmic composition (Morrison
& McCammon 1983). Hence the single-scattering albedo,

oc(E)
oc(E) + ovt(E)’ O

becomes comparable to unity in that energy range. (Note that both cross-sections have to be defined in the same way, e.g., per
hydrogen atom.)

Spectral hardenings characteristic of reflection have been discovered in, among others, Seyfert galaxies by the Ginga satellite
(Pounds et al. 1990; Nandra & Pounds 1994), and in the Galactic black hole candidate Cyg X-1 (Done et al. 1992; Haardt et al.
1993). We thus infer that in those objects a source of hard X-rays and soft y-rays is located above some cold medium, e.g., an
optically thick accretion disc.

On the other hand, the albedo decreases with energy in soft y-rays (X 50 keV) due to the effect of fast energy loss, preferential
forward scattering, and the reduced total scattering cross-section (see LW88). This results in a softening of the total (reflected plus
incident) spectrum with respect to the incident component alone. This effect has been found in Seyfert galaxies (Madejski et al.
1995; Zdziarski et al. 1994, 1995).

Green’s functions for Compton reflection have been obtained so far only for radiation reflected by a slab and averaged over
all viewing angles (White, Lightman & Zdziarski 1988, hereafter WLZ88). LW88 have extended the work of WLZ88 to include
bound-free absorption. Some examples of spectra reflected for specific viewing angles have been obtained numerically by Matt,
Perola & Piro (1991), George & Fabian (1991), and Hua & Lingenfelter (1992, hereafter HL92). Furthermore, Ghisellini, Haardt
& Matt (1994) have obtained the angular dependence of reflected radiation in the non-relativistic limit (E < 10 keV) in the

ME) =
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case of 1 < 0.5 (i.e, when the reflecting medium is not highly ionized). In that case, only the first-order scattering needs to be
considered. Then the angle-averaged reflection spectrum can be simply multiplied by a scaling factor dependent on the viewing
angle, 6 (measured with respect to the slab normal).

However, that simple scaling breaks down at higher energies due to the importance of higher-order scatterings as well as the
complex form of the Klein-Nishina differential cross-section. As shown by HL92, the y-ray part of the reflected spectrum in the
case of an incident power-law spectrum strongly hardens with increasing 6. Thus use of the angle-averaged reflection spectra is no
longer satisfactory when soft y-ray spectra of cosmic sources are considered. This is the case, e.g., for Cyg X-1, which contains a
reflection component and for which high-quality soft y-ray spectra have been obtained by the OSSE detector aboard the Gamma
Ray Observatory (Phlips et al. 1995). By subtracting the properly computed reflection component, one can obtain the spectrum
of the intrinsic radiation, which can then reveal the nature of the radiative processes operating in the source. This will become
especially important for future high-sensitivity y-ray observatories like HEXTE and INTEGRAL.

In this paper, we obtain Green’s functions for Compton reflection as a function of the energies of the incident and reflected
photons as well as the viewing angle. We perform Monte Carlo calculations, which results are fitted by simple functions. Whenever
possible, we employ asymptotic analytic results. We take into account both scattering and absorption.

2 RELATIVISTIC GREEN’S FUNCTIONS FOR COMPTON REFLECTION

We use the Monte Carlo method described by WLZ88 to calculate spectra reflected by a plane-parallel, semi-infinite medium
of cold electrons. We first consider the effect of Compton scattering alone, without absorption. The angular distribution of the
incident photons is modelled from a distribution uniform in g = cos6; (as in WLZ88). Note that this corresponds to I,, oc y;.
Such irradiation is obtained if the slab is covered by an optically thin source of the primary radiation (in contrast to I,, = constant
in the case of an optically thick source of primary radiation above the slab).

The photon Green’s function, G(u,Xo,X), is calculated on a three-dimensional grid consisting of u = cos(f), the energy of
incident photons, xo, and the energy of reflected photons, x. The energies are in units of the electron rest energy, x = E /mec?.
Green’s function is calculated in 10 bins in p (from 0-0.1 to 0.9-1), and computed for eight values of incident photon energy:
xo = 0.01, 0.0316, 0.1, 0.316, 1, 3.16, 10, and 31.6. For greater incident photon energies the monochromatic albedo decreases below
1 per cent (WLZ88). For xo < 0.01, Green’s function for Compton reflection slowly approaches its non-relativistic limit, with an
approximate separation of the dependences on p and on x. In that case, the angle-dependent factor may be obtained by solving the
monochromatic transfer equation (Chandrasekhar 1960). In a Monte Carlo run, we use 10° photons followed down to x = 1074,
which allow us to confirm that Green’s function approaches their asymptotic limit. Conservation of the photon number implies
the normalization

1 pxo
/ / G(p, X0, x)dudx = 1. (2)
o Jo

In addition, we do runs of 107 photons followed over x corresponding to the range of the first four scatterings. This allows us to
obtain a better resolution close to xo, which is particularly important for the first-order scattering, showing a complicated structure
in x (see HL92). The distribution of photon energy for scattering order > 4 is nearly Gaussian, which implies a smooth shape of
the spectrum far enough from x, (cf. Illarionov et al. 1979).

Following WLZ88, our analytic approximations are expressed in terms of the dimensionless wavelength, yo = 1/xo, and the
wavelength shift, Ay = 1/x— 1/xo. The relation G(g, Xo, x) = x2G(y, yo, Ay) transforms between the energy and wavelength spaces.
In our fits, we first obtain Green’s function for xo = 1 (e* pair annihilation emission), and then the ratio, G(, yo, Ay)/G(u, 1, Ay),
for 0.01 < xp < 31.6. To describe the dependence on y, and u, we use coefficients a;, bj, ¢ in the functional dependence,
G(1, yo, Ay) = G{yo, Ay, a;[yo, b, cr)1}.

The results of the Monte Carlo simulations and our fitting functions are shown in Fig. 1. Below, we divide the full range of
Ay into two parts. The first, Ay < 2, is the range of the first-order scattering, in which it dominates. In the second range, Ay > 2,
only higher-order scatterings appear.

2.1 Green’s function for xy=1
211 Ay<2

In this range, the dominant contribution (X 50 per cent) is from the first-order scattering. The geometry of the first-order scattering
restricts its reflected spectrum to the range of Ay, < Ay < 2, where Ay, = 1 — (1 — u?)"/2. In that range, there is a discontinuity of
the first derivative at Ayg = 14 (1 —p?)"/2 In the range of 0 < Ay < Ay,, a weak and neglectable tail from higher-order scatterings
appears (see HL92 for detailed discussion). Fig. 2 shows Green’s function observed at u = 0.75 as a function of Ay < 2.

Note that our Monte Carlo results give spectra integrated over the viewing angle in bins with width Ay = 0.1, and therefore
the above discontinuities appear closer to the energy corresponding to the lower boundary of each bin (as shown in Fig. 2). In
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Figure 1. Green’s functions for reflection of incident photons of energy xp = 1 from a plane-parallel, semi-infinite medium. Points indicate the
results of Monte Carlo simulations, while solid curves show our fits.

particular, the tail near Ay = 0 from higher-order scatterings can be cut off at Ay, = 1 — [1 — (u — 0.05)?]/2, above which it is

negligible (a cut-off at Ay, would give the wrong normalization in integrated spectra). The range of validity of our approximations
is 4 = 0.05-0.95.

In the range Ays < Ay < 2, yG is well approximated by a straight line,
bo +bi(Ay —2)

G(p, 1,Ay) = T+ay ©)]
where
by = 0.911 — 0.549(1 — p)**™, by = 0.254 — 0.041737%, “)

For 0 < Ay < Ayy, a combination of power laws with an exponential cut-off is used,

{b2 + by max [0, (bs — Ay)]’ + bs(by — Ay)Ps }b9
(1+Ay) {1 +exp [bio (b — (Ayy2)]}

G(p, 1,Ay) = &)
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Figure 1 — continued
where
by = 0.161 +0.439'% — 079147, by = max [0, (—0.871 + 174046 — 1.088,°%")] , (6)
- 4.647 — 11.574p + 11.04642, p < 0.524;
by = 0.934 + 0.054~0666 bs = ’ 7
“ FODHT B =1 16ts, u> 0.524, @
bs = 0.012 + 0.199u%% 4+ 0.8615%%, by =2150, by = —1.281+2.374u —4.332p% + 2.6304°, )
by = 2882+ 00354715, byo=3028+69.29y, by =1.037[1—(1— 0.874,3)1/2]“‘23, by, = 0.123. ©)

Due to the derivative discontinuity of G at Ayy, we choose to use as the actual approximation to G the minimum of the values
obtained from equations (3) and (5).

212 Ay>2

In this range, our approximation to Green’s function employs its asymptotic form for Ay > 2, G,s [see equation (12) below] as
follows:

G(u, 1,Ay)
log [Gas(u, 1, Ay)

where the b; are given by the polynomial fits,

4
b; = Ecjku", (1)
k=0

and where the coefficients are given in Table 1. A small wave in the reflected spectrum appearing near Ay = 3 (x = 0.25, see Fig. 1)
is mainly from the second and third orders of scattering (see Illarionov et al. 1979). Green’s function shows a quickly damped
wavy shape for Ay > 2 appearing due to a superposition of subsequent scattering orders. Those waves are not taken into account
in our fits, which limits their accuracy in the range Ay = 24 (x = 0.2-0.33) to < 12 per cent for u > 0.3 and to < 20 per cent for
u < 0.3. For Ay either < 2 or > 4, the maximum error does not exceed 5 per cent for u > 0.3 and 8 per cent for u < 0.3.

b3
] = [b14 + bis(Ay + l)bw] log (1 + M_+T) ) (10)
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Figure 2. Green’s function for xp = 1 and u = 0.75. Note that the points from the Monte Carlo simulation are averaged over u = 0.70-0.80.
Therefore the discontinuities of the first-order spectrum at Ay, and Ayg (defined at the bin centre, u = 0.75) appear closer to Aye, and Aygd, which
are defined for the lower boundary of the bin, u = 0.70.

Table 1. The coefficients cj (equation 11) for Ay > 2 and x¢ = 1.

j\k 0 1 2 3 4

13 56.50 —27.54 6718 —1245. 7084
14  —0897 —0.826 2273 —0.984 —
15 1.240 —1.297 — — —
16  —0.490 1181  —1.038 — —

2.1.3 The asymptotic regime of Ay > 2

In this regime, Green’s function approaches its non-relativistic form, proportional to (Ay)~*/? (see Lightman, Lamb & Rybicki
1981). In that regime, photons have already undergone multiple scatterings, which allows us to separate the angular and energy
dependences:

Gas(i 1, Ay) = 1.283fs(u)(Ay) 2, (12)
which is fitted with a double power law and normalized to unity,
Fas(p) = 1.448 (2% +0.7451%) . (13)

The angular dependence (13) is also valid at any xo for Ay > 2, when Gas(1, yo, Ay) differs from that of equation (12) only in the
normalization.

2.2 Green’s function for 0.01< x, < 31.6

Photon wavelength changes in a scattering as Ay = 1 — cos 3, where 9 is the scattering angle, independently of xo, which is a
manifestation of the four-momentum conservation. Thus the overall shape of G(Ay) is approximately given by G[x(Ay)]. This can
be seen in Fig. 3, where the spectrum for xo # 1 is roughly the one for xo = 1 rescaled, especially in the range corresponding to the
first order of scattering. In the relativistic regime, the relative energy change per scattering is large because Ay ~ 1 corresponds to
a large energy change. On the other hand, Ax/x — 0 in the non-relativistic limit. Hence Green’s function for xo < 1 is dominated
by a sharp peak near xo, i.e., the scattering is nearly elastic.

Thus, for xo S 0.01, G(x) is sharp enough to treat the effective dependence on u by averaging over x (with most of the
contribution from Ax < 4x}). Hence the angle-dependent Green’s function can be replaced by the angle-averaged Green’s function
multiplied by an angle-dependent coefficient (normalized to unity),

G, yo, Ay) = Gay(Ay, yo)f (1), (14)
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Figure 3. Green’s functions for xo = 0.1, 1, 10 at u = 0.75. The points give the results of Monte Carlo simulations, whereas the solid curves give
the fits.

where
f(w) = 1.844,084, 15)

This gives an accuracy < 2 per cent in the range xo < 0.01 for spectra with a local power-law slope, o > 0; for a < 0, the
error increases with decreasing a. The angle-averaged Green’s function is given by WLZ88 at any x,. Note that it achieves
its Thomson-limit form (Lightman et al. 1981) rather slowly, only for xo < 107*. Note the difference between equations (13)
and (15). The former gives the angular dependence of Green’s function in the limit Ay > 2 for any xo. The latter gives the
angular dependence of Green’s function for xo < 0.01 and for broad incident spectra with o 2 0 only. The reflected spectrum
can then be obtained by integrating equation (14) over the incident spectrum, with most of the contribution to the integral
from Ay < 4. Instead of the integration, one can also use a J-function approximation to Green’s function (see Section 3.2
below).

221 Ay<2

The spectrum from the first-order scattering expressed as a function of Ay is relatively weakly dependent on xo. In particular, the
characteristic wavelength shifts, Ay, and Ay4, do not depend on x, (see Section 2.1.1). Since the first-order scattering dominates in
the range of Ay < 2, we expect that G(Ay) will be relatively weakly dependent on x,.

Thus we normalize Green’s function for Ay < 2 to that for xo = 1 (see Section 2.1.1), and fit the ratio using a third-order
polynomial. For 0.1 < x¢ < 31.6, we obtain

3 log <_m_2+ ) l
log(G(/v‘aYO,A.V)) =lOg(Ay+1 ) +Zai Ay+yo (16)

G(p,1,4y) Ay+yo) | jog ( 2%)
where
4 4
a; = log yo E bjlog’yo, by = Z ciplt + cijs exp [eys(u — cin)] - < (17

j=0 k=0

The coefficients c; are given in Table 2. This approximation fails in the tail of Ay < Ay, where the (negligible) spectrum should
be set to zero.

For 0.01 < xp < 0.1, the function G(u,yo = 10,Ay) can be simply scaled because the range of 0 < Ay < 2 becomes a very
narrow interval of x (Ax ~ 2x3),

G(u, yo, Ay)

G(w10,Ay) _ ™ (18)
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Table 2. The coefficients c;jx (equation 17) of the approximation to G for Ay < 2 and 0.1 < x¢ < 31.6.

i=0
\k 0 1 2 3
0 0.8827 —0.5885  0.7988 —0.4117
1 00517 01076 —0.1691  0.0678
. 2 00014 00043 — —
3 —0.0003 —0.0027  0.0021 —
1=
J\k 0 1 2 3 4 5 6 7
0 —13259 16214 —37007 21722 — 1 203 1063
1 00790 —04029 06619 02210 — -1 177 1041
2 00751 —0.1848  0.4068 —0.4126 — 1 98 1185
3 —0.0020 —0.0394  0.1004 —0.0597 - - - —
i=2
j\k 0 1 2 3 4 5 6 7
0 32953 —3.6996  7.9837 —4.6855 - - - —
1 —0.5278 09857 —17454 —0.3464 — 1 276 0959
2 —0.1919 05798 —12879  1.4885 — -1 183 0986
3 00200 00832 —00333 —0.2370 — 1 166 1086
i=
J\k 0 1 2 3 4 5 6 7
0 —22779 24031 —40733  1.9499 — -1 196 0968
1 04790 —10166  3.1727 —40108  3.0545 —1 304 0957
2 0.1122 —03580 04985 —03750 —0.5349 1 312 0972
3 —00160 —0.0471 —0.0536 02006 02929 —1 306 1.009
4 00005 00021 —00447 01749 —02303 1 169 1130
where
Yo 1.692 Yo ) 3
a5 =14 by 4 0.326 (F)) —1| +1log (E) . by = 0006+ 0089 — 0.102, + 0.05615. (19)
222 Ay>2
In the range Ay > 2 and 0.01 < x < 31.6, we have found a fit,
G(u, yo, Ay) Ay +1 ag as
log | =————=| =1lo +logas+a; [ 1+ log| 1+ , 20
g[G(u,l,Ay) E\By+w) TS U g ) e U 20)
where
as = 0.763y; % +0.007y; 5% + 0.033log yo + 0.230, a5 = 75.180y; %, (21)
by + by log o Yo <1;
- 1.623 _ = > b ’
a7 = 0.100y% +0.115log yo — 0.100,  ag {b3 +bslogyo +bs (bs +y51)", yo> 1, 22)
and
3
bj = Z cjku", (23)

k=0
with the coefficients given in Table 3. In the limit of Ay > 2, G(y,) differs from G(y, = 1) only in the normalization, as (see Section
2.1.3).

For xo > 1 and any Ay, the maximum error is < 10 per cent for 4 > 0.3 and < 20 per cent for u < 0.3. For xo < 1 and
Ay either < 2 or > 4, the maximum error is < 5 per cent for u > 0.3 and < 12 per cent for p < 0.3. The error in the range of
2 <Ay <4 (and xp < 1) is < 30 per cent, and it is largest for the lowest value of xo = 0.01. This is because Green’s function
is increasingly peaked at Ay = 2; also, the wave near Ay = 3 is becoming stronger with decreasing xo (see Fig. 3). On the other
hand, Ax per scattering decreases with decreasing xo, which makes the energy span corresponding to 2 < Ay < 4 narrower. Thus
the error for a broad incident spectrum can even decrease for small x.

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System

Zz0z 1snbny oz uo 1senb Aq £29G601/2E8/€/€/Z/2191E/SBIUW/WOoD dNno"ojwapeoe//:sdiy wolj papeojumoq


http://adsabs.harvard.edu/abs/1995MNRAS.273..837M

FTYO5WNRAS, Z73- ~837K

844  P. Magdziarz and A. A. Zdziarski

Table 3. The coefficients cji (equation 23) for Ay > 2 and 0.01 < xo < 31.6.

i\k 0 1 2 3
1 0618  —0.830 — —
2 0128  —0132 — —
3 0632  —0875 — —
4 —0672 —0286 0717  —0481
5 00126 —00160  0.0077 —
6 00111 00030 —0.0014 —
7 —2437  —0328  —0260 0279

3 COMPTON SCATTERING AND ABSORPTION
3.1 Impact of absorption on Green’s function

Green’s function can be decomposed into contributions from each order of scattering,

o0
Gl Yo, AY) = D i1 yor Ay). (24)
i=1
In cosmic-composition matter, bound-free absorption is negligible above ~ 30 keV (e.g., Morrison & McCammon 1983). Thus
absorption can be important only in the non-relativistic regime of scattering. Furthermore, absorption is unimportant for initial
photons with xo R 1, which have to lose most of their energy by scattering before entering the energy range in which absorption
is important. Therefore we need to develop a formalism for absorption of photons with xo < 1 only. This formalism can then be
applied at any xo with negligible errors.
For photons with xo < 1, the relative energy loss per scattering is small, and the distribution of photons that have undergone
a given number, (i — 1), of scatterings is narrow. Then the average single-scattering albedo for those photons,

J5. Myo + Ay)gi-i(yo, Ay) d(Ay)
Iy Bica(yo, Ay) d(Ay)

is representative for most of them, and the ith order of scattering is suppressed by (o). Here, §; is the distribution of photons
that have not escaped after the ith scattering. Then Green’s function in the presence of absorption may be written as

Z’(Yo) =

(25)

00 i
Gavs(ts y0, AY) = > (11,30, Ay) [ [ lvo). (26)
i=1 k=1
The average wavelength shift for the ith order of scattering is Ay < i for xo < 1 (in the Thomson limit, Ay = i exactly, see
Illarionov et al. 1979). Thus the dominant contribution to Green’s function at Ay = i is from the ith order of scattering. The
average albedo at this wavelength can then be approximated by 4i(yo) & A(yo + i — 1), which allows a separation of the effects
of absorption and scattering. We find numerically that the best overall approximation is Ai(yo) = A(yo + Ay — 0.15) [used in an
integration limit in equation (27) below]. The range Ay < 2 needs to be considered separately because the photon distribution after
the first scattering is distinctly different from that for higher-order scattering (see Illarionov et al. 1979); also, relative contributions
from the first and higher-order scattering depend on A. We can thus write

Ho0) {a(w) + [1 = au] [t +hAy)(t = 2] exp [ 7 dk n o +R)| }, Ay <23

Gavs(1, yo, Ay) = G(p, o, Ay) Ay—0.15 27
exp [ b dk In A(yo +k)] , Ay > 2,

where

a(u) = 0.802 — 1.019u 4 2.528p% — 3.1983 + 1.457p* + 8.10 x 107" ~*, (28)

h(Ay) = exp(0.381Ay) — 2 . (29)

are the factors describing the dependence of the albedo for the first order of scattering with respect to the total reflection for
Ay <2 on p and Ay, respectively. [Note that A(yo + k) in equation (27) denotes 4 at yo + k] In the case of /o = Cx~> which is
approximately valid when E R 10 keV, the integral in equation (27) may be calculated analytically:

/dk InA(yo +k) = (yo+k) {3—1In [1+ C(yo +k)*] } +

! { 1= CY(yo + k) + C¥(yo +k)2} V3

1
— M arctan{ —[2C3(yo +k)—1] b. 30
2C1/3 [1+C13(y, +k)]2 Ci3 { \/3[ (vo+k)—1] (30)
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f(u.A)

Figure 4. The normalized angular dependence of Green’s function in the non-relativistic limit in the cases of dominant absorption (4 — 0) and no
absorption (4 = 1). Solid curves give the analytical solutions, and the dashed histograms give the results of Monte Carlo simulations.

The error of equations (27)~(30) is < 5 per cent for spectra with a > 0 at any xo and 4. The error may become large for a« < 0
because of a contribution from the range 30 keV < E < 60 keV, where both the first-order scattering distribution is broad and
absorption is not yet completely negligible, which causes the approximation based on the averaged factors a(u) and h(Ay) to fail.
We note that the analogous method of LW88 for including the effect of absorption on the angle-averaged Green’s function for
A R 0.5 breaks down for the angle-dependent Green’s function. This is mostly because the function suppressing scattering due to
absorption was calculated in the non-relativistic limit, whereas the reflected spectrum for different viewing angles contains different
fractions of photons from higher-order scatterings, for which xo is in the relativistic regime.

3.2 The non-relativistic limit

Absorption reduces strongly the contribution of higher-order scatterings to the reflected spectrum [see equation (26)]. For strong
enough absorption, the first-order scattering dominates, with its contribution reduced by the albedo, A(yo). Also, the energy change
per scattering is small in the non-relativistic limit, xo — x < 2x3 (see Section 2.2), i.e.,, Compton scattering is nearly elastic.

We can then treat Compton reflection as diffuse monochromatic radiation transfer with the Rayleigh phase function,
(3/4)(1 4 cos? 9), and replace Green’s function with G(g, x, xo) ~ F(u, A)o(x — xp), where F(u,A) is the solution of the transfer
equation. The general solution of this problem in terms of the H-functions was presented by Chandrasekhar (1960). After the first

scattering the photon distribution is nearly isotropic and the isotropic phase function can be used. Accordingly, we divide the flux
F(u, 4) into two parts:

F(p,2) = F'(u,2) + F>' (1, 2), (31)

where

Flud) = 2p |(3— 20 +3)n (14 1 +(32—1)(1—) (32)
mi)=Teu 12+ 3 . " 5= H

describes the first-order reflection [Ghisellini et al. (1994); note that their equation gives the normalized flux, equation (34) below,
in the limit 4 < 1]. For higher orders we obtain

1 A 1 1 In(1+.30-7) 1 3
F (u,x)=-2’-‘1n(1+;>{[1+(\/—ﬁ—1)(1_ (m ))]1+uf/§(1i—ﬂ"l}’ (33)

using the approximation of H-functions for radiation transfer with the isotropic phase function given by Basko (1978). In the limit
of 2 — 1, the factor in curly brackets becomes ~ (1+/3/2)(1 + u/3)[1 — (1 + p/3)(1 — )2 4 .] — 1. If A(E) < 0.5, higher-order
scatterings are strongly suppressed and the contribution of F>! is negligible. Equation (32) then gives the accuracy < 2 per cent
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Figure 5. The reflected spectra (solid curves) from a power-law spectrum with an exponential cut-off (dotted curve) incident on a plane-parallel,

semi-infinite medium. The energy spectral index of the incident spectrum is & = 0.9 and the cut-off energy is Ec = 300 keV. The viewing angles
correspond to p = 0.05, 0.25, 0.45, 0.95, from bottom to top, respectively. The dashed curve gives the angle-averaged reflection spectrum.

for E < 25 keV. The contribution of F>! grows with increasing A, and the error of equations (32)—(33) is < 6 per cent for E < 12
keV and 0.5 < 4 < 0.77, and < 12 per cent for 0.77 < 1 < 0.9.

When 4 ~ 1 (ie., vanishing absorption), equations (32)—(33) fail because then an appreciable number of incident photons get
downscattered to the lower energies. This causes an excess of photons in the reflected spectrum below ~ 10 keV with respect to
the predictions of equations (32)—(33), in particular for hard spectra with « < 1.

In the case of nearly full ionization (A > 0.9), we can instead use the average Green’s function of WLZ88 and treat absorption
using the method described in Section 3.1. The angular dependence is then given by the normalized flux,

_ F(w2)

fuw,4) = F0) (34)

where

Fiy=i—vl=4 (35)
1+1-4

is the angle-averaged monochromatic flux obtained by solving the transfer equation exactly. In the limiting case of 1 = 1, the

angular factor is described by equation (15), which yields accuracy < 10 per cent for 4 > 0.99 and o > 0. For a < 0, the accuracy

worsens because the tail of Green’s function from higher-order scattering becomes important. Generally, the elastic approximation

works well with relatively slowly varying incident spectra (the local |«| < 2) only, because in this case deviations of Green’s function

from a S-function are effectively averaged. Fig. 4 shows the factor (34) in the limits of dominant and vanishing absorption.

4 DISCUSSION AND APPLICATIONS

In order to facilitate the use of our results, Table 4 gives a short guide for calculating Green’s function. The reflected spectrum for
any incident spectrum can then be obtained by the following integration (obtained from the definition of Green’s function):

1
_ [ x 1—xAy d(Ay)
st = | sm(l_my)c(u, ) (T NED

In the numerical integration one has to treat the peak of Green’s function at Ay = 2 with care. This peak is much more pronounced
in the x-space, which is the reason for using Ay as the integration variable.

Our approximations to Green’s function are then used to calculate the reflected spectra for an incident power-law spectrum
with an exponential cut-off with the parameters typical for Seyfert 1s (Madejski et al. 1995; Zdziarski et al. 1995), shown in
Fig. 5. We assume absorption in neutral [except for ionized H and He, as expected in accretion discs (Ross & Fabian 1993)],
solar-composition matter, as given by Batucinska-Church & McCammon (1992) below 10 keV and extrapolated with gy oc E™3
above 10 keV. The error of the approximation to the reflected spectra is < 5 per cent in the 2060 keV range (where our fits
slightly overestimate the corresponding Monte Carlo spectra), and < 1 per cent at other energies.
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Figure 6. A broad-band spectrum (crosses) of IC 4329A from ROSAT, Ginga, and OSSE (Madejski et al. 1995). The dashed curve gives the
absorbed incident spectrum, the dotted curve gives the reflected component including a fluorescent Fe Ko line, and the solid curve is the sum. See
text for the spectral parameters. The equivalent width of the line is 120 eV. Absorption is due to both neutral (ng = 2.1 x 10?! cm~2) and ionized
media (ng = 3.3 x 102 cm~2 with the ionization parameter of £ = 1.6, using the formalism described in Zdziarski et al. 1995).

Table 4. The numbers of the main equations for the approximations to Green’s function at different ranges of energy and albedo.

Eo < 12 keV
1<05 (32) 12 keV< Ey < 51 keV Ey > 51 keV
05<1<09 (31-33) x < 1935 (10),(12),(20),(27)

1>09 (31-35)+WLZ88 x> 9= min[(3),(5)(16),(18),27)  min[(3),(5)1,(16),(27)
2>099 (15)+WLZ88

The reflected spectrum for u = 0.45 is closest in overall shape to the reflected spectrum averaged over all viewing angles (Fig.
5). We note that the actual reflected angle-averaged spectrum is higher by up to 6 per cent in the 11-20 keV range than that
obtained using the method of LW88. The difference is mostly due to the approximate treatment of absorption in LW88.

Also, the shape of the reflected spectrum in Fig. 5 at any angle is the same as that of the angle-averaged spectrum at E < 10
keV. The scaling of equation (32) can then be used (Ghisellini et al. 1994). On the other hand, the two spectra can be very different
above 10 keV. In particular, the face-on reflected spectrum becomes significantly harder than the angle-averaged one. The ratio of
the spectra is 1.33 below 10 keV and 1.59 at 30 keV. One should bear this in mind when applying Green’s functions of LWS88 to
X-ray spectra of Seyfert 1s, which are expected to be oriented close to face-on (Antonucci 1993).

We illustrate the use of our angle-dependent Green’s functions on the spectrum of IC 4329A, a bright Seyfert 1. Fig. 6 shows
its spectrum with the same data sets as in model D of Madejski et al. (1995). They fitted the data using the angle-averaged reflection
and obtained a relative normalization of reflection R = 1.04*335, a = 0.93*0%}, and an exponential cut-off energy E, = 320130 keV
(all errors here are for 90 per cent confidence for one interesting parameter, ie., Ay? = 2.7). We have assumed the viewing angle
to be close to face-on, § = 30°, which yields R = 0.687( 15, a = 0.9670%3, and E. = 4102 keV. If one used instead equation (32)

—120
to rescale the angle-averaged spectrum to that at 30° (Ghisellini et al. 1994), one would get R ~ 0.8070% as the best-fitting value,

—0.18
ie., somewhat more than in the presented fits. The above fit has been obtained using the XSPEC spectral fitting package (Shafer,
Haberl & Arnaud 1991), into which we incorporated a model with our approximations.

We have also re-fitted the average spectrum of weaker Seyfert 1s observed by both Ginga and OSSE (Zdziarski et al. 1995).
Zdziarski et al. (1995) obtained R = 1.3703, a = 0.9273%} and E, = 560*%! keV using the angle-averaged reflection. On the other
hand, we obtain R = 0.66*013, a = 0.88*0%¢, and E, = 430%3% keV for the fixed inclination angle of 30°. The amplitude of the
fluorescent Fe Ko line is treated as a free parameter. We see that now there is substantially less reflection than R ~ 1.0132 expected
from simple rescaling of the angle-averaged spectrum. Our value is in close agreement with both the result for IC 4329A above
and the average reflection fraction in Seyferts obtained by Nandra & Pounds (1994). Thus either the cold matter seen from the
power-law source covers only a ~ 1.3x solid angle, or a part of our view of the cold matter is blocked.

We have compared our reflected spectra with the Monte Carlo model CD_D2A incorporated into XsPEC by Ian George.
The model uses results of George & Fabian (1991; note that they used the non-relativistic form of the differential scattering
cross-section) for power-law incident spectra with a sharp cut-off at 70 keV. For o = 0.9 we obtain a good general agreement up
to ~ 20 keV. At 28 keV (which appears to be the highest usable energy of the model CD_D2A), our Monte Carlo spectrum is
higher by 5 per cent than that of George.
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5 SUMMARY

We have fitted the angle-dependent Green’s functions for Compton reflection by simple, closed-form functions. We assumed a
plane-parallel, semi-infinite medium irradiated by photons with the angular distribution corresponding to emission of an optically
thin corona above the slab. The approximations have been obtained both in the relativistic regime, where the energy loss due
to Compton scattering is significant and the reflected spectrum has to be calculated by integrating Green’s function, and in the
non-relativistic limit, where Compton scattering may by treated as nearly elastic and an appropriate transfer equation can be used.
We have also taken into account the effect of absorption (mostly bound-free) on the reflected spectra. Our results on the effect
of absorption are especially important in the mildly relativistic range, 10 keV < E < 60 keV. We find that there are significant
differences between the angle-dependent reflection spectra and the averaged ones. In particular, the face-on reflected spectrum in
the case of the « = 1 incident power law is both significantly harder in the ~ 10-30 keV range and softer above 30 keV than
the angle-averaged spectrum. FORTRAN codes incorporating our approximations (in particular codes in the xspPEC format) can be
obtained from the authors via e-mail.
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