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Angle-domain common-image gathers for migration velocity
analysis by wavefield-continuation imaging

Biondo Biondi and William Symes1

ABSTRACT

We analyze the kinematic properties of offset-domain Common Image Gathers (CIGs)
and Angle-Domain CIGs (ADCIGs) computed by wavefield-continuation migration. Our
results are valid regardless of whether the CIGs were obtained by using the correct mi-
gration velocity. They thus can be used as a theoretical basis for developing Migration
Velocity Analysis (MVA) methods that exploit the velocity information contained in AD-
CIGs.

We demonstrate that in an ADCIG cube the image point lies on the normal to the
apparent reflector dip, passing through the point where the source ray intersects the re-
ceiver ray. Starting from this geometric result, we derive an analytical expression for
the expected movements of the image points in ADCIGs as functions of the traveltime
perturbation caused by velocity errors. By applying this analytical result and assuming
stationary raypaths, we then derive two expressions for theResidual Moveout (RMO)
function in ADCIGs. We verify our theoretical results and test the accuracy of the pro-
posed RMO functions by analyzing the migration results of a synthetic data set with a
wide range of reflector dips.

Our kinematic analysis leads also to the development of a newmethod for computing
ADCIGs when significant geological dips cause strong artifacts in the ADCIGs computed
by conventional methods. The proposed method is based on thecomputation of offset-
domain CIGs along the vertical-offset axis (VOCIGs) and on the “optimal” combination of
these new CIGs with conventional CIGs. We demonstrate the need for and the advantages
of the proposed method on a real data set acquired in the NorthSea.

INTRODUCTION

With wavefield-continuation migration methods being used routinely for imaging project in
complex areas, the ability to perform Migration Velocity Analysis (MVA) starting from the
results of wavefield-continuation migration is becoming essential to advanced seismic imag-
ing. As for Kirchhoff imaging, MVA for wavefield-continuation imaging is mostly based on
the information provided by the analysis of Common Image Gather (CIGs). Most of the cur-
rent MVA methods start from Angle-Domain CIGs (ADCIGs) (Biondi and Sava, 1999; Clapp
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and Biondi, 2000; Mosher et al., 2001; Liu et al., 2001), though the use of more conventional
surface-offset-domain CIGs is also being evaluated (Storket al., 2002).

Both kinematic and amplitude properties (de Bruin et al., 1990; Wapenaar et al., 1999;
Sava et al., 2001; de Hoop et al., 2002) have been analyzed in the literature for ADCIGs ob-
tained when the migration velocity is accurate. On the contrary, the properties of the ADCIGs
obtained when the migration velocity is inaccurate have been only qualitatively discussed in
the literature. This lack of quantitative understanding may lead to errors when performing
MVA from ADCIGs. In this paper, we analyze the kinematic properties of ADCIGs under
general conditions (accurate or inaccurate velocity). If the migration velocity is inaccurate,
our analysis requires only a smooth migration velocity function in the neighborhood of the
imaging point. We discuss this condition more extensively in the first section. The application
of the insights provided by our analysis may substantially improve the results of the follow-
ing three procedures: a) measurement of velocity errors from ADCIGs by residual moveout
(RMO) analysis, b) inversion of RMO measurements into velocity updates, and c) computa-
tion of ADCIGs in the presence of complex geologic structure.

Our analysis demonstrates that in an ADCIG cube the image point lies on the normal to
the apparent reflector dip passing through the point where the source ray intersects the receiver
ray. We exploit this result to define an analytical expression for the expected movements of
the image points in ADCIGs as a function of the traveltime perturbation caused by velocity
errors. This leads us to the definition of two alternative residual moveout functions that can
be applied when measuring velocity errors from migrated images. We test the accuracy of
these alternatives and discuss their relative advantages and disadvantages. Furthermore, the
availability of a quantitative expression for the expectedmovements of the image points is
crucial when inverting those movements into velocity corrections by either simple vertical up-
dating or sophisticated tomographic methods. Therefore, our results ought to be incorporated
in velocity updating methods.

Our theoretical result also implies that ADCIGs are immune,at least at first order, from
the distortions caused byimage-point dispersal. Image-point dispersal occurs when migration
velocity errors cause events from the same segment of a dipping reflector to be imaged at
different locations (Etgen, 1990). This inconsistency creates substantial problems when using
dipping reflections for velocity updating; its absence makes ADCIGs even more attractive for
MVA.

The computation of ADCIGs is based on a decomposition (usually performed by slant-
stacks) of the wavefield either before imaging (Mosher et al., 1997; Prucha et al., 1999; Xie
and Wu, 2002), or after imaging (Sava and Fomel, 2002; Rickett and Sava, 2002; Biondi and
Shan, 2002). In either case, the slant stack transformationis usually applied along the horizon-
tal subsurface-offset axis. However, when the geologic dips are steep, this “conventional” way
of computing CIGs does not produce useful gathers, even if itis kinematically valid for geo-
logic dips milder than 90 degrees. As the geologic dips increase, the horizontal-offset CIGs
(HOCIGs) degenerate, and their focusing around zero offsetblurs. This limitation of HOCIGs
can be sidestepped by computing offset-domain CIGs along the vertical subsurface-offset axis
(VOCIGs) (Biondi and Shan, 2002). Although neither set of offset-domain gathers (HOCIG
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or VOCIG) provides useful information for the whole range ofgeologic dips, an appropri-
ate combination of the two sets does. Our analysis of the kinematic properties of ADCIGs
suggests a simple and effective method for combining a HOCIGcube with a VOCIG cube to
create an ADCIG cube that is immune to artifacts in the presence of arbitrary geologic dips.

The plan of attack for covering the broad, but interrelated,set of issues that are relevant to
the use of ADCIGs for MVA is the following. We start by briefly reviewing the methodology
for computing offset-domain and angle-domain CIGs by wavefield-continuation migration.
The second section analyzes the kinematic properties of CIGs and ADCIGs, and contains the
main theoretical development of the paper. The third section exploits the theoretical results
to define a robust algorithm to compute ADCIGs in the presenceof geological structure and
illustrates its advantages with a real-data example. The fourth section verifies the theoretical
analysis by using it to predict reflector movements in the migrated images of a synthetic data
set. Finally, the fifth section derives two expressions for the RMO function to be applied for
measuring velocity errors from migrated images.

COMPUTATION OF COMMON IMAGE GATHERS BY WAVEFIELD
CONTINUATION

In this section we briefly revisit the method for computing Common Image Gathers (CIG) by
wavefield-continuation migration. The following development assumes that both the source
wavefield and the receiver wavefield have been numerically propagated into the subsurface.
The analytical expressions represent wavefields in the timedomain, and thus they appear to
implicitly assume that the wavefields have been propagated in the time domain. However, all
the considerations and results that follow are independentof the specific numerical method that
was used for propagating the wavefields. They are obviously valid for reverse-time migration
when the wavefields are propagated in the time domain (Whitmore, 1983; Baysal et al., 1983;
Etgen, 1986; Biondi and Shan, 2002). They are also valid whenthe wavefields are propagated
by downward continuation in the frequency domain, if there are no overturned events. The
results presented in this paper are valid even when source-receiver migration is used instead
of shot-profile migration, if the conditions are satisfied for these two apparently dissimilar
methods to be equivalent (Biondi, 2003).

The conventional imaging condition for shot-profile migration is based on the crosscorre-
lation in time of the source wavefield (S) with the receiver wavefield (R). The equivalent of
the stacked image is the average over sources (s) of the zero lag of this crosscorrelation; that
is:

I (z,x) =
∑

s

∑

t

Ss (t ,z,x) Rs (t ,z,x) , (1)

wherez andx are respectively depth and the horizontal axes, andt is time. The result of this
imaging condition is equivalent to stacking over offsets with Kirchhoff migration.

The imaging condition expressed in equation (1) has the substantial disadvantage of not
providing prestack information that can be used for either velocity updates or amplitude anal-
ysis. Equation (1) can be generalized (de Bruin et al., 1990;Rickett and Sava, 2002; Biondi
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Figure 1: Geometry of an ADCIG
for a single event migrated with the
wrong (low in this case) velocity. The
propagation direction of the source
ray forms the angleβ with the ver-
tical, and the propagation direction
of the receiver ray forms the an-
gle δ with the vertical;γ is the ap-
parent aperture angle, andα is the
apparent reflector dip. The source
ray and the receiver ray cross at̄I .
Notice that in this figureβ,δ and
α are positive, butγ is negative.
biondo1-cig-simple-v2[NR]
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and Shan, 2002) by crosscorrelating the wavefields shifted horizontally with respect to each
other. The prestack image becomes a function of the horizontal relative shift, which has the
physical meaning of asubsurface half offset(xh). It can be computed as

I (z,x,xh) =
∑

s

∑

t

Ss (t ,z,x − xh) Rs (t ,z,x + xh) . (2)

A section of the image cube taken at constant horizontal location x is a Horizontal Offset
Common Image Gather, or HOCIG. The whole image cube can be seen as a collection of
HOCIGs.

Sava and Fomel (2002) presented a simple method for transforming HOCIGs into ADCIGs
by a slant stack transformation applied independently to each HOCIG (Schultz and Claerbout,
1978):

Iγx (z,x,γ ) = SlantStack[I (z,x,xh)] ; (3)

whereγ is the aperture angle of the reflection, as shown in Figure 1. This transformation from
HOCIG to ADCIG is based on the following relationship between the aperture angle and the
slope,∂z/∂xh, measured in image space:

∂z

∂xh

∣∣∣∣
t,x

= tanγ = −
kxh

kz
; (4)

wherekxh andkz are respectively the half-offset wavenumber and the vertical wavenumber.
The relationship between tanγ and the wavenumbers also suggests that the transformation to
ADCIGs can be accomplished in the Fourier domain by a simple radial-trace transform (Sava
and Fomel, 2002).

Sava and Fomel (2002) demonstrated the validity of equation(4) based only on Snell’s
law and on the geometric relationships between the propagation directions of the source ray
(determined byβ in Figure 1) and receiver ray (determined byδ in Figure 1). Its validity
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is thus independent of the focusing of the reflected energy atzero offset; that is, it is valid
regardless of whether the image point coincides with the intersection of the two rays (marked
as Ī in Figure 1). In other words, it is independent of whether thecorrect migration velocity
is used. The only assumption about the migration velocity isthat the velocity at the imaging
depth is locally the same along the source ray and the receiver ray. This condition is obviously
fulfilled when the reflected energy focuses at zero offset, but it is, at least approximately,
fulfilled in most practical situations of interest. In most practical cases we can assume that
the migration velocity function is smooth in a neighborhoodof the imaging point, and thus
that the velocity at the end point of the source ray is approximately the same as the velocity
at the end point of the receiver ray. The only exception of practical importance is when the
reflection is caused by a high-contrast interface, such as a salt-sediment interface. In these
cases, our results must be applied with particular care. When the migration velocity is correct,
α andγ are respectively the true reflector dip and the true apertureangle; otherwise they are
the apparentdip and the apparent aperture angle. In Figure 1, the box around the imaging
point signifies the local nature of the geometric relationships relevant to our discussion; it
emphasizes that these relationships depend only on the local velocity function.

When the velocity is correct, the image point obviously coincides with the crossing point
of the two raysĪ . However, the position of the image point when the velocity is not correct has
been left undefined by previous analyses (Prucha et al., 1999; Sava and Fomel, 2002). In this
paper, we demonstrate the important result that in an ADCIGs, when the migration velocity is
incorrect, the image point lies along the direction normal to the apparent geological dip. We
identify this normal direction with the unit vectorn that we define as oriented in the direction
of increasing traveltimes for the rays (see Figure 1).

Notice that the geometric arguments presented in this paperare based on the assumption
that the source and receiver rays cross, even when the data were migrated with the wrong
velocity. This assumption is valid in 2-D except in degenerate cases of marginal practical
interest (e.g. diverging rays). In 3-D, this assumption is more easily violated, because the
two rays are not always coplanar. This discrepancy between 2-D and 3-D geometries makes
the generalization to 3-D of the results presented in this paper less than trivial. Therefore, we
consider the 3-D generalization beyond the scope of this paper.

As will be discussed in the following and exemplified by the real-data example in Fig-
ure 6a, the HOCIGs, and consequently the ADCIGs computed from the HOCIGs (Figure 7a),
have problems when the reflectors are steeply dipping. At thelimit, the HOCIGs become
useless when imaging almost vertical reflectors using either overturned events or prismatic
reflections. To create useful ADCIGs in these situations we introduce a new kind of CIGs
(Biondi and Shan, 2002). This new kind of CIG is computed by introducing avertical half
offset(zh) into equation (1) to obtain:

I (z,x,zh) =
∑

s

∑

t

Ss(t ,z− zh,x) Rs (t ,z+ zh,x) . (5)

A section of the image cube computed by equation (5) taken at constant depthz is a Vertical
Offset Common Image Gathers, or VOCIG.

As for the HOCIGs, the VOCIGs can be transformed into an ADCIGby applying a slant
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stack transformation to each individual VOCIG; that is:

Iγz (z,x,γ ) = SlantStack[I (z,x,zh)] . (6)

This transformation is based on the following relationshipbetween the aperture angle and the
slope∂x/∂zh measured in image space:

−
∂x

∂zh

∣∣∣∣
t,z

= tanγ =
kzh

kx
. (7)

Equation (7) is analogous to equation (4), and its validity can be trivially demonstrated from
equation (4) by a simple axes rotation. However, notice the sign differences between equa-
tion (7) and equation (4) caused by the conventions defined inFigure 1.

Notice that our notation distinguishes the result of the twotransformations to ADCIG(
Iγx and Iγz

)
, because they are different objects even though they are images defined in the

same domain (z,x,γ ). One of the main results of this paper is the definition of therelationship
betweenIγx andIγz, and the derivation of a robust algorithm to “optimally” merge the two sets
of ADCIGs. To achieve this goal we will first analyze the kinematic properties of HOCIGs
and VOCIGs.

KINEMATIC PROPERTIES OF COMMON IMAGE GATHERS

In this section we analyze the kinematic properties of CIGs,with particular emphasis on the
case when velocity errors prevent the image from focusing atzero offset, causing the reflected
energy to be imaged over a range of offsets. We will start by analyzing the kinematics of
offset-domain CIGs.

To analyze the kinematic properties of HOCIGs and VOCIGs, itis useful to observe that
they are just particular cases of offset-domain gathers. Ingeneral, the offset can be oriented
along any arbitrary direction. In particular, the offset direction aligned with the apparent
geological dip of the imaged event has unique properties. Wewill refer to this offset as the
geological-dip offset, and the corresponding CIGs as Geological Offset CIGs, or GOCIGs.

Figure 2 illustrates the geometry of the different kinds of offset-domain CIGs for a single
event. In this sketch, the migration velocity is assumed to be lower than the true velocity, and
thus the reflections are imaged too shallow and above the point where the source ray crosses
the receiver ray (̄I ). The line passing through̄I , and bisecting the angle formed by the source
and receiver ray, is oriented at an angleα with respect to the vertical direction. The angleα is
the apparent geological dip of the event after imaging. Halfof the angle formed between the
source and receiver ray is the apparent aperture angleγ .

When HOCIGs are computed, the end point of the source ray (Sxh) and the end point of
the receiver ray (Rxh) are at the same depth. The imaging pointIxh is midway betweenSxh and
Rxh , and the imaging half offset isxh = Rxh − Ixh . Similarly, when VOCIGs are computed,
the end point of the source ray (Szh) and the end point of the receiver ray (Rzh) are at the same
horizontal location. The imaging pointIzh is midway betweenSzh and Rzh , and the imaging
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half offset iszh = Rzh − Izh . When the offset direction is oriented along the apparent geological
dip α (what we called the geological-dip offset direction), the end point of the source ray isS0

and the end point of the receiver ray isR0. The imaging pointI0 is midway betweenS0 and
R0, and the imaging half offset ish0 = R0− I0. Notice that the geological-dip half offseth0 is
a vector, because it can be oriented arbitrarily with respect to the coordinate axes.

Figure 2 shows that bothIxh and Izh lie on the line passing throughS0, I0 and R0. This
is an important property of the offset-domain CIGs and is based on a crucial constraint im-
posed on our geometric construction; that is, the traveltime along the source ray summed with
the traveltime along the receiver ray is the same for all the offset directions, and is equal to
the recording time of the event. The independence of the total traveltimes from the offset di-
rections is a direct consequence of taking the zero lag of thecrosscorrelation in the imaging
conditions of equation (2) and (5). This constraint, together with the assumption of locally
constant velocity that we discussed above, directly leads to the following equalities:

∣∣Sxh − S0
∣∣ =

∣∣Rxh − R0
∣∣ , and

∣∣Szh − S0
∣∣ =

∣∣Rzh − R0
∣∣ , (8)

which in turn are at the basis of the collinearity ofI0, Ixh and Izh .

The offsets along the different directions are linked by thefollowing simple relationship,
which can be readily derived by trigonometry applied to Figure 2:

xh =
h̃0

cosα
, (9)

zh = −
h̃0

sinα
, (10)

whereh̃0 = n×h0. Notice that the definition of̃h0 is such that its sign depends on whether
I0 is before or beyond̄I , and that for flat events (α = 0) we havẽh0 = xh.

Although Ixh and Izh are both collinear withI0, they are shifted with respect to each other
and with respect toI0. The shifts of the imaging pointsIxh and Izh with respect toI0 can be
easily expressed in terms of the offseth0 and the anglesα andγ as follows:

1I xh =
(
Ixh − I0

)
= h0 tanγ tanα, (11)

1I zh =
(
Izh − I0

)
= −h0

tanγ

tanα
. (12)

The shift betweenIxh and Izh prevents us from constructively averaging HOCIGs with VO-
CIGs to create a single set of offset-domain CIGs.

Notice the dependence of1I xh and1I zh on the aperture angleγ . This dependence causes
events with different aperture angles to be imaged at different locations, even if they originated
at the same reflecting point in the subsurface. This phenomenon is related to the well known
reflector-point dispersalin common midpoint gathers. In this context, this dispersalis a con-
sequence of using a wrong imaging velocity, and we will referto it asimage-point dispersal.
We will now discuss how the transformation to ADCIGs overcomes the problems related to
the image-point shift and thus removes, at least at first order, the image-point dispersal.
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Figure 2: Geometry of the three dif-
ferent kinds of offset-domain (hor-
izontal, vertical and geological-dip)
CIG for a single event migrated
with the wrong velocity. Ixh is the
horizontal-offset image point,Izh is
the vertical-offset image point, and
I0 is the geological-dip offset image
point. biondo1-cig-gen-v6[NR]
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Figure 3: Geometry of an angle-
domain CIG for a single event
migrated with the wrong velocity.
The transformation to the angle do-
main shifts all the offset-domain
image points (Ixh , Izh ,I0) to the
same angle-domain image pointIγ .
biondo1-cig-image-dip-v2[NR]

S 0

R0

I

0I

I γ

xhI

zhI

γ
−α

γ



SEP–113 ADCIGs and MVA 185

Kinematic properties of ADCIGs

The transformation to the angle domain, as defined by equations (3–4) for HOCIGs and equa-
tions (6–7) for VOCIGs, acts on each offset-domain CIG independently. Therefore, when the
reflected energy does not focus at zero offset, the transformation to the angle domain shifts
the image point along the direction orthogonal to the offset. The horizontal-offset image point
(Ixh) shifts vertically, and the vertical-offset image point (Izh) shifts horizontally. We will
demonstrate the two following important properties of thisnormal shift:

I) The normal shift corrects for the effects of the offset direction on the location of the
image point; that is, the transformation to the angle domainshifts the image points from
different locations in the offset domain (Ixh , Izh andI0) to the same location in the angle
domain (Iγ ).

II) The image location in the angle domain (Iγ ) lies on the normal to the apparent geolog-
ical dip passing through the crossing point of the source andreceiver rays (̄I ). Iγ is
located at the crossing point of the lines passing throughS0 and R0 and orthogonal to
the source ray and receiver ray, respectively. The shift along the normal to the reflector,
caused by the transformation to angle domain, is thus equal to:

1nγ =
(
Iγ − I0

)
= h̃0tanγ n = tan2γ 1nh0, (13)

where1nh0 =
(
h̃0/ tanγ

)
n is the normal shift in the geological-dip domain. The total

normal shift caused by incomplete focusing at zero offset isthus equal to:

1ntot =
(
Iγ − Ī

)
= 1nh0 +1nγ = 1nh0

(
1+ tan2γ

)
=

1nh0

cos2γ
. (14)

Figure 3 illustrates Properties I and II. These properties are far from obvious and their
demonstration constitutes one of the main results of this paper. They also have several impor-
tant consequences; the three results most relevant to migration velocity analysis are:

1. ADCIGs obtained from HOCIGs and VOCIGs can be constructively averaged, in con-
trast to the original HOCIGs and VOCIGs. We will exploit thisproperty to introduce
a robust algorithm for creating a single set of ADCIGs that isinsensitive to geological
dips, and thus is ready to be analyzed for velocity information.

2. The reflector-point dispersal that negatively affects offset-domain CIGs is corrected in
the ADCIGs, at least at first order. If we assume the raypaths to be stationary, for a given
reflecting segment the image points for all aperture anglesγ share the same apparent
dip, and thus they are all aligned along the normal to the apparent reflector dip.

3. From equation (14), invoking Fermat’s principle and applying simple trigonometry, we
can also easily derive a relationship between the total normal shift 1ntot and the total
traveltime perturbation caused by velocity errors as follows:

1ntot = −
1t

2Scosγ
n, (15)
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whereS is the background slowness around the image point and1t is defined as the
difference between the perturbed traveltime and the background traveltime. We will
exploit this relationship to introduce a simple and accurate expression for measuring
residual moveouts from ADCIGs.

Demonstration of kinematic properties of ADCIGs

Properties I and II can be demonstrated in several ways. In this paper, we will follow an
indirect path that might seem circuitous but will allow us togather further insights on the
properties of ADCIGs.

We first demonstrate Property I by showing that the radial-trace transformations repre-
sented by equation (4), and analogously equation (7), are equivalent to a chain of two trans-
formations. The first one is the transformation of the HOCIGs(or VOCIGs) to GOCIGs by a
dip-dependent stretching of the offset axis; that is:

h̃0 = xh cosα, or h̃0 = −zh sinα; (16)

or in the wavenumber domain,

kh0 =
kxh

cosα
, or kh0 = −

kzh

sinα
; (17)

wherekh0 is the wavenumber associated with̃h0, andkxh andkzh are the wavenumbers asso-
ciated withxh andzh.

The second is the transformation of HOCIGs to the angle domain according to the relation

tanγ = −
kh0

kn
, (18)

wherekn is the wavenumber associated with the direction normal to the reflector. This direc-
tion is identified by the line passing through̄I and Iγ in Figures 2 and 3.

The transformation of HOCIGs to GOCIGs by equations (16) and(17) follows directly
from equations (9) and (10). Because the transformation is adip-dependent stretching of the
offset axis, it shifts energy in the (z,x) plane. Appendix A demonstrates that the amount
of shift in the (z,x) plane exactly corrects for the image-point shift characterized by equa-
tions (11) and (12).

Appendix B demonstrates the geometrical property that for energy dipping at an angle
α in the the (z,x) plane, the wavenumberkn along the normal to the dip is linked to the
wavenumbers along (z,x) by the following relationships:

kn =
kz

cosα
=

kx

sinα
. (19)

Substituting equations (17) and (19) into equation (18), weobtain equations (4) and (7). The
graphical interpretation of this analytical result is immediate. In Figure 3, the transformation
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to GOCIG [equations (17)] moves the imaging pointIxh (or Izh) to I0, and the transformation
to the angle domain [equation (18)] movesI0 to Iγ . This sequence of two shifts is equivalent
to the direct shift fromIxh (or Izh) to Iγ caused by the transformation to the angle domain
applied to a HOCIG (or VOCIG).

We just demonstrated that the transformation to ADCIG is independent from which type of
offset-domain CIGs we started from (HOCIG, VOCIG, or GOCIG). Consequently, the imag-
ing point Iγ must be common to all kinds of ADCIGs. Furthermore, the imagepoint must lie
along each of the normals to the offset directions passing through the respective image points.
In particular, it must lie along the normal to the apparent geological dip, and at the crossing
point of the the vertical line passing throughIxh and the horizontal line passing throughIzh .

Given these constraints, the validity of Property II [equations (13) and (14)] can be easily
verified by trigonometry, assuming that the image-point shifts are given by the expressions
in equations (9) and (10). However, we will now demonstrate Property II in an alternative
way; that is, by analyzing a GOCIG computed from an event withno apparent geological dip
(α = 0). This analysis provides intuitive understanding of the relation between offset-domain
and angle domain CIGs when the migration velocity is incorrect. Furthermore, the analysis of
a GOCIG with flat dip is representative of all the GOCIGs, as a rotation of Figure 3 suggests.

Figure 4 shows the geometry of a GOCIG with flat apparent dip. In this particular case, the
imaging condition for ADCIGs has a direct “physical” explanation. The source and receiver
rays can be associated with the corresponding planar wavefronts propagating in the same di-
rection (and thus tilted by an angleγ with respect to the horizontal). The crosscorrelation
of the plane waves creates the angle-domain image pointIγ where the plane waves intersect.
Iγ is shifted vertically byh̃0 tanγ with respect to the offset-domain imaging pointI0. In this
case, there is also a direct connection between the computation of ADCIGs in the image space
and the computation of ADCIGs in the data space by plane-wavedecomposition of the full
prestack wavefield obtained by recursive survey sinking (Prucha et al., 1999).

The interpretation of ADCIGs in the “physical” space (Figure 4) can also be easily con-
nected to the effects of applying slant stacks in the image space (Figure 5). Migration of a
prestack flat event with too low a migration velocity generates an incompletely focused hyper-
bola in the image space, as sketched in Figure 5. According toequation (4), the tangent to the
hyperbola at offset̃h0 = xh has the slope∂z/∂xh = − tanγ . This tangent intersects the vertical
axis at a point shifted by1nγ = h̃0 tanγn from I0.

In the more general case of dipping reflectors (i.e. withα 6= 0 ), whenxh = h̃0/cosα,
the shift along the vertical isxh tanγn =

(
h̃0 tanγ/cosα

)
n. This result is consistent with the

geometric construction represented in Figure 3.

ROBUST COMPUTATION OF ADCIGS IN PRESENCE OF GEOLOGICAL
STRUCTURE

Our first application of the CIG kinematic properties analyzed in the previous section is the
definition of a robust method to compute high-quality ADCIGsfor all events, including steeply
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Figure 4: Geometry of a GOCIG with
flat apparent dip. In this case, the
source and receiver rays can be asso-
ciated with the corresponding planar
wavefronts propagating in the same
direction. The crosscorrelation of the
plane waves creates the angle-domain
image pointIγ where the plane waves
intersect. biondo1-cig-flat-v1[NR]
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Figure 5: Graphical analysis of the
application of slant stacks to a GO-
CIG when an event with flat ap-
parent dip is migrated with a low
velocity. The event is an incom-
pletely focused hyperbola in the im-
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dipping and overturned reflections. In presence of complex geological structure, the compu-
tation of neither the conventional HOCIGS nor the new VOCIGsis sufficient to provide com-
plete velocity information, because the image is stretchedalong both the subsurface-offset
axes.

According to equation (9), as the geological dip increases the horizontal-offset axis is
stretched. At the limit, whenα is equal to 90 degrees, the relation between the horizontal-offset
and the geological-dip offset becomes singular. Similarly, VOCIGs have problems when the
geological dip is close to flat (α = 0 degrees) and equation (10) becomes singular. This dip-
dependent offset-stretching of the offset-domain CIGs causes artifacts in the corresponding
ADCIGs.

The fact that relationships (9) and (10) diverge only for isolated dips (0, 90, 180, and 270
degrees) may falsely suggest that problems are limited to rare cases. However, in practice there
are two factors that contribute to make the computation of ADCIGs in presence of geological
dips prone to artifacts:

• To limit the computational cost, we would like to compute theoffset-domain gathers
over a range of offsets as narrow as possible. This is particularly true for shot-profile
migrations, where the computation of the imaging conditions by equation (2) can add
substantially to the computational cost when it is carried over a wide range of subsurface
offsets.

• The attractive properties of the ADCIGs that we demonstrated above, including the
elimination of the image-point dispersal, depend on the assumption of locally constant
velocity. In particular, velocity is assumed to be constantalong the ray segmentsSxh S0,
Rxh R0, Szh S0, andRzh R0 drawn in Figure 2. The longer those segments are, the more
likely it is that the constant velocity assumption will be violated sufficiently to cause
substantial errors.

These considerations suggest that, in presence of complex structures, high-quality AD-
CIGs ought to be computed using the information present in both HOCIGs and VOCIGs.
There are two alternative strategies for obtaining a singleset of ADCIGs from the informa-
tion present in HOCIGs and VOCIGs. The first method merges HOCIGs with VOCIGs after
they have been transformed to GOCIGs by the application of the offset stretching expressed in
equation (16). The merged GOCIGs are then transformed to ADCIGs by applying the radial-
trace transformation expressed in equation (18). The second method merges HOCIGs with
VOCIGs directly in the angle domain, after both have been transformed to ADCIGs by the
radial-trace transforms expressed in equations (4) and (7).

The two methods are equivalent if the offset range is infinitely wide, but they may have
different artifacts when the offset range is limited. Sincethe first method merges the images in
the offset domain, it can take into account the offset-rangelimitation more directly, and thus
it has the potential to produce more accurate ADCIGs. However, the second method is more
direct and simpler to implement. In both methods, an effective, though approximate, way for
taking into account the limited offset ranges is to weight the CIGs as a function of the apparent
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dipsα in the image. A simple weighting scheme is:

wxh = cos2α,

wzh = sin2α, (20)

where the weightswxh andwzh are respectively for the CIGs computed from the HOCIGs and
the VOCIGs. These weights have the attractive property thattheir sum is equal to one for any
α. We used this weighting scheme for all the results shown in this paper.

ADCIGs in the presence of geological structure: a North Sea example

The following marine-data example demonstrates that the application of the robust method for
computing ADCIGs presented in this section substantially improves the quality of ADCIGs
in the presence of geological structure. Our examples show migration results of a 2-D line
extracted from a 3-D data set acquired in the North Sea over a salt body with a vertical edge.
The data were imaged using a shot-profile reverse time migration, because the reflections from
the salt edge had overturned paths.

As predicted by our theory, in the presence of a wide range of reflector dips (e.g. flat
sediments and salt edges), both the HOCIGS and the VOCIGs areaffected by artifacts. Fig-
ure 6 illustrates this problem. It displays orthogonal sections cut through the HOCIG cube
(Figure 6a), and through the VOCIG cube (Figure 6b). The front faces show the images at
zero offset and are the same in the two cubes. The side face of Figure 6a shows the HOCIGs
taken at the horizontal location corresponding to the vertical salt edge. We immediately no-
tice that, at the depth interval corresponding to the salt edge, the image is smeared along the
offset axis, which is consistent with the horizontal-offset stretch described by equation (9).
On the contrary, the image of the salt edge is well focused in the VOCIG displayed in the
top face of Figure 6b, which is consistent with the vertical-offset stretch described by equa-
tion (10). However, the flattish reflectors are unfocused in the VOCIG cube, whereas they are
well focused in the HOCIG cube. The stretching of the offset axes causes useful information
to be lost when significant energy is pushed outside the rangeof offsets actually computed.
In this example, the salt edge reflection is clearly truncated in the HOCIG cube displayed in
Figure 6a, notwithstanding that the image was computed for afairly wide offset-range (800
meters, starting at -375 meters and ending at 425 meters).

The ADCIGs computed from either the HOCIGs or the VOCIGS havesimilar problems
with artifacts caused by the wide range of reflectors dips. Figure 7 shows the ADCIG com-
puted from the offset-domain CIGs shown in Figure 6. The saltedge is smeared in the ADCIG
computed from HOCIG (side face of Figure 7a), whereas it is fairly well focused in the AD-
CIG computed from VOCIG (top face of Figure 7b). Conversely,the flattish reflectors are
well focused in the ADCIG computed from HOCIG, whereas they are smeared in the ADCIG
computed from VOCIG.

The artifacts mostly disappear when the ADCIG cubes shown inFigure 7 are merged
according to the simple scheme discussed above, which uses the weights defined in equa-
tions (20). Figure 8 shows the ADCIG cube resulting from the merge. The moveouts for the
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salt edge and the sediment reflections are now clearly visible in the merged ADCIG cube and
could be analyzed for extracting velocity information. To confirm these conclusions we mi-
grated the same data after scaling the slowness function with a constant factor equal to 1.04.
Figure 9 shows the ADCIG cubes computed from the HOCIG cube (Figure 9a), and from the
VOCIG cube (Figure 9b). When comparing Figure 7 with Figure 9, we notice the 175-meter
horizontal shift of the salt edge reflection toward the left,caused by the decrease in migration
velocity. However, the artifacts related to the salt edge reflection are similar in the two figures,
and they similarly obscure the moveout information. On the contrary, the moveout informa-
tion is ready to be analyzed in the cube displayed in Figure 10, which shows the ADCIG cube
resulting from the merge of the ADCIG cubes shown in Figure 9.In particular, both the flattish
event above the salt edge (at about 1,000 meters depth) and the salt edge itself show a typical
upward smile in the angle-domain gathers, indicating that the migration velocity was too slow.

ILLUSTRATION OF CIGS KINEMATIC PROPERTIES WITH A SYNTHETIC
DATA SET

To verify the results of our geometric analysis of the kinematic properties of CIGs, we mod-
eled and migrated a synthetic data set with a wide range of dips. The reflector has spherical
shape with radius of 500 m. The center is at 1,000 meters depthand 3,560 meters horizontal
coordinate. The velocity is constant and equal to 2,000 m/s.The data were recorded in 630
shot records. The first shot was located at a surface coordinate of -2,000 meters, and the shots
were spaced 10 meters apart. The receiver array was configured with an asymmetric split-
spread geometry. The minimum negative offset was constant and equal to -620 meters. The
maximum offset was 4,400 meters for all the shots, with the exception of the first 100 shots
(from -2,000 meters to -1,000 meters), where the maximum offset was 5,680 meters to record
all the useful reflections. To avoid boundary artifacts at the top of the model, both sources and
receivers were buried 250 meters deep. Some of the reflections from the top of the sphere were
muted out before migration to avoid migration artifacts caused by spurious correlations with
the first arrival of the source wavefield. The whole data set was migrated twice: first using
the correct velocity (2,000 m/s), and second after scaling the slowness function by a constant
factorρ = 1.04 (corresponding to a velocity of 1,923 m/s). The ADCIGs shown in this section
and the following section were computed by merging the ADCIGs computed from both the
HOCIGs and VOCIGs according to the robust algorithm presented in the previous section.

Figure 11a shows the zero-offset section (stack) of the migrated cubes with the correct
velocity and Figure 11b shows the zero-offset section obtained with the low velocity. Notice
that, despite the large distance between the first shot and the left edge of the sphere (about
5,000 meters), normal incidence reflections illuminate thetarget only up to about 70 degrees.
As we will see in the angle-domain CIGs, the aperture angle coverage shrinks dramatically
with increasing reflector dip. On the other hand, real data cases are likely to have a vertical
velocity gradient that improves the angle coverage of steeply dipping reflectors.
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Figure 6: Migrated images of North Sea data set. Orthogonal sections cut through offset-
domain CIG cubes: a) HOCIG cube, b) VOCIG cube. Notice the artifacts in both cubes.
biondo1-Cube-both-v7newsc-overn[CR]
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Figure 7: Orthogonal sections cut through ADCIG cubes: a) ADCIG computed from HO-
CIG cube, b) ADCIG computed from VOCIG cube. Notice the artifacts in both cubes that
are related to the artifacts visible in the corresponding offset-domain CIG cubes (Figure 6).
biondo1-Ang-Cube-both-v7newsc-overn[CR]
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Figure 8: Orthogonal sections cut through the ADCIG cube that was obtained by merging the
cubes displayed in Figure 7 using the proposed method. Notice the lack of artifacts compared
with Figure 7. biondo1-Ang-Cube-merge-v7newsc[CR]

Transformation of HOCIGs and VOCIGs to GOCIGs

Figure 12 illustrates the differences between HOCIGs and VOCIGs caused by the image-
point shift, and it demonstrates that the image-point shiftis corrected by the transformation to
GOCIGs described in equations (9) and (10).

Figures 12a and 12b show orthogonal sections cut through theoffset-domain image cubes
in the case of the low velocity migration. Figure 12a displays the horizontal-offset image
cube, while Figure 12b displays the vertical-offset image cube. Notice that the offset axis in
Figure 12b has been reversed to facilitate its visual correlation with the image cube displayed
in Figure 12a. The side faces of the cubes display the CIGs taken at the surface location cor-
responding to the apparent geological dip of 45 degrees. Theevents in the two types of CIGs
have similar shapes, as expected from the geometric analysis presented in a previous section
(cosα = sinα whenα= 45 degrees), but their extents are different. The differences between
the two image cubes are more apparent when comparing the front faces, which show the image
at a constant offset of 110 meters (-110 meters in Figure 12b). These differences are due to the
differences in image-point shift for the two offset directions [equation (11) and equation (12)].

Figure 12c and 12d show the image cubes of Figures 12a and 12b after the application
of the transformations to GOCIG, described in equations (9)and (10), respectively. The two
transformed cubes are almost identical, because both the offset stretching and the image-point
shift have been removed. The only significant differences are visible in the front face for
the reflections corresponding to the top of the sphere. Thesereflections cannot be fully cap-
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Figure 9: Migrated images of North Sea data set. The migration slowness had been scaled by
1.04 with respect to the migration slowness used for the images shown in Figures 6–8. Orthog-
onal sections cut through ADCIG cubes: a) ADCIG computed from HOCIG cube, b) ADCIG
computed from VOCIG cube. Notice that the artifacts obscurethe moveout information in
both cubes. biondo1-Ang-Cube-both-v7new-overn[CR]
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Figure 10: Orthogonal sections cut through the ADCIG cube that was obtained by merg-
ing the cubes displayed in Figure 9 using the proposed method. Notice the typical up-
ward smile in the moveouts from both the salt edge and the flattish event above it.
biondo1-Ang-Cube-merge-v7new[CR]

tured within the vertical-offset image cube because the expression in equation (10) diverges
asα goes to zero. Similarly, reflections from steeply dipping events are missing from the
horizontal-offset image cube because the expression in equation (9) diverges asα goes to 90
degrees.

Image mispositioning in ADCIGs migrated with wrong velocity

In a previous section, we demonstrated that in an ADCIG cube the imaging pointIγ lies on the
line normal to the apparent geological dip and passing through the point where the source and
receiver rays cross (Figure 3). This geometric property enabled us to define the analytical rela-
tionship between reflector movement and traveltime perturbation expressed in equation (15).
This important result is verified by the numerical experiment shown in Figure 13. This fig-
ure compares the images of the spherical reflector obtained using the low velocity (slowness
scaled byρ = 1.04) with the reflector position computed analytically under the assumption
that Iγ is indeed the image point in an ADCIG. Because both the true and the migration ve-
locity functions are constant, the migrated reflector location can be computed exactly by a
simple “kinematic migration” of the recorded events. This process takes into account the dif-
ference in propagation directions between the “true” events and the “migrated” events caused
by the scaling of the velocity function. Appendix C derives the equations used to compute the
migrated reflector location as a function ofρ, αρ, andγρ .
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Figure 11: Images of the synthetic data set obtained with a) correct velocity, b) too low velocity
(ρ = 1.04). biondo1-Mig-zo-overn[CR]

The images shown in the six panels in Figure 13 correspond to six different apparent
aperture angles: a)γρ = 0, b)γρ = 10, c)γρ = 20, d)γρ = 30, e)γρ = 40, f)γρ = 50. The black
lines superimposed onto the images are the corresponding reflector locations predicted by the
relationships derived in Appendix C. The analytical lines perfectly track the migrated images
for all values ofγρ. The lines terminate when the corresponding event was not recorded by the
data acquisition geometry (described above). The images extend beyond the termination of the
analytical lines because the truncation artifacts are affected by the finite-frequency nature of
the seismic signal, and thus they are not predicted by the simple kinematic modeling described
in Appendix C.

RESIDUAL MOVEOUT IN ADCIGS

The inconsistencies between the migrated images at different aperture angles are the primary
source of information for velocity updating during Migration Velocity Analysis (MVA). Fig-
ure 13 demonstrated how the reflector mispositioning causedby velocity errors can be exactly
predicted by a kinematic migration that assumes the image point to lie on the normal to the
apparent geological dip. However, this exact prediction isbased on the knowledge of the true
velocity model. Of course, this condition is not realistic when we are actually trying to es-
timate the true velocity model by MVA. In these cases, we firstmeasure the inconsistencies
between the migrated images at different aperture angles, and then we “invert” these measures
into perturbations of the velocity model.

An effective and robust method for measuring inconsistencies between images is to com-
pute semblance scans as a function of one “residual moveout”(RMO) parameter, and then pick
the maxima of the semblance scan. This procedure is most effective when the residual move-
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Figure 12: Orthogonal sections cut through offset-domain CIG cubes obtained with too low
velocity (ρ = 1.04): a) HOCIG cube, b) VOCIG cube, c) GOCIG cube computed from HO-
CIG cube, d) GOCIG cube computed from VOCIG cube. Notice the differences between the
HOCIG (panel a) and the VOCIG (panel b) cubes, and the similarities between the GOCIG
cubes (panel c and panel d).biondo1-Cube-slow-4p-overn[CR]

out function used for computing the semblance scans closelyapproximates the true moveouts
in the images. In this section, we use the kinematic properties that we derived and illustrated in
the previous sections to derive two alternative RMO functions for scanning ADCIGs computed
from wavefield-continuation migration.

As discussed above, the exact relationships derived in Appendix C cannot be used, because
the true velocity function is not known. Thus we cannot realistically estimate the changes in
ray-propagation directions caused by velocity perturbations. However, we can linearize the
relations and estimate the reflector movement by assuming that the raypaths are stationary.
This assumption is consistent with the typical use of measured RMO functions by MVA pro-
cedures. For example, in a tomographic MVA procedure the velocity is updated by applying
a tomographic scheme that “backprojects” the image inconsistencies along unperturbed ray-
paths. Furthermore, the consequences of the errors introduced by neglecting ray bending are
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Figure 13: Comparison of the actual images obtained using the low velocity, with the reflector
position computed analytically under the assumption that the image point lies on the normal
to the apparent geological dip (Iγ in Figure 3). The black lines superimposed onto the images
are the reflector locations predicted by the relationships presented in Appendix C. The six
panels correspond to six different apparent aperture angles: a)γρ = 0 b) γρ = 10 c)γρ = 20
d) γρ = 30 e)γρ = 40 f) γρ = 50. biondo1-Tomo-slow-4p-overn[CR]

significantly reduced by the fact that RMO functions describe the movements of the reflec-
tors relative to the reflector position imaged at normal incidence (γ = 0), not the absolute
movements of the reflectors with respect to the true (unknown) reflector position.

Appendix D derives two expressions for the RMO shift along the normal to the reflector
(1nRMO), under the assumptions of stationary raypaths and constant scaling of the slowness
function by a factorρ. The first expression is [equation (D-7)]:

1nRMO =
1−ρ

1−ρ (1−cosα)

sin2γ(
cos2α −sin2γ

)z0 n, (21)

wherez0 is the depth at normal incidence.

The second RMO function is directly derived from the first by assuming flat reflectors
(α = 0) [equation (D-8)]:

1nRMO = (1−ρ) tan2γ z0 n. (22)
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As expected, in both expressions the RMO shift is null at normal incidence (γ = 0), and when
the migration slowness is equal to the true slowness (ρ = 1).

According to the first expression [equation (21)], the RMO shift increases as a function
of the apparent geological dip|α|. The intuitive explanation for this behavior is that the rays
become longer as the apparent geological dip increases, andconsequently the effects of the
slowness scaling increase. The first expression is more accurate than the second one when
the spatial extent of the velocity perturbations is large compared to the raypath length, and
consequently the velocity perturbations are uniformly felt along the entire raypaths. Its use
might be advantageous at the beginning of the MVA process when slowness errors are typically
large scale. However, it has the disadvantage of depending on the reflector dipα, and thus its
application is somewhat more complex.

The second expression is simpler and is not as dependent on the assumption of large-scale
velocity perturbations as the first one. Its use might be advantageous for estimating small-
scale velocity anomalies at a later stage of the MVA process,when the gross features of the
slowness function have been already determined.

To test the accuracy of the two RMO functions we will use the migration results of a syn-
thetic data set acquired over a spherical reflector. This data set was described in the previous
section. Figure 14 illustrates the accuracy of the two RMO functions when predicting the ac-
tual RMO in the migrated images obtained with a constant slowness function withρ = 1.04.
The four panels show the ADCIGs corresponding to different apparent reflector dip: a)α = 0;
b) α = 30; c)α = 45; d)α = 60. Notice that the vertical axes change across the panels;in each
panel the vertical axis is oriented along the direction normal to the respective apparent geo-
logical dip. The solid lines superimposed onto the images are computed using equation (21),
whereas the dashed lines are computed using equation (22). As in Figure 13, the images ex-
tend beyond the termination of the analytical lines becauseof the finite-frequency nature of
the truncation artifacts.

The migrated images displayed in Figure 14 were computed by setting both the true and the
migration slowness function to be constant. Therefore, this case favors the first RMO function
[equation (21)] because it nearly meets the conditions under which equation (21) was derived
in Appendix D. Consequently, the solid lines overlap the migration results for all dip angles.
This figure demonstrates that, when the slowness perturbation is sufficiently small (4 % in this
case), the assumption of stationary raypaths causes only small errors in the predicted RMO.

On the contrary, the dashed lines predicted by the second RMOfunction [equation (22)]
are an acceptable approximation of the actual RMO function only for small dip angles (up to
30 degrees). For large dip angles, a value ofρ substantially higher than the correct one would
be necessary to fit the actual RMO function with equation (22). If this effect of the reflector
dip is not properly taken into account, the false indications provided by the inappropriate use
of equation (22) can prevent the MVA process from converging.
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Figure 14: ADCIGs for four different apparent reflector dips: a)α = 0; b)α = 30; c)α = 45; d)
α = 60 withρ = 1.04. Superimposed onto the images are the RMO functions computed using
equation (21) (solid lines), and using equation (22) (dashed lines). Notice that the vertical axes
change across the panels; in each panel the vertical axis is oriented along the direction normal
to the respective apparent geological dip.biondo1-Ang-Cig-slow-4p-overn[CR]
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CONCLUSIONS

We analyzed the kinematic properties of ADCIGs in presence of velocity errors. We proved
that in the angle domain the image point lies along the normalto the apparent reflector dip.
This geometric property of ADCIGs makes them immune to the image-point dispersal and
thus attractive for MVA.

We derived a quantitative relationship between image-point movements and traveltime
perturbations caused by velocity errors, and verified its validity with a synthetic-data example.
This relationship should be at the basis of velocity-updating methods that exploit the velocity
information contained in ADCIGs.

Our analysis leads to the definition of two RMO functions thatcan be used to measure
inconsistencies between migrated images at different aperture angles. The RMO functions
describe the relative movements of the imaged reflectors only approximately, because they are
derived assuming stationary raypaths. However, a synthetic example shows that, when the
velocity perturbation is sufficiently small, one of the proposed RMO functions is accurate for
a wide range of reflector dips and aperture angles.

The insights gained from our kinematic analysis explain thestrong artifacts that affect
conventional ADCIG in presence of steeply dipping reflectors. They also suggest a procedure
for overcoming the problem: the computation of vertical-offset CIGs (VOCIGs) followed by
the combination of VOCIGs with conventional HOCIGs. We propose a simple and robust
scheme for combining HOCIGs and VOCIGs. A North Sea data example clearly illustrates
both the need for and the advantages of our method for computing ADCIGs in presence of a
vertical salt edge.
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APPENDIX A

PROOF THAT THE TRANSFORMATION TO GOCIG CORRECTS FOR THE
IMAGE-POINT SHIFT

This appendix proves that by applying the offset transformations described in equations (9)
and (10) we automatically remove the image-point shift characterized by equations (11) and (12).
The demonstration for the VOCIG transformation is similar to the one for the HOCIG transfor-
mation, and thus we present only the demonstration for the HOCIGs. HOCIGs are transformed
into GOCIGs by applying the following change of variables ofthe offset axisxh, in the vertical
wavenumberkz and horizontal wavenumberkx domain:

xh =
h̃0

cosα
= sign(tanα) h̃0

√
1+ tan2α = sign

(
kx

kz

)
h̃0

(
1+

k2
x

k2
z

) 1
2

. (A-1)

For the sake of simplicity, in the rest of the appendix we willdrop the sign in front of expres-
sion (A-1) and consider only the positive values ofkx/kz.

We want to prove that by applying (A-1) we also automaticallyshift the image by

1zIxh = −h̃0 tanγ tanα sinα (A-2)

in the vertical direction, and

1x Ixh = h̃0 tanγ tanα cosα (A-3)

in the horizontal direction.

The demonstration is carried out in two steps: 1) we compute the kinematics of the impulse
response of transformation (A-1) by a stationary-phase approximation of the inverse Fourier
transform alongkz andkx, and 2) we evaluate the dips of the impulse response, relate them to
the anglesα andγ , and then demonstrate that relations (A-3) and (A-2) are satisfied.
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Evaluation of the impulse response of the transformation toGOCIGs

The transformation to GOCIG of an imageIxh (kz,kx,xh) is defined as

I0 (kz,kx,kh) =

∫
dh̃0I0

(
kz,kx, h̃0

)
eikh h̃0 =

∫
dxh

(
dh̃0

dxh

)
Ixh (kz,kx,xh)e

ikhxh

(
1+

k2
x

k2
z

)− 1
2

.

(A-4)
The transformation to GOCIG of an impulse located at (¯z, x̄, x̄h) is thus (after inverse Fourier
transforms):

Ĩmp
(
z,x, h̃0

)
=

∫
dkh

∫
dxh

∫
dkx

∫
dkz

(
dh̃0

dxh

)
e

i



kh


x̄h

(
1+

k2
x

k2
z

)− 1
2
−h̃0


+kz(z̄−z)+kx(x̄−x)





.

(A-5)

We now approximate by stationary phase the inner double integral. The phase of this
integral is:

8 ≡ kh


x̄h

(
1+

k2
x

k2
z

)− 1
2

− h̃0


+kz (z̄− z)+kx (x̄ − x) . (A-6)

The stationary path is defined by the solutions of the following system of equations:

∂8

∂kz
= khx̄h

k2
x

k3
z

(
1+

k2
x

k2
z

)− 3
2

+ (z̄− z) = 0, (A-7)

∂8

∂kx
= −khx̄h

kx

k2
z

(
1+

k2
x

k2
z

)− 3
2

+ (x̄ − x) = 0. (A-8)

By moving both (z̄− z) and (x̄ − x) to the right of equations (A-7) and (A-8), and then dividing
equation (A-7) by equation (A-8), we obtain the following relationship between (¯z− z) and
(x̄ − x):

z̄− z

x̄ − x
= −

kx

kz
. (A-9)

Furthermore, by multiplying equation (A-7) bykz and equation (A-8) bykx, and then sub-
stituting them appropriately in the phase function (A-6), we can evaluate the phase function
along the stationary path as follows:

8stat= kh


x̄h

(
1+

k2
x

k2
z

)− 1
2

− h̃0


 , (A-10)

which becomes, by substituting equation (A-9),

8stat= kh



−x̄h

[
1+

(z̄− z)2

(x̄ − x)2

]− 1
2

− h̃0



 . (A-11)



206 Biondi and Symes SEP–113

Notice that the minus sign comes from the sign function in expression (A-1). By substituting
expression (A-11) in equation (A-5) it is immediate to evaluate the kinematics of the impulse
response as follows:

h̃0 = −xh

[
1+

(z̄− z)2

(x̄ − x)2

]− 1
2

. (A-12)

Evaluation of the image shift as a function ofα and γ

The final step is to take the derivative of the impulse response of equation (A-12) and use the
relationships of these derivatives with tanα and tanγ :

∂z

∂x
= tanα =

√
x2

h

h̃0
2 −1, (A-13)

−
∂z

∂xh
= tanγ = − (x̄ − x)

xh
h̃0√

x2
h

h̃0
2 −1

= − (z̄− z)

xh
h̃0

x2
h

h̃0
2 −1

. (A-14)

Substituting equations (A-13) and (A-14) into the following relationships:

1zIxh = z̄− z = −h̃0 tanγ tanα sinα, (A-15)

1x Ixh = x̄ − x = h̃0 tanγ tanα cosα, (A-16)

and after some algebraic manipulation, we prove the thesis.

APPENDIX B

This appendix demonstrates equations (19) in the main text:that for energy dipping at an
angleα in the (z,x) plane, the wavenumberkn along the normal to the dip is linked to the
wavenumberskz andkx by the following relationships:

kn =
kz

cosα
=

kx

sinα
. (B-1)

For energy dipping at an angleα the wavenumbers satisfy the well-known relationship

tanα =
kx

kz
, (B-2)

where the positive sign is determined by by the conventions defined in Figure 1. The wavenum-
berkn is related tokx andkz by the axes rotation

kn = kzcosα +kx sinα. (B-3)
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Substituting equation (B-2) into equation (B-3) we obtain

kn =
kz

cosα

(
cos2α + tanα cosα sinα

)
=

kz

cosα

(
cos2α +sin2α

)
=

kz

cosα
, (B-4)

or,

kn =
kx

sinα

(
cotα sinα cosα +sin2α

)
=

kx

sinα

(
cos2α +sin2α

)
=

kx

sinα
. (B-5)

APPENDIX C

In this appendix we derive the equations for the “kinematic migration” of the reflections from
a sphere, as a function of the ratioρ between the true constant slownessS and the migra-
tion slownessSρ = ρS. For a givenρ we want to find the coordinates of the imaging point
Iγ (zγ ,xγ ) as a function of the apparent geological dipαρ and the apparent aperture angleγρ .
Central to our derivation is the assumption that the imagingpoint Iγ lies on the normal to the
apparent reflector dip passing throughĪ , as represented in Figure 3.

The first step is to establish the relationships between the trueα andγ and the apparent
αρ andγρ . This can be done through the relationships between the propagation directions of
the source/receiver rays (respectively marked as the anglesβ andδ in Figure 1), and the event
time dips, which are independent on the migration slowness.The trueβ andδ can be thus
estimated as follows:

β = arcsin
(
ρ sinβρ

)
= arcsin

[
ρ sin

(
αρ −γρ

)]
, (C-1)

δ = arcsin
(
ρ sinδρ

)
= arcsin

[
ρ sin

(
αρ +γρ

)]
; (C-2)

and then the trueα andγ are:

α =
β + δ

2
, and γ =

δ −β

2
. (C-3)

Next step is to take advantage of the fact that the reflector isa sphere, an thus that the coordi-
nates (ˆz, x̂) of the true reflection point are uniquely identified by the dip angleα as follows:

ẑ = (zc − Rcosα) , and x̂ = (xc + Rsinα) , (C-4)

where (zc,xc) are the coordinates of the center of the sphere andR is its radius.

The midpoint, offset, and traveltime of the event can be found by applying simple trigonom-
etry (see Sava and Fomel (2002)) as follows:

xhsurf =
sinγ cosγ

cos2α −sin2γ
ẑ, (C-5)

xmsurf = x̂ +
sinα cosα

cos2α −sin2γ
ẑ, (C-6)

tD = 2S
cosα cosγ

cos2α −sin2γ
ẑ. (C-7)
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The coordinates of the point̄I (z̄, x̄), where the source and the receiver rays cross, are:

z̄ = xhsurf
cos2αρ −sin2γρ

sinγρ cosγρ

, (C-8)

x̄ = xmsurf−
sinαρ cosαρ

cos2αρ −sin2γρ

z̄ =

xmsurf−
sinαρ cosαρ

cos2αρ −sin2γρ

cos2αρ −sin2γρ

sinγρ cosγρ

xhsurf =

xmsurf−
sinαρ cosαρ

sinγρ cosγρ

xhsurf; (C-9)

and the corresponding traveltimetDρ is:

tDρ = 2ρS
cosαρ cosγρ

cos2αρ −sin2γρ

z̄. (C-10)

Once we have the traveltimestD and tDρ, the normal shift1ntot can be easily evaluated
by applying equation (15) (where the background velocity isSρ and the aperture angle isγρ),
which yields:

1ntot = −

(
tDρ − tD

)

2ρScosγρ

n. (C-11)

We use equation (C-11), together with equations (C-8) and (C-9), to compute the lines
superimposed onto the images in Figure 13.

APPENDIX D

In this Appendix we derive the expression for the residual moveout (RMO) function to be
applied to ADCIGs computed by wavefield continuation. The derivation follows the derivation
presented in Appendix C. The main difference is that in this appendix we assume the rays to
be stationary. In other words, we assume that the apparent dip angleαρ and aperture angleγρ

are the same as the true anglesα andγ . This assumption also implies that the (unknown) true
reflector position (ˆz, x̂) coincides with the point̄I (z̄, x̄) where the source and the receiver ray
cross.

Given these assumptions, the total traveltime through the perturbed slowness functionSρ

is given by the following expression:

tDρ = 2ρS
cosα cosγ

cos2α −sin2γ
z̄, (D-1)

which is different from the corresponding equation in Appendix C [equation (C-10)]. The
difference in traveltimes (tDρ − tD), wheretD is given by equation equation (C-7), is thus a
linear function of the difference in slownesses [(ρ −1)S]; that is,

tDρ − tD = 2(ρ −1)S
cosα cosγ

cos2α −sin2γ
z̄. (D-2)
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As in Appendix C, the normal shift1ntot can be evaluated by applying equation (15)
(where the background velocity isSρ and the aperture angle isγ ), which yields:

1ntot =
1−ρ

ρ

cosα

cos2α −sin2γ
z̄ n. (D-3)

The RMO function (1nRMO) describes the relative movement of the image point at anyγ

with respect to the image point for the normal-incidence event (γ = 0). From equation (D-3),
it follows that the RMO function is:

1nRMO = 1ntot (γ )−1ntot (γ = 0) =

1−ρ

ρ

[
cosα

cos2α −sin2γ
−

1

cosα

]
z̄ n =

1−ρ

ρ

sin2γ(
cos2α −sin2γ

)
cosα

z̄ n. (D-4)

The true depth ¯z is not known, but at normal incidence it can be estimated as a function of the
migrated depthz0 by inverting the following relationship:

z0 =

(
1−ρ

ρ cosα
+1

)
z̄, (D-5)

as:

z̄ =

[
ρ cosα

1−ρ (1−cosα)

]
z0. (D-6)

Substituting relation (D-6) in equation (D-4) we obtain theresult:

1nRMO =
1−ρ

1−ρ (1−cosα)

sin2γ(
cos2α −sin2γ

)z0 n, (D-7)

which for flat reflectors (α = 0) simplifies into:

1nRMO = (1−ρ) tan2γ z0 n. (D-8)

In Figure 14, the solid lines superimposed into the images are computed using equa-
tion (D-7), whereas the dashed lines are computed using equation (D-8).


