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Abstract— This paper proposes a novel direction-of-arrival
(DOA)-aided channel estimation for a hybrid millimeter-wave
(mm-wave) massive multiple-input multiple-output system with
a uniform planar array at the base station. To explore the
physical characteristics of the antenna array in mm-wave sys-
tems, the parameters of each channel path are decomposed
into the DOA information and the channel gain information.
We first estimate the initial DOAs of each uplink path through
the 2-D discrete Fourier transform and enhance the estimation
accuracy via the angle rotation technique. We then estimate
the channel gain information using a small amount of training
resources, which significantly reduces the training overhead and
the feedback cost. More importantly, to examine the estimation
performance, we derive the theoretical bounds of the mean
squared errors (MSEs) and the Cramér–Rao lower bounds
(CRLBs) of the joint DOA and channel gain estimation. The
simulation results show that the performances of the proposed
methods are close to the theoretical MSEs’ analysis. Furthermore,
the theoretical MSEs are also close to the corresponding CRLBs.

Index Terms— Millimeter wave, massive MIMO, DOA estima-
tion, channel estimation, CRLB.
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I. INTRODUCTION

AS AN important candidate in the fifth generation (5G)

mobile communications, the millimeter-wave (mm-wave)

communication that explores large amount of bandwidth

resources at frequencies 30GHz to 300GHz has been pro-

posed for outdoor cellular systems [1]–[4]. The mm-wave

communication requires massive antennas to overcome high

propagation path loss and to provide beamforming power gain.

Meanwhile, for a given size of antenna array, it is possible to

equip hundreds or thousands of antennas at the transceiver due

to the small carrier wavelengths at mm-wave frequencies.
Full digital baseband precoding introduces extremely high

hardware cost and energy con- sumption in massive multiple-

input multiple-output (MIMO) system, due to the requirement

for the same number of radio frequency (RF) chains [5].

Alternatively, the hybrid precoding which divides the pre-

coding operations between the analog and digital domains

can be low-cost solution to reduce the number of RF chains.

In this architecture, the digital beamforming is conducted by

controlling the digital weights associated with each RF chain.

The analog beamforming is realized by controlling the phase

of the signal transmitted at each antenna via a network of

analog phase shifters. By doing so, hybrid analog–digital

beamforming facilitates the hardware-constrained mm-wave

massive MIMO communication system to exploit both spatial

diversity and multiplexing gain [6]–[12].
It is recognized that the full benefits of massive MIMO

techniques in mm-wave communication systems, such as high

energy efficiency and high spectrum efficiency, heavily rely on

the accurate channel state information (CSI) estimation, which

is also regarded as one of the main challenges for massive

MIMO system as well as mm-wave systems. To the best

of our knowledge, traditional channel estimation techniques

developed for lower-frequency MIMO system are no longer

applicable for mm-wave massive MIMO system due to the

implementation of large antenna arrays, hybrid precoding, and

the sparsity of mm-wave channel [13]. Thus, specific channel

estimation techniques for mm-wave and massive MIMO sys-

tem have been proposed in [13]–[30].

In [14]–[16], the eigen-decomposition based algorithms

exploiting the availability of low rank channel covariance

matrices were developed for channel estimation. Unfortu-

nately, the complexity of these channel estimation algo-

rithms are extremely high and requires large overhead to

obtain reliable channel covariance matrices. To solve this
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problem, [17]–[24] proposed the compressive sensing (CS)

based channel estimation schemes by utilizing the sparsity

of mm-wave channel in the angle domain and incorporating

the hybrid architecture. However, the complexity is still high

due to the non-linear optimization, and its effectiveness highly

depends on the restricted isometry property (RIP).

The authors in [25] and [26] proposed an open-loop channel

estimation strategy, which is in- dependent of the hardware

constraints. In [27], a grid-of-beams (GoB) based approach

was proposed to obtain the angle-of-departure (AOD) and

the direction-of-arrival (DOA). This approach requires large

amount of training with high overhead because the best

combinations of analog transmit and receive beams were

achieved via exhaustive sequential search. In [28], compressed

measurements on the mm-wave channel were applied to

estimate the second order statistics of the channel enabled

adaptive hybrid precoding. It is noted that only quantized

angle estimation with limited resolution can be achieved via

the CS and grid-of-beams based methods. Recently, an array

signal processing aided channel estimation scheme has been

proposed in [29] and [30], where the angle information of the

user is exploited to simplify the channel estimation.

Angle information plays a very important role in the mm-

wave massive systems. Hence, there is an urgent requirement

for a fast and accurate estimation approach that could effi-

ciently estimate the angle information, especially for mm-

wave massive MIMO with hybrid precoding. Many high

resolution subspace based angle estimation algorithms, such

as multiple signal classification (MUSIC), estimation of signal

parameters via rotational invariance technique (ESPRIT) and

their variants have attracted enormous interests inside the

array processing community due to their high resolution angle

estimation [31]–[33]. Their applications in massive MIMO

systems and full-dimension MIMO systems for two-

dimensional angles estimation have been extensively studied

in [34]–[38]. However, the conventional MUSIC and ESPRIT

are not suitable for the mm-wave communications due to

the following main reasons: 1) They are of very high com-

putational complexity during singular value decomposition

(SVD) operation due to the massive number of antennas;

2) They belong to blind estimation category, which is origi-

nally designed for Radar application, and did not make full use

of the training sequence in wireless communication systems.

In this work, we focus on the DOA estimation and channel

estimation for the mm-wave massive MIMO system with

hybrid precoding. We first formulate the uplink channel

model in hybrid precoding system, where the base station

(BS) is equipped with an MN -antenna uniform planar array

(UPA) while all users have single antenna. The parame-

ters of each path in the channel matrix are decomposed

into the corresponding channel gain and the DOA informa-

tion. Using the two dimensional discrete Fourier transform

(2D-DFT), the initial DOAs can be estimated through two

dimensional fast Fourier transform (2D-FFT) with a resolution

inversely proportional to MN , and its resolution can be

further enhanced via angle rotation technique. Our proposed

2D-DFT based estimation method is of quite low complex-

ity and is easy for practical implementation. Moreover, the

Fig. 1. Simplified system model of multiuser mm-wave massive MIMO with
hybrid precoding.

obtained DOA estimation results are used for the subsequent

channel gain estimation. Most importantly, we further derive a

simple expression for the theoretical bounds of mean squared

errors (MSEs) performance in high signal-to-noise ratio (SNR)

region, as well as the corresponding Cramér-Rao lower bounds

(CRLBs). Both theoretical and numerical results are provided

to corroborate the effectiveness of the proposed method.

The rest of the paper is organized as follows. In section II,

the system model of mm-wave massive MIMO system

with hybrid precoding and the channel characteristics are

described. In section III, we present a two-stage 2D-DFT aided

DOA estimation algorithm. The MSE and CRLB performance

are analyzed in the section IV. Simulation results are then pro-

vided in Section V and conclusions are drawn in Section VI.

Notations: Small and upper bold-face letters donate column

vectors and matrices, respectively; the superscripts (·)H , (·)T ,

(·)∗, (·)−1, (·)† stand for the conjugate-transpose, transpose,

conjugate, inverse, pseudo-inverse of a matrix, respectively;

tr(A) donates the trace of A; [A]ij is the (i, j)th entry of A;

Diag{a} denotes a diagonal matrix with the diagonal element

constructed from a, while Diag{A} denotes a vector whose

elements are extracted from the diagonal components of A;

vec(A) denotes the vectorization of A; R{A} denotes the

real part of A; S{A} denotes the Imaginary part of A; [a]i:j
denotes the subvector of a that starts with [a]i and ends at [a]j ;

[A]i:j denotes the submatrix of A that starts with row [a]i,:
and ends at row [a]j,:; E{·} denotes the statistical expectation,

and khk is the Euclidean norm of h.

II. SYSTEM MODEL

Let us consider a multiuser mm-wave massive MIMO

time division duplex (TDD) systems with a hybrid precoding

structure as shown in Fig. 1. The BS is equipped with

MN antennas in the form of UPA where M represents the

number of antennas in the horizon and N represents the

number of antennas in the vertical. The BS has MRF ≤ M×N
RF chains transmitting data streams to K ≤ MRF mobile

users, each with a single antenna [19]. We denote the distance

between the neighboring antenna elements in both horizon

and vertical as d. The BS is assumed to apply an MRF × K
complex valued based-band digital beamformer FBB(FBB ∈
CMRF ×K), followed by an analog beamformer FRF (FRF ∈
CMN×MRF ). To simplify the hardware implementation, each

element of FRF has unitary magnitude with arbitrary phase.
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As FRF is implemented using analog phase shifters, its ele-

ments are constrained to satisfy [[FRF ]:,j [FRF ]∗:,j ]i,i = 1
MN ,

(j = 1, 2, · · ·MRF , i = 1, 2, · · ·MN), where all elements of

FRF have equal norm. The total transmit power constraint is

enforced by normalizing FBB to satisfy kFRF [FBB]:,kk2
F =

1, k = 1, 2, · · · , K .

A. Transmitter Model

Denote Hk as the M × N channel matrix between the BS

and the kth mobile user. In the uplink transmission stage,

the received signal at the BS can be expressed as

y(t) = FH
BBFH

RF

K∑

k=1

vec{Hk}sk(t) + N, t = 1, · · · , T,

(1)

where sk(t) is the transmitted signal at time t, N ∼
CN (0, σ2

nI) is the complex Gaussian noise matrix, and σ2
n

is the noise covariance.

Since the uplink and downlink channels are reciprocal in a

TDD system, the received signal in the downlink transmission

at the kth mobile user is given by

yk = vecH{Hk}FRF FBBs + nk, (2)

where s = [s1, s2, · · · , sK ]T is the transmitted signal vector

for all K mobile users. Thus, we can express the received

SNR at the kth mobile user as

Γk = |vecH{Hk}FRF FBB |2 σ2
s

σ2
n

, (3)

where E{|sk|2} = σ2
s denotes the power of sk.

B. Channel Model

Due to the limited scattering characteristics in the mm-

wave environment [39]–[42], we assume the channel rep-

resentation based on the extended Saleh-Valenzuela (SV)

model in [25]–[27]. Let us define φl,k ∈ [−90◦, 90◦) and

θl,k ∈ [−180◦, 180◦) as the signal elevation angle and the

azimuth of the lth (l = 1, 2, · · · , L) path of the kth user.

The corresponding steering matrix can be expressed as (4),

shown at the top of the next page, where λ is the wavelength

of the carrier signal. Denoting w1,l,k = 2πd
λ cosφl,k and

w2,l,k = 2πd
λ sin φl,k cos θl,k, we can express (4) as

A(φl,k, θl,k) = A(w1,l,k, w2,l,k) = a(w1,l,k)aT (w2,l,k), (5)

where a(w1,l,k) = 1√
M

[1, · · · , ej(M−1)w1,l,k ]T , and

a(w2,l,k) = 1√
N

[1, · · · , ej(N−1)w2,l,k ]T .

Using the geometric channel model with L scatters in

mm-wave channel, where each scatter contributes to single

propagation path between the BS and the mobile user, we can

write the channel matrix as

Hk =
1√
L

L∑

l=1

al,kA(φl,k, θl,k)

=
1√
L

L∑

l=1

al,ka(w1,l,k)aT (w2,l,k)

=
1√
L

Aw1,kHa,kA
T
w2,k, (6)

where

Aw1,k = [a(w1,1,k), a(w1,2,k), · · · ,a(w1,L,k)],

Aw2,k = [a(w2,1,k), a(w2,2,k), · · · ,a(w2,L,k)],

Ha,k = diag(a1,k, a2,k, · · · , aL,k), (7)

and al,k is the channel gain along the lth path of the kth user

(l = 0 for the line-of-sight (LOS) path and l > 1 for the

non-line-of-sight (NLOS) paths).

The (m, n)th element of the channel matrix Hk can be

written as

[Hk]m,n =
1√
L

L∑

l=1

al,kej(mw1,l,k+nw2,l,k), (8)

with m = 0, 1, · · · , M − 1, and n = 0, 1, · · · , N − 1. It is

worth noting that at mm-wave frequencies, the amplitude of

channel gain |a1,k| of LOS components are typically 5 to 10dB

stronger than the {|al,k|}L
l=2 of the NLOS component [40].

Obviously, (6) is a sparse channel model that represents the

low rank property and the spatial correlation characteristics of

mm-wave massive MIMO system. Importantly, the parameters

of Hk have only L complex channel gains and 2L real

phases (φl,k, θl,k), where the number of paths is usually much

less than the number of antennas, i.e., L � MN . Instead

of directly estimating the channel Hk, one could first esti-

mate the DOA information (φl,k, θl,k), and then estimate the

corresponding path gain al,k via the conventional estimation

theory, such as least square (LS), maximum-likelihood (ML)

algorithms. By doing this, the number of the parameters to

be estimated is greatly reduced [43]. It is noted that the

beamspace method and CS method from channel model (6) is

not the real physical angle, but only provide an approximation

of the quantized angle with limited resolution.

III. DOA ESTIMATION FROM ARRAY

SIGNAL PROCESSING

In this section, we propose a new DOA estimation algorithm

for the hybrid antenna array. To facilitate the understanding,

we start with the uplink transmission.

A. Preamble

In the uplink transmission, the preamble will only be sent

once at the beginning of the transmission. The received signal

at the BS can be written as

YBB = FH
RF

K∑

k=1

vec{Hk}xT
k + N, (9)

where xk = [xk,1, xk,2, · · · , xk,τ ]T is the preamble of the

kth user, τ ≥ K is the length of preamble, and YBB is the

baseband signal before the digital precoding in the BS. Since

the received signal has only a few observations, the whole

CSI of the kth user cannot be extracted from the received

signal directly.

To simplify the illustration, we assume that MN is divisible

by MRF , and denote D = MN/MRF as a suitable integer

parameter that is related with the length of the RF chains and
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A(φl,k, θl,k) =
1√
MN

⎡

⎢
⎣

1 · · · ej2πd/λ(N−1) sin φl,k cos θl,k

...
. . .

...

ej2πd/λ(M−1) cos φl,k · · · ej2πd/λ((M−1) cos φl,k+(N−1) sin φl,k cos θl,k)

⎤

⎥
⎦

M×N

, (4)

the number of antennas at the BS. Stacking the MRF × 1
subvectors into the channel vector vec{H̃k} as

vec{Hk} = [vecH{Hk}(0), · · · , vecH{Hk}(D−1)]H , (10)

where

vec{Hk}(p) = vec{Hk}(pMRF ):((p+1)MRF −1). (11)

We design the analog receive beamformer FRF (p) to switch

on only the (pMRF )th, · · · , ((p + 1)MRF − 1)th receive

antennas, as

FRF (p) =

⎡

⎣

0(pMRF )×MRF

URF

0(MN−(p+1)MRF )×MRF

⎤

⎦

MN×MRF

, (12)

where URF is an MRF × MRF Hadamard matrix, and its

elements are of unitary magnitude. Based on (9), the baseband

signal of the kth user before digital precoding at the pth

position and the tth time is written as

yBB,k(p, t) = (FRF (p, t))Hvec{Hk}xk(t) + n(p, t)

= UH
RF vec{Hk}(p)xk(t) + nk(p, t), (13)

where nk(p, t) = [nk(t)](pMRF ):((p+1)MRF −1), t = 1,
2, · · · , T , and p = 0, 1, · · ·D − 1.

We can then estimate vec{Hk}(p) from (13) via

vec{Ĥk}(p) = (UH
RF )−1yBB,k(p, t)

xk(t)

kxk(t)k2

= vec{Hk}(p) + nk(p, t)
xk(t)

kxk(t)k2
. (14)

If we probe all values of p in (14), we can obtain an estimate

of Hk. Similar to (10) and (12), we define the equivalent

analog beamforming matrix as

F̃H
RF =

⎡

⎢
⎢
⎢
⎢
⎣

F1H
RF 0 · · · 0

0 F2H
RF · · · 0

...
...

. . .
...

0 0 · · · FDH
RF

⎤

⎥
⎥
⎥
⎥
⎦

MN×MN

, (15)

where Fq
RF is also an MRF ×MRF Hadamard matrix such

that it can guarantee the full rank of matrix F̃RF . By doing

so, we can rewrite the equivalent baseband signal of the kth

user before digital precoding at the BS as

ỸBB,k = F̃H
RF vec{Hk}x̃T

k + Ñk, (16)

where x̃k = [xk(1), xk(2), · · · , xk(D)]H , and

Ñk =

⎡

⎢
⎢
⎢
⎣

nk(1, 1) nk(1, 2) · · · nk(1, D)
nk(2, 1) nk(2, 2) · · · nk(2, D)

...
...

. . .
...

nk(D, 1) nk(D, 2) · · · nk(D, D)

⎤

⎥
⎥
⎥
⎦

. (17)

Hence, the LS estimation of the channel can be expressed as

vec{Ĥk} = (F̃H
RF )−1YBB,k

x̃T
k

kx̃T
k k2

+ (F̃H
RF )−1Ñk

x̃T
k

kx̃T
k k2

.

(18)

During practical transmission, the signals of K users are

overlay together. Therefore, we must use orthogonal pilot

sequences to distinguish each user. In order to reduce the pilot

overhead, we assume that only τ = K orthogonal pilots can

be used to estimate vec{Hk}. However, it is not enough to

estimate the complete channel. Define X = [x1,x2, · · · ,xK ]T

as the orthogonal training matrix, and kxkk2 = 1. We can send

the same orthogonal training matrix for D times to estimate

the whole channel matrix. Similar to (16), we have

ỸBB = F̃H
RF HX̃ + Ñ, (19)

where

H = [vec{H1}, vec{H2}, · · · , vec{HK}],

X̃ = [X,X, · · · ,X
︸ ︷︷ ︸

D

], Ñ =

K∑

k=1

[Ñk, Ñk, · · · , Ñk
︸ ︷︷ ︸

D

]. (20)

Thus, the channel for all users can be estimated from

Ĥ = (F̃H
RF )−1ỸBBX̃T + (F̃H

RF )−1ÑX̃T . (21)

Note that the preamble process seems time consuming but

will only be performed once at the start of the transmission.

Usually, the transmitter and the receiver may not physically

change its position in a relatively longer time, thus we can

treat the DOA component of the channel as unchanged within

several or even tens of the channel coherence times [29], while

the remaining channel gain component could be re-estimated

via much simplified approach.

After obtaining the initial channel estimation for all users,

the next step is to extract the angular information (φl,k, θl,k)
via the 2D-DFT and angular rotation approaches for each user,

which will be described in the next subsection, and we omit

k for simplicity.

B. DOA Estimation Algorithm

Thanks to the massive number of antennas at the BS as

well as the UPA structure, we propose an efficient 2D-DFT

approach for DOA estimation in the following.

1) Initial DOA Estimation: We first define two normal-

ized DFT matrix FM and FN , whose elements are given

by [FM ]pp′ = 1√
M

e−j 2π
M

pp′

, p, p0 = 0, 1, · · · , M − 1 and

[FN ]qq′ = 1√
N

e−j 2π
N

qq′

, q, q0 = 0, 1, · · · , N − 1, respectively.

Meanwhile, we define the normalized 2D-DFT of the channel
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matrix H as HDFT = FMHFN , whose (p, q)th element

(p = 0, 1, ..., M − 1; q = 0, 1, ..., N − 1) is computed as

[HDFT ]pq

=
1√
MN

M−1∑

m=0

N−1∑

n=0

[H]pqe
−j2π( pm

M
+ qn

N )

=
1√

LMN

L∑

l=1

ale
−j M−1

2
( 2π

M
p−w1,l)e−j N−1

2
( 2π

N
q−w2,l)

×
sin
(

πp − Mw1,l

2

)

sin((πp − Mw1,l

2 )/M)
·

sin
(

πq − Nw2,l

2

)

sin((πq − Nw2,l

2 )/N)
. (22)

It is noted that with infinite number of antennas in the array,

i.e., M → ∞, N → ∞, there always exists some integers pl =
Mw1,l

2π , ql =
Nw2,l

2π such that [HDFT ]plql
= al√

LMN
, while the

other elements of HDFT are all zero, In other words, all power

is concentrated on the (pl, ql)th elements and the elements of

HDFT possess sparse property, such that the elevation and

the azimuth DOA of the lth path (φl, θl) can be immediately

estimated from the non-zero positions (pl, ql) of HDFT using

φl = cos−1

(
λpl

Md

)

,

θl = cos−1

⎛

⎝
λql

Nd

/
√

1 −
(

λpl

Md

)2
⎞

⎠. (23)

Unfortunately, in practice, the array aperture cannot

be infinitely large, even if MN could be as greater as

hundreds or thousands in hybrid mm-wave massive MIMO

systems. In special case, if some specific angles satisfy

that Mw1,l/(2π) is integer and Nw2,l/(2π) is integer,

all power of channel will concentrate on some separated

single points. We call these as on-grid angles. In more

general case, Mw1,l/(2π) and Nw2,l/(2π) will not be

integers, and the channel power of HDFT will leak from

the (bMw1,l/(2π)e, bNw2,l/(2π)e)th element to its nearby

elements. In fact, the leakage of channel power is positively

proportional to the deviation (Mw1,l/(2π) − bMw1,l/(2π)e)
and (Nw2,l/(2π) − bNw2,l/(2π)e), but is inversely propor-

tional to M and N as shown in (22). However, HDFT can

still be approximated as a sparse matrix with most of power

concentrated around the (bMw1,l/(2π)e, bNw2,l/(2π)e)th
element. Hence, the peak power position of HDFT is still

useful for extracting initial DOA information.

An example of a two-path channel from (30◦, 140◦) and

(−50◦, 10◦) with M = 100, N = 100 as shown in Fig. 2(a),

whose channel sparse characteristics after 2D-DFT is depicted.

For clear illustration, we demonstrate only for a noise-free

scenario. It can be seen that each path corresponds to one bin

and each bin has a central point that contains the largest power.

Each bin encounters the power leakage and the points around

the central point also contain considerable power but the power

of other points are ignorable. In Fig. 2(a), the central point of

the channel after initial 2D-DFT are (69, 65) and (41, 25).
Hence, we can use these two peak power positions as the

initial DOA estimation.

Fig. 2. An example of a two paths channel sparse characteristics after
2D-DFT and optimal angle rotation, where BS array has 100×100 antennas.

Based on the above discussion, we can formulate the

2D-DFT of the estimated channel matrix Ĥ, with its (p, q)th
element being

[ĤDFT ]pq = [HDFT ]pq + [NDFT ]pq, (24)

where NDFT ∼ CN
(

0,
σ2

n√
MN

I
)

. Denote the L largest peaks

in L bins of ĤDFT as (pini
l , qini

l ). We can express the initial

DOA estimates as

φ̂ini
l = cos−1

(
λpini

l

Md

)

,

θ̂ini
l = cos−1

⎛

⎝
λqini

l

Nd

/
√

1 −
(

λpini
l

Md

)2
⎞

⎠. (25)

2) Fine DOA Estimation: The resolution of (φ̂ini
l , θ̂ini

l ) via

directly applying 2D-DFT is limited by half of the DFT

interval, i.e., 1/(2M) and 1/(2N). For example, for M = 100
and N = 100, the worst MSE of the (φ̂ini

l , θ̂ini
l ) is in the order

of 10−4. To improve the DOA estimation accuracy, we next

show how this mismatch could be compensated via an angle

rotation operation.

The angle rotation of the original channel matrix is defined

as

Hro = ΦM (∆φl)HΦN (∆θl), (26)

where the diagonal matrices ΦM (∆φl) and ΦN (∆θl) are

given by

ΦM (∆φl) = diag{1, ej∆φl , · · · , ej(M−1)∆φl},
ΦN(∆θl) = diag{1, ej∆θl , · · · , ej(N−1)∆θl}. (27)

In (27), ∆φl ∈ [− π
M , π

M ] and ∆θl ∈ [− π
N , π

N ] are the angle

rotation parameters. After the angle rotation operation, the

2D-DFT of the rotated channel matrix Hro
DFT can be calcu-

lated as (28), shown at the bottom of the next page.

It can be readily found that the entries of Hro
DFT have only

L non-zero elements when the angle shifts satisfying

∆φl = 2πpl/M − w1,l, ∆θl = 2πql/N − w2,l, (29)

where (∆φl, ∆θl) in (29) are the optimal angle shifts.
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Based on the derived optimal angle shifts, the elevation

angle and the azimuth angle of the lth path (φl, θl) can be

estimated as

φ̂l = cos−1

(
λpl

Md
− λ∆φl

2πd

)

,

θ̂l = cos−1

(
(λql

Nd
− λ∆θl

2πd

)/
√

1 −
( λpl

Md
− λ∆φl

2πd

)2
)

.

(30)

For finding the optimal angle shifts (∆φl, ∆θl) from

channel matrix H, one way is the simple two-dimensional

searching of ∆φ and ∆θ over the very small region ∆φ ∈
[− π

M , π
M ] and ∆θ ∈ [− π

N , π
N ]. Then we can extract the

corresponding (∆φl, ∆θl) when the (pini
l , qini

l )th element of

FMΦM (∆φl)HΦN (∆θl)FN shrink into their highest form.

Mathematically, there is

(∆φl, ∆θl) = arg max
∆φ∈[− π

M
, π

M
],∆θ∈[− π

N
, π

N
]

kfH
M pini

l
ΦM (∆φl)HΦN (∆θl)fN qini

l
k2, (31)

where fM pini
l

is the pini
l th column of FM and fN qini

l
is the

qini
l th column of FN .

To demonstrate the effect of the angle rotation, we consider

a two paths channel as an example shown in Fig. 2(b) and

Fig. 2(c). Fig. 2(b) and Fig. 2(c) show the 2D-DFT spectrum

of the channel matrix with the optimal angle rotation for the

two paths respectively. Through angle rotation, the 2D-DFT

spectrum becomes highly concentrated around the DOAs of

two paths, which could improve the accuracy of the DOA

estimation. After searching all ∆φ and ∆θ, we can obtain the

position of the maximal power and the optimal angle rotation

(∆φl, ∆θl) for each path.

The DOA information of different paths can be estimated

using the method outlined in Algorithm 1. Note that the

number of search grids G = GMGN , where GM means the

search grids within [− π
M , π

M ] and GN means the search grids

within [− π
N , π

N ], determines the complexity and accuracy of

the whole DOA estimation algorithm. It is easy to find that the

accuracy of the DOA estimation is directly proportional to the

number of searched grids, but the complexity of the algorithm

is inversely proportional to the number of searched grids. Since

the complexity of (31) is proportional to O(MN) for the

given ∆φl and ∆θl, the complexity of the whole algorithm is

about O(MNlogMN +MN +GKMN). The complexity of

different algorithms is shown in the Table I. Since K � MN
and G � MN ,1 the complexity of the proposed algorithm is

much less than O(M2 N2).

1For mm-wave massive MIMO with very large MN , a small value of G

is already good enough to provide very high accuracy and low complexity.

Algorithm 1 2D-DFT and angle rotation based DOA estima-

tion
Input: H. Output: φl, θl, l = 1, 2, · · · , L.

1. Find the central point (pini
l , qini

l ) of each

bin in HDFT = FMHFN , where (pini
l , qini

l ) =
argmax(p,q)∈bin(l) k[HDFT ]pqk2, l = 1, 2, · · · , L.

2. For ∆φ = − π
M : π

M , ∆θl = − π
N : π

N
3. For l = 1 : L
4. (∆φ̂l, ∆θ̂l) = arg max∆φ∈[− π

M
, π

M
],∆θ∈[− π

N
, π

N
]

kfH
M pini

l

ΦM (∆φl)HΦN (∆θl)fN qini
l

k2,

5. End For

6. End For

7. Obtain φ̂l, θ̂l from the equation (30).

Remark 1: The DOA can be estimated with a resolution

proportional to the number of antenna at the BS, and this

resolution can be enhanced via angle rotation technique with

fast Fourier transform (FFT). Note that different users with

very close DOA can be recognized by our DOA estimation

method, but it cannot be achieved by blind algorithms.

Remark 2: Although the angle rotation technique has been

proposed for channel estimation in [29], we use the angle

rotation technique for different purposes, i.e., DOA estimation.

C. Channel Gain Estimation and Hybrid Precoding

To estimate the uplink channel gains, the BS needs to

know the estimated DOA parameters (∆φ̂l,k, ∆θ̂l,k), l =
1, 2, · · · , L, k = 1, 2, · · · , K . The received signal of the

BS can be written as

Y = FH
BBFH

RF

K∑

k=1

vec{Hk}xT
k + N

=
1√
L

FH
BBFH

RF

K∑

k=1

L∑

l=1

al,kvec{A(φ̂l,k, θ̂l,k)}xT
k + N

=
1√
L

FH
BBFH

RF

K∑

k=1

Akakx
T
k + N, (32)

where Ak = [vec{A(φ̂1,k, θ̂1,k)}, · · · , vec{A(φ̂L,k, θ̂L,k)}],
and ak = [a1,k, a2,k, · · · , aL,k]T . Note that the digital beam-

forming matrix FBB , analog beamforming matrix FRF and

the steering matrix Ak are known at the BS. The BS can refine

the channel gains via LS estimation as

âk =
√

L(FH
BBFH

RF Ak)†Yxk

= ak +
√

L(FH
BBFH

RF Ak)†Nxk. (33)

[Hro
DFT ]pq =

1√
LMN

L∑

l=1

ale
−j M−1

2
( 2π

M
p−w1,l−∆φl)e−j N−1

2
( 2π

N
q−w2,l−∆θl)

×
sin
(

πp − Mw1,l

2 − M∆φl

2

)

sin((πp − Mw1,l

2 − M∆φl

2 )/M)
·

sin
(

πq − Nw2,l

2 − N∆θl

2

)

sin((πq − Nw2,l

2 − N∆θl

2 )/N)
. (28)
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TABLE I

COMPLEXITY OF DIFFERENT ESTIMATE ALGORITHMS

Thus, with the DOAs information from (30) and gains infor-

mation from (33), we can obtain the uplink channel estimation

for all users as

Ĥk =
1√
L

L∑

l=1

âl,kvec{A(φ̂l,k, θ̂l,k)}. (34)

From (2), the downlink received signals can be expressed

as

yd = HdFRF FBBs + n, (35)

where Hd = [vec{H1}, vec{H2}, · · · , vec{HK}]H , and

n ∼ CN (0, σ2
nIK) is additive white Gaussian noise vector.

We assume MRF = KL. From the previous discussion,

the analog precoding matrix can be immediately obtained from

FRF = [vec{ΦM (∆φ1,1)fM p1,1
fN

H
q1,1

ΦN (∆θ1,1)}, · · · ,

vec{ΦM (∆φL,K)fM pL,K
fN

H
qL,K

ΦN (∆θL,K)}],
(36)

where (pl,k, ql,k) denotes the position that contains the largest

power after 2D-DFT of the lth path of the kth user, and

each column of FRF represents the spatial angle (after angle

rotation) of each path for all K users. Note that the analog

precoding indicates that each path of each user is transmitting

exactly towards its signal direction and is thus named as

anglespace transmission.2

Similar to the conventional digital precoding approach,

FBB can be obtained via the zero-forcing (ZF) beamforming

algorithm, as

FBB =
1√
P

(HdFRF )H((HdFRF )(HdFRF )H)−1, (37)

where P is the power constraint.

Remark 3: The reciprocity of the channel cannot be applied

to the frequency division duplex (FDD) system due to the

different transmission frequencies of the uplink and downlink

channels. Nonetheless, the uplink and downlink channels share

a common propagation space between the BS and the user. The

spatial directions or angles in the uplink channel are almost

the same as those in the downlink channel. For example,

the DOA information of both uplink and downlink are the

same. Therefore, our DOA estimation algorithm can also be

applied to FDD system and the channel gain component of

the downlink can be estimated using small training overhead.

2This is a key difference from beamspace transmission.

IV. PERFORMANCE ANALYSIS

In this section, we derive the theoretical MSE of the joint

DOA and channel gain estimation for hybrid mm-wave mas-

sive MIMO system. Generally, a closed-form MSE analysis for

multiple DOA estimations is hard to obtain. An alternatively

acceptable approach is to consider single user and single

propagation path and derive corresponding MSE of φ, θ as a

benchmark [44]. We first show that the MSE of the proposed

estimation algorithm is the same as the ML estimator in

single propagation path scenario and derive the closed-form

expressions of the DOA information and channel gain using

the ML estimator in the high SNR region. Next, the CRLB

analysis of the DOA information and channel gain are car-

ried on.

A. Theoretical MSE of the Proposed Estimator

Limiting to single propagation path, the received signal can

be rewritten as

y = FH
RF vec(H)s + n = FH

RF vec(A)αs + n, (38)

where A � A(w1, w2) is the M ×N steering matrix with its

(p, q)th entry given by

[A]pq = ej((p−1)w1+(q−1)w2), (39)

and n is the MRF × 1 vector representing the white Gaussian

noise with zero mean and variance σ2
n.

The proposed estimator can be rewritten as

[ŵ1, ŵ2] = arg maxw1,w2
kvecH(A)(FH

RF )†yk2

= arg maxw1,w2
yHFH

RF vec(A)vecH(A)(FH
RF )†y,

(40)

where vec(A) = vec{ΦM (∆φ)fM pfN
H
q ΦN (∆θ)}.

For given w1, w2 and α, the probability density function

(PDF) of y can be expressed as

f(y|w1, w2, α)

=
1

(πσ2
n)MRF

exp

{

−ky − FH
RF vec(A)αsk2

σ2
n

}

. (41)

The joint ML estimates of w1, w2 and α can be obtained via

[ŵ1, ŵ2, α̂] = arg maxw1,w2,α f(y|w1, w2, α), (42)

or equivalently

[ŵ1, ŵ2, α̂] = arg minw1,w2,α ky − FH
RF vec(A)αsk2. (43)

In the next analysis, we first estimate w1 and w2, and then

estimate channel gain a, which is a two-step optimization

rather than joint optimization.



8172 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 17, NO. 12, DECEMBER 2018

For given w1 and w2, the ML estimate of α is obtained

from (43) as

α̂ = vecH(A)(FH
RF )†s∗y. (44)

Substituting (44) into (43), the ML estimates of w1, w2 can

be written as

[ŵ1, ŵ2]

= arg minw1,w2
ky − FH

RF vec(A)vecH(A)(FH
RF )†s∗ysk2

= arg minw1,w2
ky − σ2

sF
H
RF vec(A)vecH(A)(FH

RF )†yk2

= arg maxw1,w2
yHFH

RF PA(FH
RF )†y

= arg maxw1,w2
g(w1, w2), (45)

where g(w1, w2) denotes the cost function of w1, w2, s∗s =
σ2

s means the power of signal, and PA = vec(A)vecH(A)
represents the projection matrix onto the subspace spanned by

vec(A). Interestingly, the MSE (40) of the proposed estimator

coincides with the ML estimator (45). Till now, we have (44)

and (45) as the ML estimates of α, w1, and w2.

Lemma 1: Under high SNR, the perturbations of the esti-

mation of w1 and w2 from (45) are given by

E{∆w2
i } =

σ2
n

2σ2
s |α|2vecH(A)WiP⊥

a Wivec(A)
, (46)

where i = 1, 2, P⊥
a = I − Pa is the projection matrix onto

the orthogonal space spanned by A, and W1, W2 are the

diagonal matrices as

W1 = Diag{0. · · · , 0
︸ ︷︷ ︸

N

, · · · , (M − 1), · · · , (M − 1)
︸ ︷︷ ︸

N

}, (47)

W2 = Diag{0. · · · , 0
︸ ︷︷ ︸

M

, · · · , (N − 1), · · · , (N − 1)
︸ ︷︷ ︸

M

}. (48)

Proof: See Appendix.

In the channel estimation process, we need to further exam-

ine the MSE of the azimuth angle φ and the elevation angle θ.

Based on the fact that w1 = 2πd
λ cosφ, w2 = 2πd

λ sin φ cos θ,

we have

φ = cos−1

(
λw1

2πd

)

, and θ = cos−1

(
λw2

2πd sinφ

)

. (49)

From (46) and (49), we can derive the mean and the MSE

of the azimuth angle and the elevation angle, namely

E{∆φ} = E{∆θ} = 0,

E{∆φ2} = E{(φ̂ − φ)(φ̂ − φ)H} =
∂φ

∂w1
E{w2

1}(
∂φ

∂w1
)H

=
( λ
2πd )2

1 − (λw1

2πd )2
× σ2

n/σ2
s

2|α|2vecH(A)W1P⊥
a W1vec(A)

,

E{∆θ2} = E{(θ̂ − θ)(θ̂ − θ)H} =
∂θ

∂w2
E{w2

2}(
∂θ

∂w2
)H

=
( λ
2πd sin φ )2

1 − ( λw2

2πd sin φ )2

× σ2
n/σ2

s

2|α|2vecH(A)W2P⊥
a W2vec(A)

. (50)

Based on (44), we write α̂ as

α̂ = vecH(Â)(FH
RF )†s∗(FH

RF vec(A)αs∗ + n)

= σ2
svecH(Â)vec(A)α + vecH(Â)(FH

RF )†s∗n, (51)

where vecH(Â) is constructed from the estimate (ŵ1, ŵ2).
With the help of Taylor’s expansion, vecH(Â) can be approx-

imated by

vecH(Â) ≈ vecH(A) + jvecH(A)Wi∆wi, i = 1, 2. (52)

Substituting (52) into (51), we rewrite α̂ as

α̂ = σ2
s(vecH(A) + jvecH(A)W1∆w1)vec(A)α

+ vecH(Â)(FH
RF )†s∗n

= α+jvecH(A)W1vec(A)∆w1α+vecH(Â)(FH
RF )†s∗n.

(53)

With the help of (46), we can derive the mean and the MSE

of the channel gain estimation as

E{∆α} = E
{
jvecH(A)W1vec(A)∆w1α

+vecH(Â)(FH
RF )†s∗n

}

= 0,

E{∆α2} = E{(α̂ − α)(α̂ − α)H}
= αE{(∆w1)

2}αH |vecH(A)W1vec(A)|2
+ σ2

svecH(Â)(FH
RF )†E{nnH}((FH

RF )†)Hvec(Â)

=
σ2

n|vecH(A)W1vec(A)|2
2σ2

svecH(A)W1P⊥
a W1vec(A)

+ σ2
n. (54)

In (54), the first term is caused by the estimation error in (φ, θ),
while the second part is caused by the noise only. If (φ, θ)
are perfectly estimated, E{∆α2} only depends on the second

term in (54), which makes it equivalent to the covariance of

the traditional channel estimation methods.

Theorem 1: The MSE of α̂ is then given by

MSE(α̂) =
σ2

n|vecH(A)W1vec(A)|2
2σ2

svecH(A)W1P⊥
a W1vec(A)

+ σ2
n. (55)

From (50) and (54), we know that the joint ML estimator

is unbiased for both (φ, θ) and α. Thus the analysis on

their CRLBs are necessary to show the effectiveness of these

estimators, which will be provided in the next subsection.

B. CRLB Analysis

In this subsection, we compute the CRLBs for the channel

gain and the DOA estimation under UPA antenna configu-

rations. It is worth noting that the MSE of the proposed

estimators is irrelevant to analog beamforming. Thus, we omit

analog beamforming for simplicity. With single LOS path

(L = 1), the received signal Y can be expressed as

Y = Hs + N = αA(φ, θ)s + N

= αa(w1)a
T (w2)s + N. (56)

The (m, n)th received signal is given by

ym,n = αej((m−1)w1+(n−1)w2)s + nm,n, (57)
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where the real part of the received signal is

yR
m,n = <{ym,n} = <{αej((m−1)w1+(n−1)w2)s} + <{nm,n}

= xm,n + n0
m,n, (58)

xm,n = <{αej((m−1)w1+(n−1)w2)s}, and n0
m,n = <{nm,n}.

For given α, φ, and θ, the probability density function of Y

can be expressed as

f(Y|α, φ, θ)

=
1

(2πσ2)
MN
2

exp{−kY − αA(φ, θ)sk
2σ2

}

=
1

(2πσ2)
MN
2

exp{− 1

2σ2

M∑

m=1

N∑

n=1

(yR
m,n − xm,n)2}. (59)

Let us define Θ = [α, w1, w2]
T as the unknown parameter

vector. The Fisher information matrix (FIM) is defined as

[I(Θ)]i,j = −E

[
∂2 ln f(Y|α, φ, θ)

∂Θi∂Θj

]

, (60)

where

ln f(Y|α, φ, θ) = −MN

2
ln(2πσ2) − 1

2σ2

M∑

m=1

N∑

n=1

n02
m,n,

(61)

and σ2 = σ2
n/σ2

s .

Lemma 2: The FIM for the joint channel gain and DOA

estimation of hybrid mm-wave massive MIMO systems can be

expressed as (62), shown at the bottom of this page.

Proof: See Appendix.

Accordingly, the CRLB for the parameters of channel

gain and DOA are CRLB = I−1(Θ). Thus we have (63),

shown at the bottom of this page. where A = 2σ2

MN , and

B = 1
(πα)2(7MN+M+N−5) .

Lemma 3: The CRLB of the azimuth and elevation angle

can be expressed as

var(θ̂) ≥ AB
6(2N − 1)λ2

(M − 1)d2 sin2 θ
,

var(φ̂) ≥ AB
6λ2(M − 1)(2M − 1) + 6(N − 1)Cd cos θ cos φ

(M − 1)(N − 1)d2 sin2 θ sin2 φ
,

(64)

where C = 3λ(M − 1) + (2N − 1)d cos θ cosφ.

Proof: For DOA estimation of hybrid mm-wave massive

MIMO system, the performance of azimuth angle θ and

elevation angle φ are required. Therefore, we can use the

following transformation to estimate the real angles of azimuth

and elevation:

g(Θ) =

⎡

⎣

α
θ
φ

⎤

⎦ =

⎡

⎢
⎢
⎢
⎣

α

arccos(
λw1

d
)

arcsin(
λw2

d sin θ
)

⎤

⎥
⎥
⎥
⎦
. (65)

Then, we can obtain the CRLBs of the azimuth and eleva-

tion angle of hybrid mm-wave massive MIMO system through

the following Jacobian matrix:

var(θ̂) ≥ [
∂g(Θ)

∂Θ
I−1(Θ)

∂g(ΘT )

∂Θ
]2,2,

var(φ̂) ≥ [
∂g(Θ)

∂Θ
I−1(Θ)

∂g(ΘT )

∂Θ
]3,3. (66)

Next, the CRLBs of the azimuth and elevation angle can be

expressed as

var(θ̂) ≥ AB
6(2N − 1)λ2

(M − 1)d2 sin2 θ
,

var(φ̂) ≥ 6AB
λ2(M − 1)(2M − 1) + Cd cos θ cosφ

(M − 1)(N − 1)d2 sin2 θ sin2 φ
, (67)

where C = 3λ(M−1)(N−1)+(N−1)(2N−1)d cos θ cosφ.

It is observed from (67) that the MSEs for both angle

and channel gain estimators are inversely proportional to the

SNR of the received signal, and the CRLBs decreases with

increasing the number of antenna array.

V. SIMULATION RESULTS

In this section, we show the effectiveness of the proposed

estimation method through numerical examples. In our simu-

lation, we consider a TDD mm-wave massive MIMO system,

where the UPA at the BS has M = 100, N = 100 antennas

of d = λ/2, with MRF = 100 RF chains. There are K = 10
single-antenna users uniformly distributed, and each user has

L = 10 paths. The default value of preamble τ is set to

be τ = 10. We use the ray-tracing way to model the mm-

wave channels, and the channel matrix of different users are

formulated according to (6). We take angle rotation search

I(Θ) =
1

2σ2

⎡

⎣

MN 0 0

0 (2πα)2N
∑M−1

m=0 m2 (2πα)2
∑M−1

m=0 m
∑N−1

n=0 n

0 (2πα)2
∑M−1

m=0 m
∑N−1

n=0 n (2πα)2M
∑N−1

n=0 n2

⎤

⎦ . (62)

var(α̂) ≥ A,

var(ŵ1) ≥ 2σ2M
∑N−1

n=0 n2

(2πα)2[N
∑M−1

m=0 m2][M
∑N−1

n=0 n2] − (2πα)2[
∑M−1

m=0 m
∑N−1

n=0 n][
∑M−1

m=0 m
∑N−1

n=0 n]
= AB

6(2N − 1)

M − 1
,

var(ŵ2) ≥ 2σ2N
∑M−1

m=0 m2

(2πα)2[N
∑M−1

m=0 m2][M
∑N−1

n=0 n2] − (2πα)2[
∑M−1

m=0 m
∑N−1

n=0 n][
∑M−1

m=0 m
∑N−1

n=0 n]
= AB

6(2M−1)

N − 1
, (63)
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Fig. 3. Comparison of MSEs of the theoretical bound, CRLB, initial
estimation method and the proposed DOA estimation schemes with searching
guides G = 10× 10, 20 × 20, 30 × 30, respectively.

grids G = GMGN = 30 × 30 = 900 unless otherwise

mentioned. In all examples, the DOA information of all users

are estimated from the preamble. With τ = 10, the overall

users can transmit pilot synchronously such that the orthogonal

training can be applied to obtain the DOA information.

Fig. 3 plots the MSEs of DOA estimation as a function

of SNR for initial 2D-DFT, our proposed estimation method,

theoretical bound, and CRLB. The total transmission power

for uplink training is constrained to ρ for all users. It can

be seen that our proposed DOA estimation method performs

slightly worse than that of theoretical bound, but performs

much better than the initial estimation (2D-DFT) method.

Interestingly, the MSE of proposed DOA estimation method

improves with increasing the searching grid, which is due to

the improved angle resolution. If the searching grid goes to

infinity, the proposed DOA estimation method can achieve the

same MSE as the theoretical bound. It can also be seen from

Fig. 3 that the traditional initial estimation method remains

constant for any SNRs. The reason is that the Gaussian noise

will keep the same level after the 2D-DFT, such that the

power of noise will keep constant in all SNRs. In addition,

the theoretical MSE is very close to the corresponding CRLB.

Fig. 4 plots the MSEs of DOA estimation as a function

of SNR for various URA sizes. We assume that the total

transmit power for each BS antenna is constrained constantly.

It is clearly seen from Fig. 4 that increasing the number of

BS antennas improves the DOA estimation accuracy due to the

improved spatial signatures accuracy in both initial estimate

and angle rotation estimate. It can also be seen from Fig. 4 that

the proposed DOA estimation method outperforms the initial

estimation dramatically in the high SNR region. Moreover,

the initial estimation algorithm with the number of antennas

at the base station reaching 3000 × 3000 and the proposed

estimation algorithm with 100 × 100 antennas at the base

station have the almost same performance. When the number

of antennas is large enough, the initial estimation can approach

Fig. 4. The MSE comparison of the proposed DOA estimation and the
initial estimation, with M = 50, N = 50, M = 100, N = 100, M = 200,
N = 200, M = 3000, N = 3000, respectively.

Fig. 5. Comparison of channel gain MSEs and the corresponding CRLB
with M = 100, N = 100, M = 200, N = 200, respectively.

the proposed method. Therefore, the proposed DOA estimation

algorithm can greatly reduce the number of BS antennas while

ensuring the accuracy of the estimation.

Fig. 5 plots the MSE of the proposed channel gain estima-

tion method with the corresponding CRLB as a function of

SNR. It can be seen that the MSE improves with increasing

the number of antennas, due to the fact that the total training

power is proportional to MN . It is also seen that the MSE of

proposed channel gain estimation method is very close to the

CRLB, especially in the large BS antennas scenario.

Fig. 6 compares the MSEs of the proposed channel esti-

mation method, the eigen-decomposition based method [15],

the beamspace method [23], and the CS method [21]. It can be

seen that the MSE of joint spatial division and multiplexing

(JSDM) is slightly better than the proposed one, since the
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Fig. 6. The channel estimation MSEs of the proposed method, eigen-
decomposition method, beamspace method, and the CS method.

Fig. 7. Sum rate comparison of different methods, where the proposed
method, beamspace method and prefect CSI are displayed for comparison as
a function of SNR.

former catches the exact eigen-direction to recover the chan-

nel. Nevertheless, it is not an easy and stable task to obtain the

M × N dimensional channel covariance matrix for JSDM in

practice. Though the proposed method, the beamspace method,

and the CS method could directly handle the instantaneous

channel estimation, the beamspace method and CS method

have an error floor due to the power leakage problem in its

sparse channel representation.

Fig. 7 plots the achievable sum rate for the downlink data

transmission with different channel estimation method using

the proposed hybrid precoding method (37). To make the

comparison fair, the overall data power are set as the same for

all methods. It can be seen from Fig. 7 that with the increasing

of SNR, the performances of all methods become better. The

achievable sum rate of the proposed method is much higher

Fig. 8. Sum rate comparison of different methods, where the proposed
method, beamspace method and prefect CSI are displayed for comparison as
a function of the number of BS antennas.

than that of beamspace method in any SNR values, and it

is comparable to the performance of the prefect CSI case,

especially in low SNR case. Note that beamspace method

suffers from severe channel power leakage, while most of the

channel power could concentrate on only few points through

angle rotation. Therefore, the proposed method have a more

desirable sum rate.

Fig. 8 plots the achievable sum rate for the downlink data

transmission with the proposed method, beamspace method,

and prefect CSI as a function of the number of BS antennas.

To keep the comparison fair, the overall data power are set

to be the same for each method. It is seen that with the

increasing of the number of BS antennas, the performances

of all methods become better. The sum rate achieved by the

proposed channel estimation method greatly outperforms that

of the beamspace method, but is slightly worse than that of

the perfect CSI. When the number of BS antennas increases,

the channel power leakage of beamspace method will decrease

due to the improves of angle resolution. Thus as the number

of antennas increases, the gap between the proposed method

and the beamspace method becomes smaller.

VI. CONCLUSION

In this paper, we proposed a novel channel estimation for

hybrid digital and analog mm-wave massive MIMO system,

where the channel is decomposed into DOA information and

channel gain information. In our estimation method, a fast

DOA estimation algorithm was designed based on 2D-DFT

and angle rotation, and the channel gain estimation was

performed with very small amount of training resources,

which significantly reduces the training overhead and the feed-

back cost. To evaluate the benefits of our proposed method,

we derived the theoretical bounds of MSE and CRLB of the

joint DOA and channel gain estimation in high SNR region.

It is shown that our proposed estimation method is very close

to the CRLB, especially in the large BS antennas case.



8176 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 17, NO. 12, DECEMBER 2018

APPENDIX

A. Proof of Lemma 1

Let us define

yd = FH
RF vec(A)αs. (68)

The received signal y = yd +n is actually a perturbed version

of yd. At high SNR, the first derivative of the cost function

can be approximated using TaylorâŁ™s expansion as

0 =
∂g(w1, w2)

∂wi
|wi=ŵi

≈ ∂g(w1, w2)

∂wi
|wi=ŵi

+
∂2g(w1, w2)

∂2wi
|wi=ŵi

∆wi, (69)

where ∆wi = ŵi − wi is the perturbation in the wi. Thus,

∆wi can be represented as

∆wi = −
∂g(w1,w2)

∂wi
|wi=ŵi

∂2g(w1,w2)
∂2wi

|wi=ŵi

= − ġ(w1, w2|wi)

g̈(w1, w2|wi)
. (70)

In (70), the first order derivative can be calculated as

ġ(w1, w2|wi) = jyHFH
RF WiP

⊥
a (FH

RF )†y

− jyHFH
RF P⊥

a Wi(F
H
RF )†y. (71)

Since P⊥
a (FH

RF )†yd = 0, we can rewrite (71) as

ġ(w1, w2|wi) = j(yd + n)HFH
RF WiP

⊥
a (FH

RF )†(yd + n)

− j(yd + n)HFH
RF P⊥

a Wi(F
H
RF )†(yd + n)

= −2={yH
d FH

RF WiP
⊥
a (FH

RF )†n}
− 2={nHFH

RF WiP
⊥
a (FH

RF )†n}. (72)

Due to the independence between yd and n, we can obtain

E{ġ(w1, w2|wi)} = −2σ2
n={tr{FH

RF WiP
⊥
a (FH

RF )†}} = 0.

(73)

The second-order derivative can be calculated as

g̈(w1, w2|wi) = −yHFH
RF W2

i P
⊥
a (FH

RF )†n

+yHFH
RF WiP

⊥
a Wi(F

H
RF )†y

+yHFH
RF WiP

⊥
a Wi(F

H
RF )†y

−nHFH
RF P⊥

a W2
i (F

H
RF )†y. (74)

Based on (74), we have

E{g̈(w1, w2|wi)} = 2yH

d F
H

RF WiP
⊥
a Wi(F

H

RF )†yd

+ E{tr(−W
2

i P
⊥
a + 2WiP

⊥
a Wi − P

⊥
a W

2

i )}

= 2σ
2

s |α|
2
vec(AH)WiP

⊥
a Wivec(A). (75)

Therefore, g̈(w1, w2|wi) can be rewritten as

g̈(w1, w2|wi) = E{g̈(w1, w2|wi)} + O2(n) + O2(n
2), (76)

where O2(n) and O2(n
2) represent the linear and quadra-

ture functions of n existing in g̈(w1, w2|wi). Similarly,

ġ(w1, w2|wi) can be expressed as

ġ(w1, w2|wi) = O1(n) + O1(n
2), (77)

where O1(n) and O1(n
2) represent the linear and quadrature

functions of n existing in ġ(w1, w2|wi). Substituting (76) and

(77) into (70) and assuming high SNR, i.e., knk2 � kydk2,

we have

∆wi = − O1(n) + O1(n
2)

E{g̈(w1, w2|wi)} + O2(n) + O2(n2)

= −O1(n) + O1(n
2)

E{g̈(w1, w2|wi)}
×
(

1 − O2(n) + O2(n
2)

E{g̈(w1, w2|wi)}

+

(
O2(n) + O2(n

2)

E{g̈(w1, w2|wi)}

)2

− · · ·
)

. (78)

Knowing that
O1(n)+O1(n2)
E{g̈(w1,w2|wi)} and

O2(n)+O2(n2)
E{g̈(w1,w2|wi)} are small

terms at high SNR, their product can be ignored, and ∆wi

can be approximated as

∆wi ≈ −O1(n) + O1(n
2)

E{g̈(w1, w2|wi)}
= − ġ(w1, w2|wi)

E{g̈(w1, w2|wi)}
. (79)

The above analysis gives the explicit form of perturbation

in the estimate of wi for a specific realization of the training.

Thus, we can express the expectation and variance of the DOA

estimation as

E{∆wi} = E

{

− ġ(w1, w2|wi)

E{g̈(w1, w2|wi)}

}

= −E{ġ(w1, w2|wi)}
E{g̈(w1, w2|wi)}

,

E{∆w2
i } = E

{(

− ġ(w1, w2|wi)

E{g̈(w1, w2|wi)}

)2
}

=
E{ġ(w1, w2|wi)

2}
E{g̈(w1, w2|wi)}2

, (80)

respectively. To derive the variance of DOA information,

we express

E{ġ(w1, w2|wi)
2}

= 2E{yH
d FH

RF WiP
⊥
a (FH

RF )†nnHFH
RF P⊥

a Wi(F
H
RF )†yd}

+ E{(nHFH
RF (WiP

⊥
a −P⊥

a Wi)(F
H
RF )†n)2}, (81)

where the second term can be ignored for high SNR to obtain

E{ġ(w1, w2|wi)
2} = 2σ2

nyH
d FH

RF WiP
⊥
a Wi(F

H
RF )†yd

= 2σ2
sσ2

n|α|2vec(AH)WiP
⊥
a Wivec(A).

(82)

Substituting (73), (75), (82) into (80), we obtain the mean and

the MSE of estimation ŵi as

E{∆wi} = 0,

E{∆w2
i } =

σ2
n

2σ2
s |α|2vecH(A)WiP⊥

a Wivec(A)
. (83)

The proof is completed.
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B. Proof of Lemma 2

Performing mathematical calculation on (60), we obtain

∂2 ln f(Y|α, φ, θ)

∂2Θ1

= −MN

2σ2
− 1

2σ2

M−1∑

m=0

N−1∑

n=0

cos(4πmw1 + 4πnw2), (84)

∂2 ln f(Y|α, φ, θ)

∂2Θ2

= − (2πα)2

2σ2

M−1∑

m=0

N−1∑

n=0

[m2 − m2 cos(4πmw1 + 4πnw2)],

(85)
∂2 ln f(Y|α, φ, θ)

∂2Θ3

= − (2πα)2

2σ2

M−1∑

m=0

N−1∑

n=0

[n2 − n2 cos(4πmw1 + 4πnw2)],

(86)

∂2 ln f(Y|α, φ, θ)

∂Θ1∂Θ2
=

∂2 ln f(Y|α, φ, θ)

∂Θ2∂Θ1

=
2πα

2σ2

M−1∑

m=0

N−1∑

n=0

m sin(4πmw1 + 4πnw2), (87)

∂2 ln f(Y|α, φ, θ)

∂Θ1∂Θ3
=

∂2 ln f(Y|α, φ, θ)

∂Θ3∂Θ1

=
2πα

2σ2

M−1∑

m=0

N−1∑

n=0

n sin(4πmw1 + 4πnw2), (88)

∂2 ln f(Y|α, φ, θ)

∂Θ2∂Θ3
=

∂2 ln f(Y|α, φ, θ)

∂Θ3∂Θ2

=
(2πα)2

2σ2

M−1∑

m=0

N−1∑

n=0

[mn(cos(4πmw1 + 4πnw2) − 1)].

(89)

Lemma 4: For x ∈ [0, 2π), we have

lim
K→∞

K∑

k=1

ki sin(4πkx) = 0, i = 0, 1, 2, (90)

lim
K→∞

K∑

k=1

ki cos(4πkx) = 0, i = 0, 1, 2. (91)

Proof: According to [45, eq. (AD361)], we have

lim
K→∞

K∑

k=1

sin(4πkx)

=
sin((K + 1)2πx) sin(2πKx)

sin(2πx)
= 0, (92)

lim
K→∞

K∑

k=1

cos(4πkx)

=
cos((K + 1)2πx) sin(2πKx)

sin(2πx)
= 0, (93)

lim
K→∞

K∑

k=1

k sin(4πkx)

=
sin 4πKx

4 sin2(2πx)
− K cos((2K − 1)2πx)

2 sin(2πx)
= 0, (94)

lim
K→∞

K∑

k=1

k cos(4πkx)

=
K sin((2K − 1)2πx)

2 sin(2πx)
− 1 − cos 4πKx

4 sin2(2πx)
= 0, (95)

for i = 2, where the limits follow from relations similar to

(95).

As M and N go to infinity in massive MIMO systems, there

are

M−1∑

m=0

N−1∑

n=0

cos(4πmw1 + 4πnw2) = 0,

M−1∑

m=0

N−1∑

n=0

m sin(4πmw1 + 4πnw2) = 0,

M−1∑

m=0

N−1∑

n=0

m2 cos(4πmw1 + 4πnw2) = 0,

M−1∑

m=0

N−1∑

n=0

mn cos(4πmw1 + 4πnw2) = 0. (96)

Substituting (84)–(89) into (60), the FIM for the joint channel

gain and DOA estimation of hybrid mm-wave massive MIMO

system can be expressed as (62). The proof is completed.
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