# (angle of attack and sideslip estimation USING AN 

INERTIAL REFERENCE PLATFORM
THESIS
JOSEPH E. LEIS, JR. Captain, usaf
AFIT/GAE/AA/88J-2

## 20030204160 <br> DEPARTMENT Of THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio
DISTRIBUTION STATEMENT $A$

Approved for public releces; Distribution Unlimited

# ANGLE OF ATTACK AND SIDESLIP ESTIMATION USING AN <br> INERTIAL REFERENCE PLATFORM 

## THESIS

JOSEPH E. ZEIS, JR. CAPTAIN, USAF AFIT/GAE/AA/8BJ-2




USING AN
INERTIAL REFERENCE PLATFORM

THESIS

Presented to the Faculty of the School of Engineering of the Air Foice Institute of Technology<br>Air University<br>In Partial Fulfillment of the Requirements for the Degree of Master of Science in Aeronautical Engineering

Joseph E. Zeis, Jr., B.S.<br>Captain, USAF

June 1988

Approved for public release; distribution unlimited.

## PRET :CE

The purpose of this research is to develope and flight test concepts for the estimation of angle of attack ( $\alpha$ ) and sideslip ( $\beta$ ) using, an inertial reference platform.' This development was further broken down into real-time, inflight estimation of $\alpha$ and post-flight estimation of $\alpha$ and $\beta$.. - Following cheoretical development, the conceptr were tested with NASA F-15A flight data and examined real-time during a NASA Highly Integrated Digital Engine Control (HIDEC) flight test using the F-15A aircrafí.

Angle of attack is a critical parameter in the maneuverable, high performance aircraft of today. Yet many errors are present in the current methods of obtaining this angle. An accurate method of and $\beta$ estimation could eliminate the need for such probes, and allow these quantities to be used for a broad range of applications. An inflight estimacor was developed for computational speed and accuracy using inertial navigation system linear arcelerations and angular sates. A second system based on linear recursive modelińs was developed for post-rlight estimation of $a$ and $\rho$. The data and programs speciried in this research are applicable only to thosi: aircraft mentioned, but the methods oi estimation are universal.

I would like to thank my thesis advisors, Dr. Robert Calico and Maj. Daniel Gleason for their belp and direction in this project. In addition, I am indebted to NASA for allowing me the use of their facilities and test aircraft for this work. The superb efforts of NASA Plight control engineer Heather Lambert turned a theory into reality.

## TABLE OF CONTENTS

PAGE
Preface ..... ii
List of Figures ..... vi
List of Tables ..... viii
List of Symbois and Abbreviations ..... ix
Abstract ..... xiii
I. Introduction ..... 1
Overview ..... 1
Problem ..... 2
Solution ..... 3
Scope ..... 5
II. Background ..... 7
Previous Approaches ..... 7
Proposed Approach ..... 9
III. Inflight Angle of Attack Estimator Theory ..... 11
Basic Lift Equation ..... 11
Moment Summation ..... 12
Load Factor Determination ..... 18
No-Wind Angle of Attack ..... 22
Three-Dimensional Vindage Calculation ..... 23
Flow Diagram ..... 24
IV. Post-Flight Estimation Theory ..... 26
Basic Equations of Motion ..... 26
Estimator Theory ..... 32
Programs DKF and DKFLAT ..... 37
Filter Tuning ..... 37
V. Estimator Validation ..... 40
Validation Objective ..... 10
Inflight Estimator Validation ..... 40
Computer Test Programs ..... 43
Page
Post-Flight Validation Test Runs ..... 45
Results of Valifation Run. ..... 47
VI. Flight Test ..... 54
Test Philosophy ..... 54
Test Aircraft ..... 55
Instrumentation ..... 55
Data Reduction ..... 59
Test Methods and Conditions ..... 59
Results and Analysis ..... 62
VII. Maneuvering Flight Demonstration ..... 73
Purpose ..... 73
Scope ..... 73
Maneuver ..... 73
Results and Analysis ..... 74
General Comments ..... 78
VIII. Conclusions and Recommendations ..... 80
General ..... 80
Objective 1 ..... 80
Objective 2 ..... 81
Objective 3 ..... 81
Objective 4 ..... 82
Objective 5 ..... 83
Appendix A: Computer Progras DKF ..... 85
Appendix 8: Computer Program DKFLAT ..... 100
Appendix C: Computer Program LONG ..... 103
Appendix D: Computer Program LAT ..... 112
Appendix E: F-15A Aircraft Description ..... 120
Appendix F: Key INS/Air Data Outputs ..... 124
Appendix G: F-15A Stability Derivative Models ..... 128
Appendix H: ELEXI Program AOA ..... 138
Appendix I: Flight Test Card ..... 144
Bibliography ..... 147
Vitae ..... 150

## LIST OF FIGURES

Figure Page

1. Basic Longitudinal Aerodynamic Forces ..... 11
2. Moments Acting on an Aircraft in Flight ..... 13
3. Relationship of Load Factor and Normal Acceleration ..... 18
4. Inflight Estimator Flow Diagram ..... 25
5. Body Axis System ..... 26
6. Angle of Attack as a Velocity Ratio ..... 27
7. Sideslip Angle as a Velocity Ratio ..... 30
8. Covariance Analysis for Kalman Filter Tuning ..... 38
9. Comparison of LONG and DKF Derived Angle of Attack ..... 44
10. Angle of Attack Recovery using INS Covariance Model ..... 46
11. Angle of Attack Recovery (. 5 degree Elevator) ..... 48
12. Angle of Attack Recovery (2 degree Elevator) ..... 49
13. Sideslip Recovery (. 5 degree Rudder) ..... 50
14. Sideslip Recovery (2 degrec Rudder) ..... 51
15. Sideslip Recovery (2 degree Aileron) ..... 52
16. NASA F-15A HIDEC in Flight ..... 56
17. F-15A HIDEC YAPS Noseboom ..... 57
18. Test Point 1 Level Acceleration Results ..... 63
19. Test. Point 2 Level Acceleration Results ..... 65
20. Maximum Power Level Acceieration Results ..... 67
21. Abrupt Pitch Maneuver Results ..... 69
22. Test Point 7 - 3 Eind Up Turn Resulte ..... 70
23. Test Point 8 - 5 G Vind Up Turn Results ..... 71
24. Robustness Maneuver \#1 ..... 75
25. Robustriess Maneuver $\boldsymbol{W} 2$ ..... 77
E1. F-15A General Aircrart Layout ..... 121

## LIST OF FIGURES (CONCLUDED)

Figure Page
F1. F-15A HIDEC INS ..... 125
F2. F-15A HIDEC Air Data Computer System ..... 120
G1. F-15A Subsonic Trimmed Lirt Curve (U) ..... $13 n$
G2. F-15A Three Dimensional a Estimator Model ..... 131
G3. F-15A Zero Lift Angle of Attack ..... and
G4. F-15A Gross Height vs. Center of Gravity (U) ..... 133G5.G6.
Pitching Moment Characteristics ..... 132
F-15A Moments of Inertia ..... 134
F-15A Estimator IXX Model ..... 135
G7. F-15A Estimator IYY Model ..... 136
G8. F-15A Estimator IZZ Model ..... 137
I1.Robustness Test146

## LIST OF TABLES

Table PageI. USAF Standard INS Measument Accuracies34
II. Static Inflight Angle of Attack Test Points ..... 41
III. Static Inflight Estimator Validation ..... 42
IV. Post-Flight Validation Test Points ..... 45
V. Level Acceleration Evaluation ..... 60
VI. Abrupt Pitch Evaluation ..... 61
VII. Wind-Up Turn Evaluation ..... 61
VIII. Robustness Evaluation ..... 74
F1. Key Sensor Outputs ..... 127

Symbol

A
$a_{B Z}$
$B$
$\bar{c}$
$C_{L_{W B}}$
$C_{m}$
$C_{0}$

5
H
h
I
Ix
Iy
Iz
Ixz
KG
L
$L_{T}$
$L_{\text {we }}$
$M$
m
m。
N

Title

Stability matrix
Normal acceleration in body axis

Control matrix
Hean aerodynamic chord of wing
Wing-body coefficient of lift
Zero lift pitching moment coerficient
acceleration of cravity feet/sec ${ }^{2}$
Matrix of available measurements
Altitude
Identicy matrix
Moment of inertia about $x$ axis
Moment of inertia about $y$ axis
Moment of inertia about $z$ axis
Gross-product of inertia
Kalman gain matrix
Total aircraft lift
Tail contribution to lirt
Lift of wing-body combination
Mach number
Mowent about y axis (pitching moment)
Zero-lift pitching momerit
Moment about $z$ axis (yawing moment)

Units

-     - 

feet $/ \sec ^{2}$

-     - 

feet
-
reet

-     - 

slus-reet ${ }^{2}$
slug-reet ${ }^{2}$
slus-feet ${ }^{2}$
slug-feet ${ }^{2}$

-     - 

pounds
pounds pounds - -
foot-pounds foot-pounds foot-pounds

| Symbol | Title | Units |
| :---: | :---: | :---: |
| n | Load factor | 5 |
| p | Roll rate | radians/sec |
| PM | Error covariance prior to measurement | - |
| PP | Error covariar.ce after measurement | - - |
| Q | Matrix of model uncertainty | - - |
| q | Pitch rate | radians/sec |
| R | Matrix of measurement uncertainty | - - |
| r | Yam rate | radians/sec |
| $s$ | Wing area | reet |
| T | Error range or twice the given accuracy | - - |
| u | Body axis velocity in $x$ direction | feet/sec |
| $v$ | True airsfeed | reet/sec |
| $v_{*}$ | Airmass velocity | feet/sec |
| $\boldsymbol{v}_{\mathbf{B}}$ | Body axis velocity | feet/sec |
| $v_{1}$ | Inertial velocity | reet/sec |
| $v$ | Wind velocity | reet/sec |
| X | State vector | - - |
| XM | State estimate prior to measurement | - - |
| XP | State estimate arter measurement | - - |
| $X_{\text {wo }}$ | Distance rrom center of gravity to wing-body aerodynamic center | reet |
| $\mathbf{X}_{\mathbf{T}}$ | Distance from center of gravity to horizontal tail aerodynamic center | reet |
| 2 | Measurement vector | - - |


| ". | Symbol | Title | Units |
| :---: | :---: | :---: | :---: |
|  | $a$ | Angle ri attack | degrees |
|  | $\alpha_{0}$ | Initial angle of athack guess | degrees |
|  | $\beta$ | Angle of sideslip | degrees |
|  | $\mathcal{S}$ | Control input | - - |
|  | $\sigma^{2}$ | Variance | - - |
|  | $\theta$ | Pitch angle | degrees |
|  | $\phi$ | Roll angle | degrees |
|  | $\psi$ | Heading angle | degrees |
|  |  | SUBSCRIPTS AND SUPERSCRIPTS |  |
|  | $\because$ | Transpose | - - |
|  | , | Trim value | - - |
| 6 | - | Perturbation value | - - |
|  | - | Time derivative | - - |
|  | , | Primed lateral derivative | - - |
|  | $\times$ | $x$ direction | - - |
|  | $y$ | $y$ lirection | - - |
|  | $z$ | $z$ direction | - - |
|  | N | North direction | - - |
|  | E | East direction | - - |
|  | $\cdots$ | West direction | - - |

Symbol
Title

ABBREVIATICNS
a

AOA

CADC
C.L.

E

(K)
(K - 1)

HIDEC $\quad \begin{gathered}\text { Highly } \\ \text { control }\end{gathered} \quad$ integrated digital engine
INS Inertial navigation system -

Aileron

Ansle of attack

Central air data computer

Chord line of ging

Elevator

Inertial navigation system

Inertial reference system

Lateral

Longitudinal

Rudder

Root mean squared error

Relative mind
$\delta \mathbf{u}$

At time K

At time step prior to K
seconds
seconds


#### Abstract

Throughout aviation history, pilots and engineers have had to rely on mechanical angle of attack ( $\alpha$ ) and sideslip ( $\beta$ ) probes to determine an aircraft's position relative to the airmass. Recent advances in the stability, accuracy and reliability of inertial navigation and reference systems now allow angle of attack and sicesilip information to be calculated from internal aircrai: systems and a central air data computer. Conflicting requirenents for inflight angle of attack information and post-flight angle of attack and sideslip data reduztion demand two seperate methods. Inflight algorithms require fast, accurate angle of attack, with no assumptions on vertical wind. Post-flight usage, however, demands great accuracy with no assumptions on either sideslip or vertical windage. From the aircraft equations of motion, angle of attack and sidessip algorithms will be developed, with velocity and rate inputs of the type expected from an aircraft central air data computer and inertial navigation system. A computer program will then be developed to validate these equations. A Kalman filter algorithm will also be designed to aid in estimating data output from these sources.

Flight test will consist of two parts. Initally, yelocity, rate, acceieration, and aircrart position signals will be picked off a standard inertial reference system on a NASA F-15A aircraft. There signals will be processed using the algorithme developed, and estimated angle of attack will be output. Thesse outputs will be compared with those


predicted by the inflight and post-rlight algorithm for accuracy and usability. A demonstration will then be Conducted on the NASA F-15A to determine usability and accuracy of inertially derived angle of attack information in a highly maneuvering environment.

Conclusions will include boch the usability and accuracy of inertially derived angle of attack and sideslip. Applications for accurate and reliable angle of attack and sideslip are many. Three-dimensinnal windage can be readily predicted as a result of this research, along wich airborne windshear detection and stall warning systems. Elimination of mechanical angle of nttack and sideslip probes, with their inherent inaccuracy, failure rates, and time las, will also alion for angle of attack information to be used as reliable reedback in automatic aircrart control systems.

# ANGLE OF ATTACK AND SIDESLIP ESTIMATION USING AN 

INERTIAL REFERENCE PLATFORM

## I. Introduction

OVERVIES The orientation of an aircraft's velocity vector relative to the airmass surrounding it can be described by two angles, the angle of attack (alpha or $a$ ) and the angle of sideslip (beta or $\beta$ ). Since all aerodynamic forces and moments depend on these two angles, they are critical parameters in stability and control flight testing. Indeed, angle of attack, and to a lesser extent sideslip, are extremely important parameters to pilots of high performace aircraft in an operational environment. Angle or attack is continuously monitored in air-to-air maneuvering and during approach to landing. In addition, the two angles are utilized for stall inhibitor and alpha limiter subsystems in advanced flight control systems. But angle of attack and sideslip are extremely difficult to measure precisely. Throughout the brief history of aviation, both pilots and engineers have had to rely on mechanicial angle of attack and sideslip devices to determine those critical angles in the three-dimensi: al airmass. If angle of attack and sideslip could be accur $-\operatorname{lig}^{\prime} y$ estimated both in the dynamic inflight environment, and during post-flight data analysis sessions, a sreat deal of difficulty in performing calibrations, creating correction curves, and calculating performance derivatives could be eliminated. An accurate, real-time knowledge of
angle of attack and sideslip could did the pilot in a variety of mays, just as accurate post-rlight estimations ar both critical angles could aid the flight test engineer.

PROBLEM Currently, angle of attack and sideslip are measured by external probes mounted on the formard fuselage of operational aircraft. These rotating mechanical probes have slots which then align the probes to the local airflow, thus providing an estimate of the true angle of attack of the ring-body combination in the airmass. Flight testing, to a great degree, relies on pitot probe mounted angle of attack and sideslip vanes. The mounting of probes far ahead on the fuselage eliminates some of the error due to local flow effects, but many problems still exist fith exteraal angle of attack (AOA) and sideslip probes nnd vanes. First, being amay from the center of gravity of the aircrart, the rotaing probes are subject to pitch, yaw, and roll motion-induced errors which vary with Mach number and meneuver, increasing the difficulty of calibration dramatically[1:4]. Second, being mechanical pick-off devices, these probes have a definite time lag that hampers their use in flight controls and autopilot applications[2:4631. This time lag can produce extremely undesirable characteristics in most rlight.
controls. Third, several airplanes, moet notably F-16 and F-111 aircrart have been lost due to failure of the angle of attack probe inflight[3]. This has been due to the requirement for stall inhibitor systems which atiempt to prevent the aircraft from exceeding a specified angle of attack. The rilcht controls will respond to a high AOA with a pitch down maneuver to reduce the sensed extreme angle of attack. If both probes have failed in rilght, the aircraft could pitch down for no reason, other than the false AOA
derived from the failed probef4:1-51]. For such a vital instrument on a high performace aircraft, single probe faiiure could result in aircraft loss. Finally, the very accuracy of the mechanical probe in determining angle of attack and sideslip is difficult to determine. Thacker found errors in angle of attack over the subsonic range to be on the order of 1.5 to 2 times the actual value of alpha, and sideslip error of 1.75 to 2.4 times actual beta values for the USAF/CALSPAN NT-33A, varying with Mach number[1:2]. The F-16 flight control system currently calculates angle of attack with twin double-slotted probes to an accuracy of approximately 0.4 to 0.5 degrees over the entire flight regime[3]. These probe er=ors are applicable to all probed aircraft in the subsonic range of flight. The realm of supersonic flight makes greater demands on the use of probess and vanes to determine angles of attack and sidesiip. Increased performance dictates a sreater requirement for knowledge of these angles. However, at extremely high speeds, periaities from drag and aerodynamic heating require a "cleaner" mechod for angle of attack and sideslip determination without reference to external devices in the airflow. Indeed, the increased reliance on angle of attack and sideslip information at these critical speeds and riight conditions places a strong requirement on sensor redundancy for critical flight control systems. That requirement could be fulfilled by such an iaternal $A O A$ and sideslip estimation system.

SOLUTION Angle of attack and sideslip can be determined Wth a high degree of accuracy from inertial reference systems and central air data computers. The current generation of ring laser gyro inertial navigation systems (INS) and inertial reference systems (IRS) have accuracies in
pitch, roll and heading angles on the order of $5.6 \times 10^{-4}$ radians(. 032 deg.) and angular rate measurment accuracies on the order of $7.5 \times 10^{-4} \mathrm{radians} / s e c o n d(.043$ Jegrees/sec)
[5: 86-89]. The newest generation ring laser gyro INS units are even better, with accuracies of $2.0 \times 10^{-6}$ radians[6]. Normal acceleration can be meazured to an accuracy of 2 feet/sec ${ }^{2}[5]$. Using the three INS rates, accelerations. and central air data computer (CADC) inputs, the ancle of attack can be estimated mith a moment summation and lift model. This lift can then be compared to the current aircraft weight model and measured load factor. An angle of attack estimation can then be cenerated based on the required load ractor. For post-flight evaluation, the INS rates and Euler angles can be input to a extended Kalman estimator for ground reconstruction of angle or attack and sideslip.

The speed of the digital INS, combined with its accuracy and reliability provide the following advantages. Primarily, if ancle of attack can indeed be estimated with a hich degree of certainty, the speed of the INS/computer calculations implies that the information can be used in conjunction with advanced Plight control systems as a reedback quantity. Being internal to the aircraft and extremely accurate, the INS $\mathbf{1} 11$ eltminate local flow and Mach effecta that must now be corrected in raw external probe data. Finally, the reliability of the current INS systams, and even higher reliability of the ring laser INS's, adds sensor redundancy to probe derived AOA systems. As the mean time between failures (MTBF) of INS's increames, it could become the primary source of angle of attack and sideelip data.

A poat-rifcht derived ancle of attack and sidealip can be used readily to calibrate probes and aid in the estimation of etability derivatives without lengthy trim shote. Alpha
and teta derived immediately following flight from INS and CADC dizta can save valuable flight time, effort and substantial computer resources.

SCOPE The purpose of this thesis is to develop an accurate method for estimating angle of attack and sideslip using signals available from a standard INS. The estimation algorithm is broken into two parts, the inflight and the post-flight algorithms. The inflight algorithm must accurately (to .5 degrees) measure angle of attack in real time, suitabie for use in a rlight control application. An update rate of 30 to 60 cycles per second will allow flight control usage of the derived information. This dictates quick, simple and accurate calculations from INS and CADC inputs only. A by-product of alpha esitmates should be the accurate calculation or three-dimensional winds. The post-flight algorithm must accurately (to 0.25 degrees) estimate AOA and sidesilp using INS angles and rates. These desired accuracies are based on 200 percent improvement on current uncorrected probe accuracies of 2 degrees cver the entire rlicht regime. This information would be input to a linear recursive estimator for reconstruction of the required data. There is no requirement, however, for real time data. In this way, complicated estimation algorithms can be applied to determine the most accurate angle of attack and sideslip, along with windace, for rlight test intereste.

The algorithms will be developed with these specifis purposes in mind. A complete flight test program will determine the usefulness and accuracy of the angie of attack and sideslip estimates. This testing will first evaluate estimation in straight and level flight, and gentle turning maneuvers. This will be folloxid by examination of the
alcorithms in a highly marauvering environment at increased AOA and load ractors. The results will be compared to a computer siaulation of the angle of attack and sidesifp required for the specific maneuver, as well as probe and vane measured alpha and beta.

Tine oibjectives of this project are:

1. Develop a post-rlight algorithm for determination of angle of attack and sidesilp with reference to INS and CADC outpute only, making no assumptions on vertical wind or sideslip. The estimations should be accurate to . 25 degrees. Then, apply a Kalman rilter to post rlicht data for accurate AOA and sideslip.
2. Validate by computer simulation the angle of attack and sideslip recovered by the Kalman rllter.
3. Develop an inflight algorithm to determine ancle of attack with reference to INS and CADC outputs only, assuming sideslip is zero. The data mume be real time and nccurate to . 5 degrees.
4. Demonatrate algorithme with rlight test data.
5. Determine through rlight tent where the alcorithme are no longer valid eetimatory.

PREVIOUS APPROACHES Four basic approaches have been used to estimate angle or attack. Freeman's method [7] in is ${ }^{\text {mos }}$ utilized accelerometers only, with no inertial hardware The additional aircraft dynamics mere then estimated by control surface deflection pickoff devices and basic aircraft equations of motion. An angle of attack processor then took inputs of rlight condition, accelerations, and surface position to estimate angle of attack for the required maneuver. This method required extensive modeling of stability derivatives. Tail aerodynamics were needed to implement the algorithm. Surface position indicators were used to formulate the model of the aerodynamic response of the tail surfaces. Pitch, roll, mach and G-loading limitations were placed on the estimator to simplify this complex modeling into a managable systek or equations for processinc. This method relied heavily on aerodynamic modelinc using stability derivatives and surface position to evaluate the maneuver being performed and estimate an angle of attack required. While accurate to approximately . 5 degrees angle of attack over the rlight range specificd in the limitations [7:38], INS information could eliminate the need for such extensive aero modeling and surface position pickoff, with improved accuracy over a less constrained rlight envelope.

A second algorithm, requiring less extensive aerodynamic modeling, is provided by Petrov and Studnev, et al [8]. This method requires precise modeling of the coefricients of lift and dras and accelerometers to model aerodynamic performance in
sliding rlight [8:3]. The linearized equations are applicable only for small alpha and beta Clese than 10 degrees) and do not provide the angles throughout the maneuvering envelope [8:5].

Perhape the most detailed work has been accomplished by Olhausen, using INS outputs for YF-16 rlicht test [9]. The method uses INS accelerometer and velocity measurmente, along with Euler angle measuments. Basic aircraft equations of motion were solved using appropriate order Runge-Kutta integration techniques. This method is erfective, but like most, it requires the assumption that sideslip and rertical windage are zero. Used primarily for flight test applications, the algorithm develops problema determininfs -inds in steep turns where sideslip is not meglicible.

The fourth method, and the one used by Thacker [1], is state-space estimation. Thacker only used two siates, $\hat{\theta}$ and $\hat{q}$. In this model, $\hat{\theta}$ represents the pitch angle and $\hat{q}$ is the pitch rate. These quantitiea are perturbation values about some nominal flicht condition. The two states were shown by Thacker to successrully determine angie of attack to approximately .5 degrees. Logically, a more accurate math model of the aircraft dynamics should result in more accurate determinations of angle of attack. In addition, a model of the lateral dynami im of the mame aircraft mould also yield comparable remulta with sideslip. The umal model of an unaugmented aircraft consiats of 4 states in both ine decoupled longitudinal and lateral modes. Although varied, thi mathematically more accurate system can be one with $\hat{\mathbf{V}}$, $\dot{a}, \hat{q}$, and $\hat{\theta}$, where $\hat{a}$ is angle of attack, $\hat{V}$ iz true airepeed, $\hat{\theta}$ is pitch angle, and $\hat{q}$ is pitch rate. Asain, these quantities are perturbation values. They are, in other wordm, the changes in those variables from some steady state
values. Accurate inputs can be obtained for $q$ and $\theta$ from the INS, with a moderately accurate $V$ from the CADC Coff by the angle of atwack rotation). Alpha would then be estimated by a Kalman est,mator. This state-space estimator has several disaivantages. The system must model about 34 stability derivatives, dependjng on the accuracy desired in the result. These derivatives are naturally based or Mach, altitude, rligho condition, and require mathematical changes for flap deflection. This extensive math modeling, along With the computational time required to solve the system of equations, currently precludes this method for real time inf:jeght estimator applications.

PROPOSED APPROACH Angle of at.tack and sideslip estimation has two inherently opposing requirements, speed and accuracy. Speed of calculation is a critical requirement for flight control usage of alphe, as well as for pilot information and three dimensional mindage derivation. Calculations must be minimized, with a judicious use of aseumptions, while retaining accuracy to .3 degrees. On the other hand, right test stan'lards require an accurate knovledge of alpha, beta, and three-dimensional winds. This information is not time critical, and can be post-rlight proceased for analysis at a later time. These requirements drive the need for two types of estimators, a rapid estimator method for inflight use, and a very accurate estimator method for flight test analy afler the ract. I propose to develop these two methods of argle of attack and sidesilp estimation, and flight test their validity.

Freeman's work with the alpha estimator provides a good basis for the inflight, real-time portion of the alpha estimator prablem. Incorporation of INS rates, ancles and
accelerations can dramatically reduce the requirement for extensive stability derivative modeling, and increass the accuracy and calculation speed. However, the filght envelope imposed by Freeman must be expander for a wider range of inflight applicatione. A new algorithm based on total lift and aircraft moments will be sveloped. No assumptions will be made concerning the existence of a vertical wind, and accurate three-dimensional windage oatput will be a criterion for acceptable operation of the inflight alpha estimator.

With calculation speed not a factor for the post-riight estimator, the state-space me hod provicies a basis for alpha, beta, and three-dimensional windage estimation, with no assumptions made on any of these three quantities. The mose extensive, 4 component stale-space model or 34 derivatives for decoupled longitudinal and lateral reaponse modes can be easily used. This would also require application of a linear recursive Kalman estimator to take the limited INS and CADC Inputs to estimate the alpha and beta obtained in the maneuvers performed. 3-d windage profiles can then readily be calculated for test ongineering mage.

## III. INFLIGHT ANGLE OF ATTACK ESTIMATION THEORY

BASIC LIFT EQUATIONS Angle or attack is directiy related to the coerficient of lift of the wingbody combination. If the total lift on the wing-body is obtained, angle or attack may be subsequently computed. Total lift is the sum of the lift of the wing-body combination acting at the corresponding Wing-body aerodynamic center, and the lift of the tail, acting at the aerodynamic center of the empennage.


Figure 1. Basic Longitudinal Aerodynamic Forces

Denoting this lirt of the wing-body combination as Lws, the lift of the tail as $L_{T}$, the total lift, $L$, is given by:

$$
\begin{equation*}
L=L_{W_{B}}+L_{T} \tag{1}
\end{equation*}
$$

But total lift can also be deined by:
$L=n \boldsymbol{N}$
(2)

Where $n$ is load factor and $V$ ts total aircrart weight. Then:

$$
\begin{equation*}
n H=L_{W B}+L_{T} \tag{3}
\end{equation*}
$$

Wing-body lift can be expressed in a standard non-dimensional coerficient $C_{L_{w s}}$, where:

$$
\begin{equation*}
C_{L_{W 0}}-\frac{L_{W 0}}{\left(\frac{1}{2} \rho V^{2}\right) S} \tag{4}
\end{equation*}
$$

where $\rho$ is atmospheric density at rlight altitude, $V$ is true airspeed, and $S$ iz wing area.

Rearrancinc:

$$
\begin{equation*}
L_{V B}=C_{L_{W B}}\left(\frac{1}{2} \rho V^{2}\right) S \tag{5}
\end{equation*}
$$

so that in terms of load factor:

$$
\begin{equation*}
n V=C_{L_{V D}}\left(\frac{1}{2} \rho V^{2}\right) S+L_{T} \tag{6}
\end{equation*}
$$

MOMENT SUMMATION LIft on the tail must be modeled next. This can be accomplished by applying an analagous equation, but the effects of elevator deflection, downwash, and surface position pickoffs, as well as wake erfects must be considered. These efrects are difricult to account for due to the inaccuracies of determining exact tail derlection, as well as the errors in aerodynamic modeling of the flow over the empennace, and the reaulting forces. While it is posaible to model downwash and analytically determine tail lift, the equations quickly become unmanagable in even alight
maneuvering. In addition, the algorithm would then vary extensively with tail surface control design. The simpler and more direct method is the calculation of the lift contribution of the tail surfaces as determined through aircraft moments.

The moment action on the total aircraft can be described adequately by the zero-lift pitching moment, wing-body lift, and the moments due to the tail lift. Since the lift is always perpendicular to the relative wind, the resulting moments and arms are shown in Figure 2.


Figure 2. Momente Acting on an Aircraft in Flight
where $m_{0}$ is the zero-lift pitching moment about the quarter-chord and $X_{T}$ is the distance between the center of gravity of the aircraft and the aerodynamic center of the horizontal tail. $X_{w B}$ is the corresponding diatance between the center of gravity of the aircraft and the wing-body aerodynamic center. It is augumed that the weight acts through the center of gravity, and is therefore not a conisibuting factor in any moment equation. This is a valid
assumption in that the aircraft in flight will senerally rotate about its center of gravity. Therefore, any moment summation about the center of gravity eliminates weight of the aircraft as a contributing factor in the moment equarion. A normal static margin will place the center of gravity less than ten percent of the mean aerodynamic chord away from the aerodynamic center. A further asaumption is that the lift of the wing-body combination acta at a single point called the ming-body aerodynamic center. These two basic assumptions are generally held to be true for conventional aircraft throughout a large portion of their riight regimes. In addition, centerline thruat is assumed, resulting in no moments due to thrust, as well as drac. This assumption is valid for NT-33A and other fighter- type aircraft investigations, but may require correction in tanker/transport applications.

The term $m_{0}$ ased here refers to the zero-lift pitching moment of the wing-body-tail combination. As much, the conditions at zero lift require that lift of the wing-body offset the lift of the tail. Thus the terme $L_{T}$ and $L_{w o}$ actually refer to incremental lift from the zero-1ift condition. However, the zero-lift values of ming-body and tail lift are negligible when compared to total wing-body and tail lift. in 1-6 flight. The simplification will therefore be made that $L_{T}$ and $L_{w s}$ are total lift terme and not incremental terme from the zero-lift condition. So the eummation of momente yields:

$$
\begin{equation*}
\Sigma_{m}=m_{0}-L_{T} X_{T}+L_{\mathbf{V B}} X_{\mathbf{V}} \tag{7}
\end{equation*}
$$

where $X_{w s}$ is the wing-body static margin as derined by the expression:

$$
\begin{equation*}
x_{w b}=\left(h-h_{w e}\right) \bar{c} \tag{8}
\end{equation*}
$$

But a standard alternate formula for the total sum of the moments 1s given in McKuer [2:220].

$$
\begin{equation*}
\Sigma \sum_{m}=\dot{q} I_{Y}+p r\left(I_{X}-I_{Z}\right)-r^{2} I_{X Z}+p^{2} I_{X Z} \tag{9}
\end{equation*}
$$

where $q$ is pitch acceleration, $p$ is soll rate and $r$ is yaw rate, all quantities available directly from a USAF standard INS. $I_{X}, I_{Y}$, and $I_{Z}$ are respective principle moments of inertia to the $X, Y$, and $Z$ axes and $I_{X Z}$ is tho applicable cross product of inertia calculated in the body axis.

If we neglect the croses products and rate-squared terms as negligible, equation (8) becomes:

$$
\begin{equation*}
\Sigma_{m}=\dot{q}_{Y}+\operatorname{pr}\left(I_{X}-I_{Z}\right) \tag{10}
\end{equation*}
$$

This is a valid assumption due to the relative size of the cross-products. The NT-33A data [15:22] shows a croes product of 480 slug-reet ${ }^{2}$ compared to a difference in $I_{x}$ and $I_{z}$ of 20,000 sluc-feet ${ }^{2}$. The yaw rate squared term will always be less than 1 radian/second, and it is assumed that roll rates will be less than 1 radian/second also. A eypical transport aircrart, the Convair 880M [15: 200], specifies this cross-product as 0 , indicating that it can be ignored for the purposes of this investigation. Now, only the moments of inertia need to be modeled throughout the riight regime.

So, combining equations (7) and (9) yields:

$$
\begin{equation*}
\dot{q}_{Y}+p r\left(I_{X}-I_{Z}\right)=m_{0}-L_{T} X_{T}+L_{W} X_{w} \tag{11}
\end{equation*}
$$

Now solving for $L_{T}$ :

$$
\begin{equation*}
L_{T}=\frac{-\dot{q}_{Y}-p r\left(I_{x}-I_{z}\right)+\mathbf{m}_{0}+L_{w T B} X_{w T}}{X_{T}} \tag{12}
\end{equation*}
$$

This equation for the lift of the tail provides several advantages. The algorithm does not require extensive aerodynamic modeling of tail effects. The theory is based entirely on the effect of the developed wail lift on the aircraft pitch, roll and yaw motions. In that light, there is no downwash calculation error or surface position indicator requirement. Indeed, the algorithm doesn't care if the horizontal tail surface is a conventionally flapped elevator, a full-flying stabilator with variable trim tabs, of even a differential stabilator with roll control mixing.

Equation (11) can now be introduced into equation (6) with the result:
$n W=C_{i_{W B}}\left(\frac{1}{2} \rho V^{2}\right) S+\left[\frac{-\dot{q} I_{Y}-p r\left(I_{x}-I_{Z}\right)+C_{m 0}\left(\frac{1}{2} \rho V^{2}\right) S \bar{c}+L_{W 0} X_{v o}}{X_{T}}\right]$
(13)
or
$X_{T} n W=X_{T} C_{L_{W B}}\left(\frac{1}{2} \rho V^{2}\right) S\left[1+\frac{X_{W B}}{X_{T}}\right]+\left[-\dot{q} I_{Y}-p r\left(I_{X}-I_{Z}\right)+C_{m_{0}}\left(\frac{1}{2} \rho V^{2}\right) S \bar{c}\right]$ (14)
where:


Solving for $C_{\text {w }}$ yields the primary equation for the estimator.

$$
C_{L_{W B}}=\frac{n W X_{T}+q I_{Y}+p r\left(I_{X}-I_{Z}\right)-G_{m_{0}}\left(\frac{1}{2} \rho V^{2}\right) s \bar{c}}{\left(\frac{1}{2} \rho V^{2}\right) S X_{T}\left[1+\frac{X_{W B}}{X_{T}}\right]}
$$

It can then be noted that angle of attack is a function of $C_{L_{w e}}$

$$
\begin{equation*}
\left.\alpha=\operatorname{Fn}^{\left(C_{L_{W B}}\right.}, M, h\right) \tag{17}
\end{equation*}
$$

$w \pm t h$ being Mach and $h$ beinc altitude.
This runctional relationship can be developed for each specific aircraft to be estimated. Mach number and altitude are direct CADC outputs, while $C_{L_{w s}}$ can be derived from equation (16).

The ratio of $X_{w s}$ to $X_{T}$ is on the order of .02 for most conventionally stable aircraft. Thus the entire correction factor for the moment due to the lift of the wing-body combination is approximately 1.02 to 1.05 , yielding a 2 to 5 percent error if neglected entirely. This term will be kept, however, to increase in-rlight angle of attack estimation accuracy, but will be assumed to be constant. This neglecte the center of gravity shift as fuel is burned or stores are released. But, this shift from an assumed medium center of gravity $x i l l$ present an a estimate error or leam than 1 percent, judging by normal static margin shifta of conventional aircrart through a normal rlight misaion.

Also, the change in coerficient or lift with a change In $a$ is ammused to be instantancous, with no associated
dynamics. Thus the angle of attack required for a specific coefficent of lift to exist, as determined by aircraft accelerations and moments, may be calculatec at any point in time.

LOAD FACTOR DETERMINATION A required input to equation (16) to determine $C_{L}$ is load factor ( $n$ ). The load factor is defined as the ratio of the acceleration of the aircraft normal to the rlight path within the plate of symmetry to the acceleration of gravity. INS linear acceleration would then yield only acceleration normal to the aircrart within the plane of symmetry. Uith zero ancle of attack, the relationship of $a_{z}$ and $n$ in level fiight is:

$$
\begin{equation*}
a_{z}=-(n-1) s \tag{18}
\end{equation*}
$$

Li.ere a is normal acceleration to the aircraft and 5 is the acceleration of gravity at the earth's eurface, which is assumed to be a constant for the rlight conditions examined.


Figure 3. Relationship of Load Factor and Normal Acceleration

This equation can be reasonably corrected ror large angle of attack and flight path angle and the existence of roll $\phi$ by rotating the acceleration vector to a position normal to the flight path. Figure 3 depicts the difference in orientation of the ioad factor and normal acceleration to the flight path.

In straight and level flight, normal acceleration is 0 , but load factor is 1. Hovever, at a climb angle of 90 degrees, this load factor, while normal acceleration is 0 , becom:s 0 also. The same ia true in a bank of 90 degrees while maintaining a steady course. Normal acceleration is 0 , and load factor is also 0 . This change from normal acceleration to load factor, accounting for large pitch and roll angles can be found by rotating the body normal acceleration to rlight path normal acceleration, $a_{w_{x}}$, in the wind axis system.

$$
\text { So, using the transformation matrix } L_{v b} \text { from body to }
$$ wind Prames:

$$
\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right]_{V}=L_{v b}\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right]_{B}
$$

where:

$$
L_{u b}=\left[\begin{array}{ccc}
\cos \alpha \cos \beta & \sin \beta & \sin \alpha c o s \beta  \tag{20}\\
-\cos \alpha \sin \beta & \cos \beta & -\sin \alpha \sin \beta \\
-\operatorname{in} \alpha & 0 & \cos \alpha
\end{array}\right]
$$

However, it is immediately evident that prior knowledge of angle of attack and sideslip is required for this rotation. As this is only used for a small correction factor to obtain an accurate load factor, $n$, some simple approximations may be used for $\alpha$ and $\beta$. For this case only, sideslip is assumed 0. A no-wind angle of attack can be quickly computed using direct INS data. thile not accurate for estimator purposes, this approximate a can serve very well to correct body axis accelerations to approximate filigh path accelerations for use in equation (19). The equations for quickly obtaining this $\alpha_{c}$ are presented in the next section on No-wind Angle of Attack. Using this $a_{G}$ and assuming zero sides?ip for the tranaformation matrix purposes only, $L_{\text {ws }}$ becomes:

$$
L_{v b}=\left[\begin{array}{ccc}
\cos \alpha_{a} & 0 & \sin \alpha_{a} \\
0 & 1 & 0 \\
-\sin \alpha_{a} & 0 & \cos \alpha_{a}
\end{array}\right]
$$

Then, ueing the tranaformation matrix, normal acceleration in the wind axis system is:

$$
\begin{equation*}
a_{y_{z}}=-\left(\sin a_{0}\right) a_{a_{x}}+\left(\cos a_{0}\right) a_{a_{z}} \tag{22}
\end{equation*}
$$

But normal acceleration in the wind axis may also be written as:

$$
\begin{equation*}
a_{v_{z}}-(\text { component of } c)_{v_{z}}=-\mathrm{m}_{\epsilon} \tag{23}
\end{equation*}
$$

So to find the component of gravity in the $z$ direction in the wind axis, another transformation matrix is used to rotate 5 from the vertical reference frame to the wind axis. It should be noted that wind Euler angles are used in this transformation. Howeyer, for the purposes of this estimate of $n$, body axis Euler angles from the INS will be used. $L_{v}$ is:
$L_{V V}=\left[\begin{array}{llr}\cos \theta \cos \psi & \cos \theta \sin \psi & -\sin \theta \\ \sin \phi \sin \theta \cos \psi & \sin \phi \sin \theta \sin \psi & \sin \phi \cos \theta \\ -\cos \phi \cos \phi \cos \psi & \\ \cos \psi \sin \theta \cos \psi & \cos \phi \sin \theta \sin \psi & \cos \phi \cos \theta \\ +\sin \phi \sin \psi & -\sin \phi \cos \psi & \end{array}\right]$

Heading angle is not a factor in this determination, so it is assumed to be 0. Again, a is asmumed to be small (below 20 degrees) and $\beta$ is assumed to be 0 , so $\sigma_{v} \theta_{v}$ and $\phi_{w} \phi_{v} L_{v V}$ becomes:

$$
L_{k \cdot}=\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
\sin \phi \sin \theta & \cos \phi & \sin \phi \cos \theta \\
\cos \phi \sin \theta & -\sin \phi & \cos \phi \cos \theta
\end{array}\right]
$$

Then the component or $f$ in the $z$ direction in wind axis is:

$$
\begin{equation*}
\varepsilon_{v z}-(\cos \phi \cos \theta)_{s} \tag{26}
\end{equation*}
$$

Substituting equations (22) and (26) into equation (23)
yields the following equation for load factor determination.

$$
\begin{equation*}
\left(\cos a_{G}\right) a_{B z}-\left(\sin a_{0}\right) a_{B_{x}}=-n_{6}+6 \operatorname{cosecos} \phi \tag{27}
\end{equation*}
$$

where $\alpha_{a}$ is the initial angle of attack guess, $\theta$ and $\phi$ are pitch and roll angles.

Solving :or $n$ in terms of body axis accelerations and Euler ancles yields:

$$
\begin{equation*}
n=\frac{-\left(\cos a_{a}\right) a_{B z}+\left(\sin a_{0}\right) a_{B x}}{5}+(\cos \theta)(\cos \phi) \tag{28}
\end{equation*}
$$

This load factor can, derived from INS accelerations and Euler anglem, become an input to the primary estimator equation (16). $\alpha_{6}$, or the approximate angle of attack, is the only value that needs to be calculatod for une in the load factor equation (28). A no-mind ammumption will allov quick computation of this rough guess.

NO-VIND ANGLE OF ATTACK A no-wind angle of attack can be immediately obtained from the INS. All inertial velocities are actually froundspeeds over the jocally flat earth. If we assume for this guess only that wind is negligible as compared to groundspeed, the INS groundspeeds will also be true airspeeds, and an initial $a_{a}$ can be derived from inertial velocities in the $X, Y$, and $Z$ directions.

$$
v_{B x}=(\cos \theta \cos \psi) v_{I N}+(\cos \theta \sin \varphi) v_{I E}-(\sin \theta) v_{I Z}
$$

$$
\begin{aligned}
v_{v y}= & (-\cos \phi \sin \psi+\sin \phi \sin \theta \cos \psi) v_{I N}+ \\
& (\cos \phi \cos \psi+\sin \phi \sin \theta \sin \psi) v_{I E}+ \\
& (\sin \phi \cos \theta) v_{I Z}
\end{aligned}
$$

$$
\begin{aligned}
v_{\mathrm{Ez}}= & (\sin \phi \sin \psi+\cos \phi \sin \theta \cos \psi) v_{I N}+ \\
& (-\sin \phi \cos \psi+\cos \phi \sin \theta \sin \psi) v_{I E}+ \\
& (\cos \phi \cos \theta) v_{I Z}
\end{aligned}
$$

These body velocities can then ie evaluated to find an approximate angle of attack using the body axis relationship:

$$
\begin{equation*}
\alpha_{G}=\arctan \left[\frac{v_{B x}}{v_{B x}}\right] \tag{32}
\end{equation*}
$$

This no-mind guess of angle of attack is then used only to make the small rotational correction on normal acceleration to the load factor.

THREE DIMENSIONAL UINDACE CALCULATION Uith angle of attack recovered from the functional equation (17), airmase velocities of the aircrait can be calculated in north, east and down axes.

$$
\left.\left.\begin{array}{rl}
v_{A N}= & (\cos \psi \cos \theta \cos \alpha \cos \beta+\cos \psi \sin \theta \sin \phi \sin \beta+ \\
& \cos \psi \sin \theta \cos \phi \sin \alpha \cos \beta-\sin \psi \cos \phi \sin \beta+ \\
& \sin \psi \sin \phi \sin \alpha \cos \beta) V \\
v_{A E}= & (\sin \psi \cos \theta \cos \alpha \cos \beta+\sin \psi \sin \theta \sin \phi \sin \beta+ \\
& \sin \psi \sin \theta \cos \phi \sin \alpha \cos \beta+\cos \psi \cos \phi \sin \beta- \\
& \cos \psi \sin \phi \sin \alpha \cos \beta) V
\end{array}\right\} \text { (34) }\right)
$$

airspeed from the CADC.
Assuming sideslip is zero, equations (33), (34), and (35) become:

```
v AN = {cos\psi cose cosa + cos\psi sin0 cos\phi sina +
```

$v_{\text {Ae }}=\langle\sin \psi \cos \theta \cos \alpha+\sin \psi \sin \theta \cos \phi \sin \alpha-$
$\cos \psi \sin \phi \sin \alpha) V$
$v_{A Z}=(-\theta \operatorname{tn} \theta \operatorname{cose} \alpha+\cos \theta \cos \phi \sin \alpha) V$

The INS groundspeeds subtracted from these airmass velocities then give the wind component in each direction.

$$
\begin{align*}
& \mathbf{v}_{\mathbf{W N}}=\mathbf{v}_{A N}-v_{I N}  \tag{39}\\
& \mathbf{v}_{W E}=v_{A E}-v_{I N}  \tag{40}\\
& \mathbf{v}_{W Z}=v_{A Z}-v_{I Z} \tag{41}
\end{align*}
$$

FLOU DIAGrAM The overall components of the inflight es imator would act together to first compute the nomind guess of angle of attack. At this point, all the information necessary for estimation of actual angle of attack would be available from the INS, the CADC, and the model of the current aircraft weight and configuration. a CADC output mould be used te determine the values for the 5 stability derivatives that must be modeled for varying flight conditions. T: angle or attack would then be computed by the estimator. This angle of attack and the INS groundspeeds
could then be used to find a three-dimeissional wind, given the current true airspeed. The flow diagram in figure 4 depicte this action.


Figure 4. Inflight Estimator Flow Diagram

## IV. POST FLIGHT ESTIMATOR THEORY

BASIC EQUATIONS OF MOTION The body axis syetem provides a convenient system for measurement of perturbed angle of attack and sideslip from a trimmed condition. The conventions of this body system are presented in rigure 5.


Figure 5. Body Axis System

In the body axis ystem, the angle of attack can be related by the ratio of vertical velocity, w, to longitudinal velocity, u.


Figure 6. Angle of Attack as a Velocity Ratio

Assuming a perturbation away from the trimmed condition, this ratio takes the form:

$$
\alpha=\arctan \left[\begin{array}{l}
u \\
u
\end{array}\right]
$$

(12)

In order to determine these velocities during maneuvers, perturbation equations of motion can be developed to simulated the interaction of pitch rates and angles on the velocities, $U$ and $U$. Development of dimensional perturation equations of motion can be found in McRuer[2]. Four linearized equations of motion can be derived for use in an angle of attack estimator algorithm. The first of these is the longitudinal velocity perturbaition equation.

where the dimensional derivatives are described in the glosisary of terms. Assuming $x_{i}$ to be small, the $u$ equation
can be written as:

$$
\dot{\hat{u}}=x_{u} \hat{u}+x_{v} \hat{w}+\left(x_{q}-w_{0}\right) \hat{q}-5 \cos \theta_{0}(\hat{\theta})+x_{\delta E} \delta E+x_{\delta T} \delta T
$$

The normal velocity equation is formed in a like manner.

$$
\dot{\hat{v}-z_{i}} \dot{\dot{v}=z_{u}} \hat{u}+z_{v} \hat{v}+\left(z_{Q}+u_{0}\right) \hat{q}-6 \sin \theta_{0}(\hat{\theta})+z_{\delta E} \delta E+z_{\delta T} \delta T \text { (45) }
$$

This can be subsequently reduced to:

$$
\begin{array}{r}
\hat{\hat{w}=\frac{z_{u} \hat{u}}{\left(1-z_{i}\right)}+\frac{z_{v} \hat{w}}{\left(1-z_{i}\right)}+\frac{\left(z_{q}+u_{0}\right) \hat{q}}{\left(1-z_{i}\right)}-\frac{6 \sin \left(\theta_{0}\right) \hat{\theta}}{\left(1-z_{i}\right)}+} \\
\frac{z_{\delta \varepsilon} \delta E}{\left(1-z_{i}\right)}+\frac{z_{\delta \varepsilon} \delta E}{\left(1-z_{i}\right)} \tag{46}
\end{array}
$$

And, in the same manner, pitch acceleration is:

$$
\dot{\hat{q}}=m_{s} \hat{u}+m_{v} \hat{+}+m_{Q} \hat{q}+m_{i} \dot{i}+m_{\delta E} \delta E+m_{\delta T} \delta T \quad \text { (17) }
$$

where $\dot{\text { in }}$ is defined by equation (45). Substituting equation (43) into equation (47) gives:

$$
\begin{aligned}
& \dot{\dot{q}}=\left[m_{u}+\frac{m_{i} z_{u}}{\left(1-z_{i}\right)}\right] \hat{u}+\left[m_{v}+\frac{m_{i} z_{v}}{\left(1-z_{i}\right)}\right] \hat{v}+\left[m_{a}+\frac{m_{i}\left(z_{a}+u_{0}\right)}{\left(1-z_{i}\right)}\right] \hat{q}-
\end{aligned}
$$

5

A fourth equation simply supplies the identity:

$$
\begin{equation*}
\dot{\hat{\theta}}=\hat{q} \tag{49}
\end{equation*}
$$

Equations (44), (46), (48), and (49) can now be compiled into standard state-space matorix notation of:

$$
\dot{\hat{X}}=A \cdot \hat{X}+B \cdot \hat{U}
$$

(50)

Fjiling in the stability derivatives gives the form of the $A$ and $B$ matrices.

Fis
(51)

In an analagous manner to the development of longitudinal perturbation equations, lateral perturbation equations can be defined to estimate sideslip. Beta can be defined also by a ratio of velocities, in this case, lateral velocity to true airspeed.


Figure 7. Sideslip as a Velocity Ratio

This ratio can be expressed by tine following equation:

$$
\beta=\arcsin \left[\frac{v}{v}\right]
$$

(52)

Thus lateral perturbation equations can be resolved to the following four equations:

Assuming that $Y_{V}=0, Y_{p}=0, Y_{r}=0, L_{i}=0$, and that $N_{i}=0$, the above set of lateral equations reduce to:

$$
\begin{aligned}
\dot{v}= & Y_{V} \hat{v}+w_{o} \hat{p}+E \cos \left(\theta_{0}\right) \hat{\phi}-u_{0} \hat{r}+Y_{\delta A} \delta A+Y_{\delta R d} \delta R J \\
& \dot{\hat{p}}-L_{V}^{\prime} \hat{v}+L_{p}^{\prime} \hat{p}+L_{r}^{\prime} \hat{r}+L_{S A}^{\prime} \delta A+L_{\delta R d}^{\prime} \delta R d
\end{aligned}
$$

$$
(58)
$$

$$
\begin{gather*}
\dot{\dot{\phi}}=\hat{p}  \tag{59}\\
\dot{\bar{r}}=N_{V}^{\prime} \dot{V}+N_{p}^{\prime} \hat{p}+N_{r}^{\prime} \hat{r}+N_{\delta A}^{\prime} \delta A+N_{\delta R d}^{\prime} \delta R d \tag{60}
\end{gather*}
$$

$$
\begin{align*}
& \dot{\hat{v}}-Y_{i} \dot{\hat{v}}=Y_{v} \hat{v}+\left(Y_{p}+w_{0}\right) \hat{p}+\left(Y_{r}-u_{0}\right) \hat{r}+5 \cos \left(\theta_{0}\right) \hat{\phi}+ \\
& Y_{\delta A} \delta A+Y_{\delta R d} \delta R d  \tag{53}\\
& \dot{\hat{p}}=L_{V}^{\prime} \hat{v}+L_{p}^{\prime} \hat{p}+L_{r}^{\prime} \hat{r}+L_{i}^{\prime} \dot{v}+L_{\delta A}^{\prime} \delta A+L_{\delta R d}^{\prime} \delta R d  \tag{54}\\
& \dot{\bar{\phi}}=\hat{p}  \tag{55}\\
& \dot{\dot{r}}=N_{V}^{\prime} \bar{V}+N_{p}^{\prime} \bar{p}+N_{r}^{\prime} \dot{r}+N_{\dot{V}}^{\prime} \dot{V}+N_{\delta A}^{\prime} \delta A+N_{\delta R d}^{\prime} \delta R d \tag{56}
\end{align*}
$$

This in matrix notation described by equation (50) is:

These stability derivatives for both longitudinal and lateral $A$ and $B$ matrices can be evaluated for the flight condition of interest. The numeric $A$ and $B$ matrices can then be discretized for use in a discrete Kalman estimator program.

ESTIMATOR THEORY Both state-space models (51) and (61) will apfroximate their respective longitudinal and lateral systems in perturbed motions. Implied in this is the assumption that the systems are linear and excited by small perturbations about. a trim condition. Equation (50) describes a states model completely, provided all.states are available for measurement. This single equation system is:

$$
\begin{equation*}
\dot{\hat{X}}=A \cdot \hat{X}+B \cdot \hat{\mathbf{U}} \tag{50}
\end{equation*}
$$

However, all the states of any given system may not be available for measurement. In this case, the model consistes of 2 equations, with the seconc describing the available meamuremente. This system is formed as:

$$
\begin{align*}
& \dot{\hat{X}}=\mathbf{A} \cdot \hat{\mathbf{X}}+\mathbf{B} \cdot \hat{\mathbf{U}}  \tag{62}\\
& \hat{\mathbf{Z}}=\mathbf{H} \cdot \hat{\mathbf{X}} \tag{63}
\end{align*}
$$

where $\hat{\mathbf{Z}}$ is the measurement vector and $H$ is the matrix of the available measurement components. In both the longitudinal and lateral cases studied here, not all the states are available for measurement. In the longitudinal case, only $\theta$ and $q$ are available from the INS. In the lateral case, the only measurements are $r, \phi$, and $p$. This then dictates the $H$ matrix of available measurement components for use in equation (63).

$$
H_{\text {LONG }}=\left[\begin{array}{llll}
0 & 0 & 1 & 0  \tag{64}\\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
H_{\text {LAT }}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

A second alteration to the basic system equation (30) is the presence of noise in both the modeling procese and the measuring pi icess. The modeling cannot take into account every condition and outside action that may possibly affect the states. Also, the model itwelf may not completely depict the exact action of "a states in response to a epeciried input. This inaccuracy inherent in the model itwelf can be accounted for by adding a process noise. The errors are random, and centered about a zero mean of the actual values. Thus these errors can be represented by a caussian noise
system which will be called $V$. This noise will be derined by a variance, $\sigma_{v}^{2}$, with a mean of 0.0. In additor, the available measurements are also corrupted by noise. This noise is uncorrelated, caussian, with zero mean. This noise $V$ can be described by a variance, $\sigma_{v}^{2}$, analagous to the process noise describe previously. The measurment noise, affecting the measuring device itself, affects the accuracy and consistency of the measurement. Table 1 depicts the accuracies of a USAF mandard INS. The jitter value is added to the accuracy to produce an error range, $T$. It then follows that the variance of the Gausssian approximation, $\alpha^{2}$, is $\frac{1}{12}(2 T)^{2}$ for use in the measurement uncertainty matrix, R.

Table I.
USAF Standard iNS Measurement Accuracies

| SIGNAL | UNIT | ACCURACY | JITTER |
| :---: | :---: | :---: | :---: |
| $\theta$ | rad | .00028 | .0001 |
| $\phi$ | rad | .00028 | .0001 |
| $\mathbf{p}$ | rad/aec | .00075 | .00035 |
| $\mathbf{q}$ | rad/sec | .00075 | .00035 |
| $\mathbf{r}$ | rad/sec | .00075 | .00033 |

[^0]resulting $R$ matrix is:
\[

$$
\begin{align*}
R_{\text {LONG }}=\left[\begin{array}{cc}
4.81 \times 10^{-8} & 0 \\
0 & 4.03 \times 10^{-7}
\end{array}\right]  \tag{66}\\
R_{\text {LAT }}=\left[\begin{array}{ccc}
4.02 \times 10^{-7} & 0 & 0 \\
0 & 4.81 \times 10^{-8} & 0 \\
0 & 0 & 4.03 \times 10^{-7}
\end{array}\right] \tag{67}
\end{align*}
$$
\]

A similar $Q$ matrix contains the uncertainty values for the model itself. These covariances will be the subject of later rilter tuning requirements.

The Kalman estimator makes initial estimates of the states prior to the measurement, and then subsequent estimates after the measurement. These estimates are provided by the initial conditions placed on the states, followed by subsequent values of XP, the Kalman predicted state vector. The full derivation of the Kalman equations can be found in Gelb[12]. The prediction equation takes the form:

$$
X M(K)=A \cdot X P(K-1)+B \cdot U(K-1)
$$

where $X M$ is the state eatimate prior to the measument.
In a likewise manner, the error covariance prior to the measurment can be calculated, using an initial bert estimate of covariance, by: .

$$
\begin{equation*}
P M(K)=A \cdot P P(K-1) \cdot A^{T}+B \cdot Q \cdot B^{T} \tag{69}
\end{equation*}
$$

where PM is the error covariance prior to the measurement and PP is the error covariance after the measurement, at time (K - 1) .

With these emtimates, the Kalman gain, KG, to be applied to the post-measurement error covariances and state estimation can be found. This Kalman gain matrix is calculated from the expression:

$$
\begin{equation*}
K G(K)=P M(K) \cdot H^{T}\left[H \cdot P M(K) \cdot H^{T}+R\right]^{-1} \tag{70}
\end{equation*}
$$

The predicted error covariance, given the next measurement, is calculated as:

$$
P P(K)=[I-K G(K) \cdot H]: M(K-1)
$$

and the corresponding mate estimate is calculated as:

$$
\begin{equation*}
X P(K)=X M(K)+K G(K)[Z(K)-H \cdot X H(K)] \tag{72}
\end{equation*}
$$

Now given a rull state emtimate in both longitudinal and lateral modes, $\alpha$ and $\beta$ are estimated from the perturbation and true velocities by:

$$
\begin{equation*}
\alpha(K)=\arctan \left[\frac{v_{0}+w(K)}{u_{0}+u(K)}\right] \tag{73}
\end{equation*}
$$

$\beta(W)=\operatorname{arcSIN}\left[\frac{v_{0}+v(K)}{V}\right]$

Fhere $\sigma_{0}, u_{0}$, and $v_{0}$ are trim values and $V$ is the CADC calculated true airspeed.

PRGGRAMS DKF AND DKFLAT A discrete Kalman filter program by Gleason [13] was used to perform the above calculations. This program was modified for angle of attack and sideslip determination into two separate, parallel programs, DKF and DKFLAT. A sample listing of DKF is given in appendix A. DKFLAT is identical to DKF with the exception of the sideslip subroutine BETA, which is listed in appendix B. The prograns take true angle of attack and true airspeed, and the discretized A matrix for lateral and longitudinal modes. Step elevator or thrust changes are input for the longitudinai responses in DKF, resulting in a trace of computed angle of attack, and estimated angle of attack using only the two measurements of $\Theta$ and $q$. Step rudder and aileron inputs are inserted to DKFLAT, resulting in a trace of computed $\beta$ and the estimated $\beta$ using the three meazurements of $r, \phi$, and $p$.

FILTER TUNING The 0 matrix can now be modified to provide the proper degree of uncertainty to the model. A good starting point for $Q$ seems to be the same uncerta.' thy values as in R. At this point, a covariance analysis can be performed to match computed root mean squared (PMS) error to the true RMS of the syatem. This will provide the optimal estimator for use with actual flight test data.

The true RMS is the difference between the filter estimate and the true value of the systeim. The difference between the two quantities is due to the weighting given to the measurements as opposed to the model,
judged by model formulation and sensor capability. These weightings can be varied through choice of $R$ and $Q$ matrices, based on known measurement errors and modeling


161

(4)

Figure 8. Covariance Analyeis for Kalman Filter Tuning
inadequacies. $R$ is fixed by the physical conetrainta of the given INS accuracies and jitters. Q can be adjusted, though, until approximate RMS equality is obtained. Figure Ba mowe the remult of low moanurement weighting, while 8 b depicta too
much weighting on the actual measurement. Figure Bc depicta, therefore, a tuned Kalman estimator, with correct weightings applied to the measurement versus the model. The true RMS is approximately equai to the computed RMS in this tuned case. At this point, the Kalmon estimator is ready for test runs to verify its operation.

## V. ESTIMATOR VALIDATION

VALIDATION OBJECTIVE The basic objective of the estimator validation phase is to ensure that both estimators have been formulated correctly, with a minimum error under known, static conditions. The aerodynamic data available will allow a study of the effects of assumptions and neglected higher order terms on the overall accuracy of both estimator systems, in the absence of noise and jitter associated with actual systems. A comparison of the estimated angle of attack and sideslip to actual alpha and beta is the overall goal of the validation. Once both algorithas have been verified, a simulation will be accomplished to determine the estimator characteristics in a dynamic environment, close to actual flight conditions. The simulator-derived angle of attack and sideslip can also be compared to estimated values to study the impact of neglected dynamic erfects.

## INFLIGHT ESTIMATOR VALIDATION Six inflight points were used

 to verify the ability of the inflight estimator to recover a and $\beta$ under stable rlicht conditions. NT-33A data from the National Aeronautics and Space Administration (NASA) contained in a handling qualities report [15] was the reference data for this phase of the validation.The NT-33A aircraft is a prugrammable, variab:e stability aircraft modified from a basic T-33 jet trainer. This two-place aircrart is capable of a wide pange of flight conditions, and a sreat deal of aerodynamic data has been recorded for use in studies or this type.

In a clean aircraft configuration with a nowinal flight contiol syotew, 6 data points were established, as shown in

Table II, to relate $\alpha$, altitude, Mach, and angle of attack.

Table II. Static Inflight Angle of Attack Test Points NT-33A Aircraft

| DATA POINT | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{2} \rho V^{2}$ (PBi) | 247 | 819 | 62.7 | 222 | 440 | 129 |
| $C_{\text {L }}$ | .2539 | .0891 | .9477 | .2805 | .1504 | .4698 |
| MACH | .4 | .7 | .3 | .55 | .75 | .65 |
| ALTITUDE(FT) | 0 | 0 | $20 k$ | $20 k$ | $20 k$ | $40 k$ |
| $a_{\text {TRUE }}$ (RADS) | .016 | -.016 | .164 | .014 | -.005 | .043 |

A multiple linear regression analysis for 2 independent variables was performed to shom angle of attack as a function of $C_{L_{w D}}$ and Mach. The altitude variance was not sufficient to provide a good correlation for its incorporation into the regression formula. This analysis was accomplished by a least squares method using the HP-41C hand computer. The regression for the NT-33A in clean configuration provided the following formula:

$$
\begin{equation*}
a(R A D)=-.02+.2\left(C_{L_{W B}}\right)-.03(M) \tag{75}
\end{equation*}
$$

For each of the 6 flight pointe, the $C_{L_{w B}}$ required for flight was found through the primary estimator equation (16). In straight and level flight for each of the points, the load factor is 1, by definition, with no pitch, roll or yaw rates or accelerations. Equation (16) then reduces to:

$$
\begin{equation*}
C_{L_{W B}}=\frac{W X_{T}-C_{m o}\left(\frac{1}{2} \rho V^{2}\right) S \bar{c}}{\left(\frac{1}{2} \rho V^{2}\right) S X_{T}\left[1+\frac{X_{W B}}{X_{T}}\right]} \tag{76}
\end{equation*}
$$

The $C_{L_{w s}}$ required for straight and level flight is calculated by this equation. This is then inpul to the regression Cormula (75) vith the sinulated CADC input or Mach and true airspeed. Estimated ancie of attack can then be calculated. A comparison of these estimated angles of attack to the documented angles of attack was then performed.

> Table III. Static Inflighe Estimator Validation NT-33A Aircraft

| DATA POINT | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a_{\text {TRUE }}$ (DEG) | .899 | -.899 | 9.402 | .802 | -.295 | 2.498 |
| $a_{\text {EST }}^{\text {(DEG) }}$ | 1.08 | -1.328 | 9.198 | 1.123 | -.712 | 3.120 |
| AERROR <br> (DEG) | .176 | -.429 | -.204 | .321 | .414 | .622 |

Table III depicts the errir in the estimation from documented values. With just 6 data points, the averace error over the flight range is .15 degrees with a maximum error of .622 degrees at flight condition 6 . However, this rlight condition is the only data point at $\mathbf{4 0 , 0 0 0}$ reet. resulting in Eignificant least aquare error in the recression analyais, even vith altitude not an explicit parameter in equation (76). Throwing out that data point reaulte in an average angle of attack error of 0.0557 degrees over the remaining range of
flight data points. This regression formula is valid over the linear portion of the lift curve. It can be extended to the stall region depending on the extent of the non-linear lift region. A rapidly stalling wing-body combination could be modeled accurately to $a_{s t a t}$, while a flat stall region would induce angle of attack errors over the entire range of the lift curve.

COMPUTER TES: PROGRAMS Two independent methods mere used to verify actual angle of attack and sideslip prior to examination of the Kalman rilter operation in the post-riight estimator. These prograns, called LONG and LAT, represent a decoupled system for modeling the longitudinal and lateral modes of response. Input into LAT and LONG consists of flight condition, control inputs, initial conditions and stability derivatives of the body axis system. Then program then forms the continuous $A$ and $B$ matrices in body axis and outputs the amsociated eigenvalues and eigenvectors for verification with actual aircraft data. Forced system response to step inputs are calculated using a Taylor aeries expansion to second order, with output frequency of 30 samples per second on angle of attack and sideslip. At this point, the continuous $A$ and $B$ matrices can be discretized and input into the discrete Kalman filter programs, DKF and DKFLAT, representing the longitudinal and lateral estimators, respectively. Using the same step control inputs as in LAT and LONG, the $\alpha$ and $\beta$ response is calculated through the transition matrix method. These responses can then be compared, and if formulated corectily, should agree to an extremely close degree. For a .5 degree atep elevator input, the correlation is excellent, as shown in figure 9.

Now, DKF and DKFLAT can be used to verify the ability of


Figure 9. Comparison of LONG and DKF Derived Angle of Attack
a Kalman estimator to recover accurate angle of attack and sideslip with less than full state, noise-corrupted measurement. Initially, computer generated white noise was modified to a intensity equal to the expected error in the INS measurement signals. This Gaussian noise was then added to the exact state outputs, and these states becawe noise corrupted measurements of the modeled maneuver for which predicted $\alpha$ and $\beta$ traces were calculated. The Kalman rilter then operates on the available state measurements, estimating the remaining states, based on aircraft model accuracy and measurement uncertainty, as discussed in chapter IV. Angle of attack and sideslip were then calculated from the states and estimated states. When predicted $\alpha$ and $\beta$ are plotted versus Kalman estimated $\alpha$ and $\beta$, the ability of the Kalman rilter to recover these parameters becomes evident and quantifiable.

POST-FLIGHT VALIDATION TEST RUNS The post-flight estimator uses perturbations from trim values to calculate $a$ and $\beta$. As such, a single trin flight condition was used as a baseline data point. This condition was flight condition 6 or Table II, using the NT-33A aircraft data.

Table IV. Post-Flight Validation Test Points

| DATA POINT | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| INPUT | $.5^{\circ}$ ELEV | $2^{\circ}$ ELEV | $.5^{\circ} \mathrm{RUD}$ | $2^{\circ}{ }^{\text {RUD }}$ | $2^{\circ}$ AIL |

The runs produced a set of six figures (Figure 10 through figure 15$)$ depicting the modeled reaponse versus the


Figure 10. Angle of Attack Recovery using INS Covariance Model

Kalinan predicted response.

RESULTS OF VALIDATON RUN Initial validations runs were made With the JNS measurement error covariance model established in Chapter IV. These covariances were input into DKF and DKFLAT $Q$ and $R$ matrices to determine the ability of the Kalman estimator to recover angles of sideslip and attack with noisy INS measurements. For these initial test runs, $Q$ and $R$ were assumed to be the same, reflecting similar measurement and process noises. However, the accuracy of the INS, as judged by the covariances that were calculated, provided an interesting result. The Kalman filter, with a 2 degree step elevator input, calculated the exact angle of attack as the model, within the range of the noise. Figure 10 depicts this result, showing the estimated angle of attack superimposed on the modeled angle of attack. The two are identical traces, with imperceptible error. This is hardly surprising, considering the magnitude of the measurement covariance values calculated in the Post-Flight Theory chapter. The noise in measurement is extremely small. These valles were on the order of $10^{-6}$ radians for Euler angles and $10^{-7}$ radians/second for the rates. This leads to the conclusion that indeed angle of attack and sideslip can be accuately estimated with less than full state measurement. properly tuned Kalman estimator can make up for less than full-state, noise-corrupted measurement, and in turn allow for accurate estimates of $\alpha$ and $\beta$, with an equivalently accurate INS.

However, a morst case analysis should also be done to allaw for unknown errors and noises in the system or model. This was also accomplished, using the raw accuracy and jitter values as inputs to the covariance matrices for model and measurement. The results depict an accurate system as well,


Figure 11. Angle of Attack Recovery (. 5 degree Elevator)


Figure 12. Angle of Attack Recovery (2 degree Elevator)


Figure 13. Sideslip Recovery (. 5 degree Rudder)


Figure 14. Sides1:p Recovery (2 degree Rudder)


Figure 15. Sideslip Recovery (2 degree Aileron)
though these covariances are 3 orders of magnitude
less accurate than the calculated covartances. Figures 11 through 15 depict these worst case runs. The overall accuracy of the estimations is at the worst, .5 degrees in the longitudinal responses, and .4 degrees in the lateral modes. With less accurate measurements, as this scenario implies, tuning the Kalman filter becomes vastly more important. As these measurements mere made from a model, there was no opportunity to actually tune, other than to make a good initial guess of model accuracy. This best guess mas the input of measurement covariances into the model covariance matrix. While this is a good starting point for covariance analysis of a physical system [11], a real world system must be examined to tune the filter accurately. However, without such tuning, both modes of the filter are estimating the respective angles of attack and sideslip to about $1 / 2$ degree. A best guess of the true real life performance of the post-flight estimator probably lies somewhere between the caluclated INS covariance analysis and the grose input of INS accuracy values. This is the area that must be examined through flight test with actual ring laser gyro equipment.

TEST PHILOSOPHY The purpose of the flight test is to ensure proper operation of the inflight angle of attack routine using actual flight data. This flight data collection is critical to ensure operation with noise-corrupted input data. The noisy nature of the actual INS measurements, coupled with possible unknown or assumed effects, will test the ability of the algorithm to recover the necessary data, and perform proper computations to calculate angle of attack. Unlike simulated data, however, no true angle of attack is known. Measured angle of attack from calibrated vanes, normal aircraft instrumentation, and computer modeled performance will be corralated against the INS derived a. This information will provide an acceptable measure of the accuracy of the INS derived values acaint the more conventional approaches in obtaining $a$.

The initial rlight test consisted of low performance longitudinal maneuvering flight data tape anlysis only. The reason for this is two-fold. First, it will demonstrate the applicability of these methods for a determination in large, transport type aircraft. As these aircraft do not engage in high-s maneuvering or extreme plight attitudes, the basic assumptions should hold throughout the nominal rlight regime. The applicability of these determination techniques will be demonstrated for large aircrart in both the inflight and rlicht test analysis phases. Secondly, nominal inflicht accuracy should give an indication of the proper formulation of the estimator. The absence of high-s, coupled flight conditions allows a straight formard evaluation of the
estimator. The robustness of the estimator in maneuvering flight will be discussed in Chapter VII. This flight test was conducted in cooperation with NASA and in conjuction with a NASA propulsion test flight.

TEST AIRCRAFT Initial flight test was accomplished using a NASA F-15A aircrart manufactured by the McDonnell Douglas Corporation. This aircraft, $S / N$ 10281, is an $F-15 A$ air-superiority fighter modified for digital engine and control testing. It is a single seat aircraft powered by two Pratt and Whitney F-100 engines. Flight controls consist of twin vertical stabilizers mounting a single rudder on each. Lateral control is effected by ailerons on the outboard wing surfaces, aided by split stabilators, with pitch controlled by symmetrical stabilator action. The specific aircraft is shown inflight in Figure 16. For further information on the basic aircraft, consult T.O. 1F-15A-1 [17]. The basic aircraft layout and critical dimensions are depicted in Appendix E.

INSTRUMENTATION The NASA F-15A Highly Integrated Digital Engine Control (HIDEC) was instrumented with a calibrated yaw-angle of attack-pitot-static (YAPS) head. This vane provided the baseline $\alpha$ information that the inflight estimator was evaluated againgt. In addition, the flight test boom also provided pitot pressure for calculation of true airspeed within the central air data computer (CADC). This aircraft was also configured with production angle of attack probes which were used as a secondary comparison of the angle of attack estimator. The external instrumentation of the F-15A HIDEC is depicted in Figure 17.

The aircraft was ritted with a USAF gtandard inertial navigation system. This system, a Litton Systems, Inc.


ASN-109 inertial navigation set, is a fully self-contained dead reckoning navigation system. It continuously computes aircraft position by double integration from a known starting point. Aircrart ground speed and attitude are interim computations prior to position computation. This INS consists of three major cuwponents. The first is the actual inertial measuring unit (IMJ) which houses the gyros and acceleroneters to sense aircraft motion. The second is the IMU mount which provides precisicn mounting and alignment of the system to the aircraft body axis. The third component is the navigation control indicator which interfaces the INS to the central computer of the aincraft and also allows pilot control of the functions of the system. The INS was fully instrumented and a list of signals available is contained in Appendix F.

Weight was available through production fuel sensors on board the aircraft which measure ruel remaining in each tank to an accuracy of 200 lbs. The weight of the aircraft could then be easily calculated, knowing basic aircrart veight, serviced fluid weight, stores weight, and the changing ruel weight.

Mach number and altitude signals were obtained rrom the Sperry AN/ASK-6 air data computer, along mith true airspeed. Air density was calculated through the standard exponential atmosphere equation for input into the primary estimator equation. Overall, no signals were used which would not be obtainable through current, INS-equipped production aircrart instrumentation.

All required stability derivatives were modeled from flight test data obtained in USAF technical reports. $C_{L}$, $C_{m_{0}}$, center of gravity motion and all momentes of inertia data
plots are included in Appendix G. In addition, all computer-derived models are also included for comparison purposes in the same appendix.

DATA REDUCTION All inflight data was reduced using the NASA ELEXI computer system. Aircraft data telemetry was retrieved from the computer for the specific maneuvers required. This data consisted of time tagged values for all signals specified in the estimator flow chart. The basic est,imator program, as implemented in FORTRAN 77, was altered to allow use in the time tagged, sequential mode of operation on the ELEXI system. This consideration was important in that the inflight estimator was designed for real time operation, and the ELEXI provided that capability in reducing flight data. Once the data was calculated sequentially, the resulta were plotted and compared to YAPS boom a at the same time tag. FORTRAN coding of the inflight a estimator for use on the ELEXI is included in Appendix $H$.

TEST METHODS AND CONDITIONS The optimum rlight test technique for stable longitudinal flight at varying angle of attack was determined to be the level acceleration. In general, the aircraft was stabilized on conditions in the slow speed regime with engines at the planned military or maximum power settings. This procedure required a climbing entry to the test point. The aircraft was then allowed to accelerate to its maximum speed while maintaining constant altitude and one-s Plight. This required a constant reduction in angle of attack throughout the level acceleration maneuver.

Three level acceleration test points were planned to evaluate estimator angle of attack. Additionally, Mach and
altitude effects were investigated using military and maximum accelerations at three different altitudes. Level acceleration test points are summarized in Table V.

TABLE V.
LEVEL ACCELERATION EVALUATION

| TEST POINT | ALTITUDE | PONER | MACH BAND |
| :---: | :---: | :---: | :---: |
| 1 | 20,000 | MIL | $0.5-0.9$ |
| 2 | 10,000 | MIL | $0.4-0.9$ |
| 3 | 10,000 | MAX | $0.3-1.3$ |

The next, logical step in the buildup process to evaluate the inflight a estimator is to introduce abruptnese into the estimation process, while still restricting maneuvers to the longitudinal modes within the plane of gravity. The wings-level, constant 6 pitch-up rlight test technique was considered the optimum for this phase of the flight test. This technique required the aircraft to be stabilized at a constant aim altitude and Mach number. The aircraft was abruptly pitched to a series or positive and negative constant 5 values, much like a roller coaster. This technique was accomplished within a standard 2,000 foot data band. Three test points were evaluated during this phase and are summarized in Table VI.

The final stage of the quantitative flight teat evaluation of the angle of attack estimator is examination of out-of-plane maneuvers. The purpose of this phase of testing is to remove the gravity vector from the longitudinal plane

TABLE VI.
ABRUPT PITCH EVALUATION

| TEST POINT | ALTITUDE | MACH | AIM LOAD FACTOR |
| :---: | :---: | :---: | :---: |
| 4 | 40,000 | 0.7 | +3.0 |
| 5 | 40,000 | 0.7 | -0.5 |
| 6 | 40,000 | 0.7 | -1.0 |

of the aircraft and judge the effect of load factor and banked flight of the estimator. The wind-up turn was judged to be the best rlight test technique for this flight test coal. In this maneuver, the aircraft is trimmed at a given Mach , and altitude. The aircraft is then steadily banked into a constant Mach turn while slowly increasing load factor to the desired end point. This maneuver takes place within a 2000 root data band, as descent is required to maintain constant Mach at a trim power setting. Two test points were identified for examination of the effect of $s$ and bank angle on the estimator. The wind-up turn test points are defined in Table VII.

TABLE VII.
WIND-UP TURN EVALUATION

| TEST POINT | ALTITUDE | MACH | AIM LOAD FACTOR |
| :---: | :---: | :---: | :---: |
| 7 | 20,000 | 0.9 | +3.0 |
| 8 | 20,000 | 0.9 | +5.0 |

The results of the military power level acceleration in test point 1 are depicted in Figure 18. This acceleration was from 0.5 to 0.9 Mach at 20,000 rT. The data is presented as two angle of attack traces. The first is AINF, or alpha infinity, as derived from the YAPS boom. The second is AVB, or alpha wing-body, representing the output of the inflight a estimator based on equation (17). Also accompanying the a traces are Mach and altitude data throughout the maneuver. This data will accompany all level acceleration data traces examined in this section.

There are two areas of interest in Figure 18. The most obvious is the initial portions of the a data traces, where an approximately 1.3 degree noise in estimator angle of attack is apparent. The actual level acceleration maneuver does not begin until 17 seconds into the data trace. This initial, high angle of attack regime is the climb into the maneuver at slow flight. This slow flight is characterized by thrust set at test power, in this case military setting. The result is slow, climbing flight in moderate burfet, with some internal vibration present. The difference between $a$ sources is reasonably constant during this entry into the acceleration. Initial skepticism of the estimator would sive more credence to the YAPS boom a than the estimator. It should be realized that there is no absolute source or angle of attack in this test. However, the a eatimator mould be susceptible to airframe burfet and vibration, cluttering the normal load ractor signal at these low speed conditions. It is of note, though, that the a estimator does follow the peaks of the YAPS boom a exactly, remaining ithin 1.5 degrees until the initiation of the pushover at the beginning of the level acceleration, occurring at 15 seconds


Figure 18. Test Point 1 Level Acceleration Results
into the trace. The YAPS boom appears to be the the most accurate source during this slow rlight phase.

Once the level acceleration has begun, the two angles of attack remain within 0.5 degrees of each other throughout the rest of the maneuver. For the first half of the acceleration, the inflight a estimator is below the YAPS boom $\alpha$. At 0.82 Mach, the traces coincide, with estimated $\alpha$ becomine larger than boom a for the remainder of the trace. They do stay generally within 0.5 degrees during this exchange. Overall, the two angle of attack traces coincide well, with the exception of the entry into the maneuver, during slow flight in moderate buffet.

Figure 19 depicts the results of a military power level acceleration to 0.9 Mach at 10,000 FT. Spikes in this, and subsequent figures indicate data dzopout. Again, the same two phases of the level acceleration are notable in this figure. During the slow flight entry into the acceleration, angle of attack traces differ by approximately 2 degrees. The inflight a estimator follows the peaks of the YAPS boom $\alpha$ exactly, but the true a is difficult to ascertain for this flight regime. However, once the manuever begins at 20 seconds into the data trace, the angles of attack coincide well, again within 0.5 degrees. This is the attempted spectfication to which the estimator was designed to meet. Again, the croasover of a traces occurs in the 0.8 Mach regime, as was noted in the previous level acceleration. This crossover can most likely be attributed to the regression of the lift curve. Recall that a was derined as a Punction or Mach and $C_{L}$. At 0.82 Mach, the regreseion appears almost exact, while at other points, there is some deviation from the exact lift curve. It is important to note at this point also that no divergence occurs as the higher

subsonic Mach numbers are approached, indicating a reasonably gord fit of Mach number in the high subsonic regime.

The maximum power level acceleration to Mach 1.5 in test point 3 also showed good estitmator correlation to YAPS boom angle of attack in the subsonic regime. Estimator tracking can be seen in Figure 20 , including Mach and altitude traces. Pitch maneuvers tracked well through almost 17 degrees boom angle of attack. Again, the aircraft is in slow flight, accompanied by moderate buffet, wile performing the climbing entry to the level acceleration. This is the most likely cause of noisy normal accelerometer output ai the high angles of attack. Throughout the remainder of the subsonic portion of the manuever, both a traces correspond nicely, even during some large angle of attack excursions. A point of note occurs at the jump to supersonic flight at 118 seconds into the trace. At this point, the traces begin to divoree at a rate proportional to the Mach number. The inflight $\alpha$ estimator was not modeled fur supersonic rlight and this could be the simple cause. However, the traces tend to coincide in terms of deviations from a steady condition. In other words, a 0.5 degree jump in YAPS boom angle or attack is matched at the identical time segment by a 0.5 degree jump in estimator angle of attack. This again Indicates proper formulation of the estimator, but any YAPS boom supersonic errors present make it impossible to quantify estimator errors due to lack of supersonic modeling. In addition, the closeness of the traces indicate at this point that altitude has little to no erfect on the are model. Recall that the approximation was made to eliminate altitude From the model. Initial rlight test shows that this was an acceptable approximat!on of the true model.


Figure 20. Maximum Power Level Acceleration Results

Figure 21 depicts the results of the abrupt pitch evaluation. The upper graph shows estimator Yaps angle of attack correlation, while the lower graph shows corresponding normal load ractor. This figure includes all abrupt pitch test points. Of immediate note is the closeness with which estimator a follown boom a below approximately 16 degrees ancle of attack. Negative $f$ excursions match almost identically. The lack of high angle of attack modeling is the cause of the deviation at the peak of the high 8 points, as was noticed in the initial portions of the level accel.erations. However, the close correlation of the separate angle of attack sources through rapid changes in angle of attack and load factor do support the basic concept of this form of a estimator. It can indeed accurately recover angle of attack with at least 0.5 degrees of precision in upright, purely longitudinal motion.

The wind up turn evaluation did uncover some angle or attack deviations in the estimator. Figure 22 depicts the 3 6 wind up turn results, along with normal load factor achieved in the maneuver. In this figure, there is some definite deviation during the sustained, high 5 portion of the maneuver. Although the traces match in terms of peak locations, they differ by almost a degree at the sustained 6 paint. Although the YAPS boom a does not provide an absolute, true $a$, it should be the weighted preference. However, the boom a does show almost 0.5 degrees worth of noise in its signal, while the estimator is slighly smoother. The same resuit is true with the 5 s wind un turn presented in Figure 23. YAPS boom angle of attack is consistently lower than estimator a at the higher sustained $s$ plateau, although its signal is much cleaner than the preceeding graph. Afain, the peaks of each source match well, with no


Figure 21. Abrupt Pitch Maneuver Remults

lag noticable in the estimator. The lift curve used as the model was not corrected for load factor, and was a trimmed lift curve. This could account for the deviations at the sustained higher load factors, and indicate a requirement for a closer wing-body model of angle of attack. Another possibility is error in out of plane load ractor calculation. This could be the result of actual accelerometer output as opposed to theoretical accelerations about the center of sravity. The result is an alteration in equation (28) to replace the cosocosp term oith 1.0 as these angles are accounted for due to normal accelerometer bias of 1 6 . This bias is included in all normal accelerometers to take into account the gravitational pull of the earth. In straight and level, unaccelerated flight, the normal accelerometer reads $0.0 \mathrm{ft} / \mathrm{sec}^{2}$ acceleration of the aircraft center of gravity. However, the aircraft is indeed under $32.2 \mathrm{rt} / \mathrm{sec}^{2}$ or 16 acceleration due to the earth's pull.

Overall, the $a$ estimator correlated to the YAPS boom a well. Under most conditions, the results were within the specified 0.5 degree deviation. there the deviations were greater than that value, the estimator errors were explainable and indicate a need to rorm a more precise $C_{L_{m s}}$ model than a linear regression on two independent variables as was accomplished for this research. A full, maneuvering flight demonstration will indicate the degree to which the current model and equations are adequate for high 6 , rolling rlight out of the longitudinal plane of motion.

## VII. MANEUVERING FLIGHT DEMONSTRATION

PURPOSE The robustness of the inflight estimator is evaluated in this phase of the flight test through a series of highly dynamic maneuvers in varying planes. The overall goal is to highlight weaknesses in the inflight estimator and examine regimes of flight where the estimator assumptions, as currently proposed, break down. The most likely area of trouble was determined to be out-of-plane, or three-dimensional, fighter maneuvering of the type expected in basic air-to-air or air-to-ground combat. This is therefore the emphasis during the robustness check of the inflight a estimator.

SCOPE The purpose of this portion of the rlight test was demonstration only. The attempt was made to devise a single flight test technique to quickly and efficiently demonstrate any possible area of weakness in the angle of attack estimator. In other words, this portion of the investigation was to highlight areas to troubleshoot the estimator algorithm or to point where future investigations should be directed.

MANEUVER The robustness check was only accomplished at one flight condition due to constrained flight test time. The maneuver that was developed was therefore a dynamic one encompassing all expected problem areas such ass loaded rolls and longitudinal pulls out of the local horizontal plane. The modified split-S maneuver was performed in conjunction with a NASA propulsion test. The actual NASA flight test card is included in Appendix I.

The overall robustness maneuver can be divided into four
distinct segments. Initially, the aircraft is flown in a true north heading. Once established on conditions, a 30 degree banked. climbing turn at 2 's is begun. This is indeed a climbing turn, as a level 30 degree turn requires only 1.2 6's. Upon stabilization in this turn, the pilot then rolls inverted in the same direction as rolling into the 28 turn initially. At this point, the pilot then begins a sustained 46 pull in a split-S maneuver, recovering in an upright, wings level attitude. The robugtness maneuver thus evaluates a climbing, loaded turn, a pure roll out of the local horizontal plane, and a loaded pull with the gravity vector constantly moving throughout the aircraft axis system. The robustness test points are summarized in Table VIII.

TABLE VIII.
ROBUSTNESS EVALUATION

| TEST POINT | ALTITUDE | MACH | ROLL DIRECTION |
| :---: | :---: | :---: | :---: |
| 9 | 20,000 | 0.7 | RIGHT |
| 10 | 20,000 | 0.7 | LEFT |

RESULTS AND ANALYSIS The results of the rirst robustness maneuver are depicted in Figure 24. Pitch, roll and yap rates are presented with the estimator and YAPS boom $\alpha$ traces. The initial roll into the maneuver begins at 2 seconds into the trace. The initial difference between the higher estimator trace and the YAPS boom trace is approximately 0.7 degrees. As with the loaded rolls


Figure 24. Robustness Maneuver \#1
presented in the Vind Up Turn test, the dirference between traces remains reasonably constant. However, as the roll to inverted attitude begins at 13 seconds into the trace, the curves come to within 0.2 degrees. The 46 split-s shows very close correlation, through recovery at 38 seconds. or nole during this phase of the maneuver is the noise vithin the $\alpha$ estimator signal. While no more than approximately 0.8 degrees, it disrupts an otherwise close match under sustained 6, inverted flight. The second robustness maneuver, depicted in Figure 25, shows almost the exact same results for the opposite direction maneuver, although the loaded turn portion is more distinct in this plot. Lack of a defirite bias during either direct,ion of the maneuver indicales that sign conventions in the moment correction equations are correct. The split-S maneuver in the second plot also shows YAPS boom oscillations of up to 1.5 degrees, while the estimator is smooth in relation. Again, the matching is excellent during the recovery phase at 42 seconds. In seneral, the only deficient area or the inflight estimator as tested is the bias noticed under sustained luad factor. Note that this situation did not occur with abrupt pitch maneuvers. This deficiency, on the order sí 0.3 degrees per 5 always occurs to the high side. Again, a trimmed lift curve at 16 was used as the model. A higher order model of $\alpha$ as a function of $C_{L_{W B}}$, altitude, iach and load factor may provide the key. However, ccrrelation during t.hese extreme maneuvers was quite acceptable, coneidering the multiple changes in plane and velocity vector during 40 seconds of robustness evaluations. The maximum difference was 2 degrees as observed in the Vind Up Turn test, and thiss occurred under approximately 5.5 6's. In addition, it is important to note that when in error under 6 , the a estimator


Figuire 25. Robustness Maneuver *2
was almays higher than YAPS boom angles of attack.

GENERAL COMMENTS The ability to sit in the NASA control room while the flight was in progress provided a unique opportunity to view the a estimator performance during all phases of flight. While it is difficult to quantify all comments, certain qualitative observations can be made from personal engineering notes taken during the flight.

As indicated in tie Flight Test chapter, supersonic effects were evident. In general, at subsonic speeds during straight and level Plight, the $a$ estimator was well within the specified 0.5 degree tolerance as compared against the YAPS boom. At 0.72 Mach , the estimator was within 0.3 degrees of the noseboom. At 0.8 Mach , the estimator tracked very well at 0.1 degrees off. And rinally at 0.95 Mach, the estimator was within 0.4 degrees of the YAPS boow. At supersonic speeds, the estimator jumped to 0.8 degrees lower than YAPS values. Again, this larger difference can be attributed to the purely subsonic modeling of the lift curve and pitching moment of the F-15A. However, the consistency of the low estimator values indicates that the inflight. estimator requires some "tuning" to better approximate the F-15A aerodynamics.

Two secondary aerodynamic effects were observed which deserve note. At subsonic speeds, with good estimator correlation to YAPS values of $\alpha$ (within. 2 degrees), extension of the massive F-15A speedbrake caused an immediate Jump to 0.5 degrees difference between a sources. Two possible explanations are readily apparent. First, the large speedbrake alters the aerodynamic characteristics of the Wing, invalidating the $a_{\text {w }}$ model developed for clean configurations only. The second aerodynamic effect was a 1.2
degree estimator to YAPS boom difference during air to air refueling at 320 knots indicated airspeed. The effect here seems to be caused by tanker wake effects on the F-15A local airflow, impacting both the YAPS noseboom and the local aerodynamics as modeled by the $a$ estimator.

Overall, the inflight a estimator performance was acceptable as qualitatively evaluated during this flight and measured against YAPS boom values.

CENERAL In broad terms, the objectives of this thesis were met and the concept or angle of attack and sideslip estimators using standard inertial reference platforms is highly feasible. Of the two estimator variations, the inflight a estimator was the most extensively tested, and the most widely applicable. It served to demonstrate that the concept of an angle of attack estimator which is accurate to 0.5 degrees is not only possible, but available for real time inflight use, witin current generation mechanical inertial navigation systems. Specific conclusions and recommendations, as organized by thesis objective, rollow:

Objective 1. The linear recursive estimator lends itself
well to use as an angle of attack and sideslip estimator. With less than full state measurements, the estimators can easily determine a theoretical value ror that missing state, in this case $\alpha$ or $\beta$. Developement of the model was quite straightforward and required no extensive mathematics other than formulation and discretization of the $A$ and $B$ matrices. Accuracy achieved by this system is dirficult to measure. Using the noise corrupted computer model, a 0.25 degree accuracy was easy to achieve with ring laser syro accuractes and variations as a model. However, these values were only a first guess for the actual measurement covariance matrix. In addition, model uncertainties were likewise only first guesses. However, the system can be tuned with a computer to provide extraordinary accuracies. Currently, the system as designed is accurate for determining highly accurate perturbed angles of attack and sideslip from known trimmed conditions. The system should be expanded to incorporate


#### Abstract

estimation of the aerodynamic angles throughout the flight regime and independent of trimmed conditions. R-1 DIRECT FUTURE STUDY OF $\alpha$ AND $\beta$ LINEAR PFCURSIVE ESTIMATORS TO ELIMINATE THE REQUIREMENT FOR KNOWN TRIMMED FiIGHT.


Objective 2. Both angle of attack and sideslip algorithms could easily be validated by computer simulation. Indeed, the computer simulation used by Gleason and modified for this effort was of tremendous value. Given discrete $A$ and $B$ matrices, a full state simulation could be run simultaneousiy With a noise corrupted simulation of less than full state. The degree of noise could be adjusted as required to closely model the actual lateral and longitudinal systems. The ability of the modeled system to recover $\alpha$ and $\beta$ was then successfully demonstrated. Again, this computer simulation was restricted to small perturbations about a trimmed condition. In addition, the solution was limited to only one rlight condition without extensive modeling of 27 different parameters. This is a tremendous limitation to its use in the inflight case ithout extensive airborne computational power.

Objective 3. An inflight angle of attack estimator was successfully developed for use. It is of note that the self imposed requirement for minimum calulations, and hence maximum computational speed, did not restrict the accuracy of the estimator as tested. Another goal under this objective was also reached. All signals used in the inflight a estimator were from standard INS or onboard data sensors carried by almost all operations military aircraft. In other words, apart from the data telemetry systems, no special
flight test inst,rumentation was required fcr this estimator. In addition, merhanical INS platforms were used, allowing incorporation $0::$ this estimator in current generation aircraft as the need arises. Accuracy of the system was highly dependent on the modeling of the stability derivatives. The three moments of inertia proved to be secondary effects, not requiring extensive mathematical models. However, $C_{m_{0}}$ was a critical factor and was used specifically to tune the system to YAPS boom angle of attacis at the beginning of flight test data evaluation. This step in the test process points to an area of limitation. An aircraft still must undergo some flight testing with a YAPS boom prior to using an a estimator. The computer program must be "calibrated" to the aircraft. at least in the initial flight test stages, as the a estimator requires historical data to model the lifting system. It is then obvious that the most critical model must be the lift curve, with a as function of Mach number and altitude. The most signiricant limitations of the estimator ass formulated for this research was the lack of high a modeling and the lack of a supersonic capability. This limitation was based solely on regression alcorithms available to formulate this estimator version. A more powerful regression tool would allow incorporation of rlight regimes that were not modeled by the current estimator.

R-2 CONDUCT SENSITIVITY ANALYSIS OF $C_{m_{0}}$ ON INFLIGHT a ESTIMATOR RESULTS.

Objective 4. The irrilight a estimator we evaluated vith flight test data, and robustness examined during real-time rlight test. Several comments can be made as a result of this test. The primary result is that the concept is indeed
feasable. With a basic multivariable, linear regression modeling technique, accurate angle of attack estimates can be made in all attitudes to approximately 0.5 degrees, as demonstrated by the robustness maneuvers. Two areas of interest need to be highlighted. Pitch acceleration was not available in the HIDEC configuration. If it were, it could be expected to be a noisy signal due to the algorithms used in its calculation. A difference of pitch rates per time inierval was used to approximate $\dot{q}$. This proved to be a satisfactory approximation of the term, which was usually very close to 0.0 . The overall correction term in the primary estimator equation was subsequently small when compared to the other terms, and could actually be neglected with only limited loss of accuracy. Secondly, the rotation of the normal acceleration from body to ind axes demonstrated the difference between theoretical equations and reality. The rotation equation itself was based of c. 6. accelerations of $a_{B z}$ and $a_{B x}$. In straight and level unaccelerated rlight in the wind axis system, these variables should be zero, whether the aircraft is upright or inverted. However, a real accelerometer which is trimmed to read 0 rt/sec ${ }^{2} a_{B z}$ in upright unaccelerated plight will read 64.4 ft/sec ${ }^{2}$ in inverted unaccelerated flight. The result is that the correction term in the rotation equation, cosecos $\phi$, which represents the component of the earth's gravity vector, as a correction to a perfect accelerometer, is taken into account by the real accelerometer. It can be replaced simply by the constant one 5 acceleracion of gravity, as the rotational correction is automatically applied in the real accelerometer readings.

Objective 5. The robustress maneuver demonstrated that the
concept of a simple, efficient angle of attack estimator vas achievable. The estimator was accurate to within the 0.5 degree desired specirication with two exceptions. First, under sustained higher 6 loadings, the estimator accuracy was degraded proportional to the loading. This indicates that a 6 correction term needs tj be modeled in the a regression. Under high 5, the estimator was always high, and this is the more favorable of the possibilities. Use or the trim $C_{L_{\alpha}}$ curves could be the cause of this, and simple modeling under 5 of the ving-body $C_{L_{\alpha}}$ should surfice to correct the estimator back to predicted values.
R-3 UIRECT INFLIGHT a ESTIMATOR EXPERIMENTATION TO LOADED FLIGHT CONDTITION RESEARCH.

Finally, in the calculation of $\alpha_{\text {ouess }}$ a known singularity in the Euler angle ritations was reached at 90 degrees pitch angle. This situation could easily be rectified by reverting to an earlier guess of $\alpha$, and holding that guess between the 80 to 90 degree pitch angle phases of rlicht. A second solution nould be a hold register, allowing the previcus estimated a to become auess for the next time segment. This would eliminate the need for Euler angle rotations to find $a_{\text {auess }}$ in the first place, and seems to be the better solution.

In conclusion, the area of angle of attack and zideslip estimation is an exciting, challenging arena, encompaseing many disciplines of Aeronautical Engineering and Statistical Estimation. Its uses are bounded only by imagination, and its possibilities for incorporation into current aircrart arv 11mited only by desire.

APPENDIX A

COMPUTER PROGRAH DKF

6

The program DKF uses the discretized $A$ and $B$ matrices of the aircraft model to create a simulation of aircraft response to control inputs. This response is ideal. Noise inputs for the model and the measurement are added and a Kalman estimator then utilizes the noise corrupted $\theta$ and $q$ values as simulated measurements to study the ability of a linear estimator to recover the remaining two states. The subroutine AlPHA then calculates the angle of attack from the estimated values.

STOR:3E: 2
C
Coway DISCRETE KILMAN FILTER PROGRAM

C ANGLE OF ATTACK ESTIMATOR VERSION
C BY D.GLEASON MODIFIED BY J.ZEIS
Cyourvor
6 AUG 86
Hanconer


| C. | $X=A * X D+B * W$ | $W \backslash N(0, Q)$ | +mame |
| :---: | :---: | :---: | :---: |
| C*** | $\mathbf{Z}=\mathrm{H} * \mathrm{X}+\mathrm{V}$ | $V \backslash N(0, R)$ | * |
| C** |  |  | - |
| Cratay | $X M=A * X P$ |  | * |
| C*ata | $P M=A * P P * A T+B * Q * B T$ |  | - |
| C. |  |  | $\cdots$ |
| C | $X P=X M+K G * C 2-H * X M$ | ! | $\rightarrow$ |
|  |  |  | 0mome |
| Cxamer | $P P=[\mathrm{I}-\mathrm{KG} \times \mathrm{H}$ ! *PM |  | Hotut |
| C | $K G=F M * H T * C H * P M * H T+R$ | R : -1 | $\cdots$ |
| C | +axictaraveratar |  | max |
| C |  |  | $\pm$ |

C
C
Cwind
C TAPE $1=$ MATRIX(INPUT MATRICES $A, B, H, Q, R$ AND XP(O),PP(O))
C TAPE 2 - RANW (INPUT PROCESS NOISE)
C TAPE $5=$ RANV (INPUT MEASUREMENT NOISE)
C TAPE 7 = MEASCOUTPUT OF KALMAN FILTER RESULTS)
C TAPE $8=S P C O U T P U T$ FOR PLOTTING STATE AND STATE EST.)
C TAPE $9=P P(O U T P U T$ FOR PLOTTING COVARIANCES AND GAINS)
C TAPE $10=A P$ COUTPUT FOR ALPHA, INPUT FOR IISPLO)
C STATEMECLARATION STATEMENTS
CwEXACT SYSTEM
REAL X(4), XD(4)
REAL $2(2), U(2,600)$
REAL AE(4, 4), BE(4,2), HE(2,4)
REAL WE(2, 600), SIGMAW(2), QE(2,2)
REAL VE(2,600), SIGMAV(2), RE(2,2)
REAL RANGE(4)
Cumanel SYSTEM
REAL XM(4), XP(4)

REAL $A(1,1), B(1,2), H(2,1), Q(2,2), R(2,2)$
REAL AT $(1,4), \operatorname{BT}(2,4), \operatorname{HT}(4,2)$
REAL $\operatorname{PM}(1,1), \operatorname{PP}(4,4), \operatorname{KG}(1,2)$
REAi WK1 (4, 1),WK2 (4,4),WK3(4,4),WK\& (4,4)
REAL ALPA $(600,2)$, TIM ( 600$)$
CHARACTER TITLE 30
INTEGER IFLAG(1), I, IY,N,M,INC, IOPT, IER
CPPROGRAM CONSTANTS
$\operatorname{IFLAG}(1)=60$
ITEST $\rightarrow$ IFLAG(1) +1
IPRINT $=0$
$D T=1, \beta 0$.
$E R R X=0$.

ERRV=0.
C
C INPUT DISCRETE A(NXN), B(NXM), H(LXN) MATRICES
CoINPUT PROCESS AND MEASUREMENT NOISE COVARIANCE

Cominput INITIAL STATE ESTIMATE,XM(N),AND ERROR COV,PP(N,N).
OPEN(1,FILE='MATRIX. IN')
$\operatorname{READ}(1, *) N, M, L$
READ (1,*)
$\operatorname{READ}(1, \omega)((A E(I, J), J=1, i Y), I=1, N)$
$\operatorname{READ}(1, \ldots)$
$\operatorname{REA}(1, *)((A(I, J), J=1, N), I=1, N)$
$\operatorname{READ}(1, *)$
$\operatorname{PEAD}(1, *)((B E(I, J), J=1, M), I=1, N)$
READ (1, *)
$\operatorname{READ}(1, *)((B(I, J), J=1, M), I=1, N)$
$\operatorname{KEAD}(1, \ldots)$
$\operatorname{READ}(1, *)((H E(I, J), J=1, N), I=1, L)$
$\operatorname{READ}(1, \#)$
$\operatorname{READ}(1, \#(C H(I, J), J=1, N), I=1, L)$
READ (1, \#)
$\operatorname{READ}(1, \omega)((Q E(I, J), J=1, M), I=1, M)$
$\operatorname{READ}(1, *)$
$\operatorname{READ}(1, *)(C Q(I, J), J=1, M), I=1, M)$
READ (1, \%)
$\operatorname{READ}(1, *)(\langle\operatorname{RE}(I, J), J=1, L), I=1, L)$
$\operatorname{READ}(1, \ldots)$
$\operatorname{READ}(1, *)((R(I, J), J=1, L), I=1, L)$
READ(1, $\%$ )

```
        READ(1.*) (XP(I),I=1,V)
        READ(1,*)
        READ(1,*)((PPP(I,J),J=1,N),I=1,N)
C
CO
    OPEN(2,FILE='RANW. IN')
    OPEN(T,FILE='MEAS. OUT')
    OPEN(8, FILE='SP.OUT')
    OPEN(9,FILE='PP.OUT')
    OPEN(10,FILE='AP.OUT')
    READ(2,*) NCYCLE
    WRITE(10,*) NCYCLE
    WRITE(9,*) NCYCLE
    URITE(T,*) 'NCYC!EE =', NCYCLE
    HRITE(7,*) 'INPUT PROCESS NOISE'
    READ (2,*) (<WE(I,J),I=1,M), T=1,NCYCLE)
    WRITE(7,105)(CWE(I,J),J=1,10),I=1,M)
    WRITE(7,*)
C
CMINPUT GAUSSIAN(O,1) MEASUREMENT NOISE
    WRITE(T,*) 'INPUT MEASUREMENT NOISE'
    OPEN(5,FILE='RANV.IN')
    READ(5,*)
    READ (5,*) ((VE(I,J),I=1,L),J=1,NCYCLE)
    WRITE(7,105) ((VE(I,J),J=1,10),I=1,L) VRITE(7,*)
C
C
```



```
C*m,MODIFY MEASUREMENT NOISE TO GAUSSIAN(O,SIGMAV)
    GALL NOISE(WE,VE,SIGMAW,SIGMAV,QE,RE,M,L,NCYCLE)
    WRITE(7,*) 'MODIFIED PROCESS NOISE'
    WRITE(7,105) ((WE(I,J),J=1,10),I=1,M)
    WRITE(7,*)
    WRITE(7,*) 'MODIFIED MEASUREMENT NOISE'
    WRITE(7, 105) (CVE(I,J),J=1,10), I=1,L)
    WRITE(7,*)
C
CNGENERATE INPUT SEQUENCE U(I,R)
```

    DO \(20 \mathrm{~K}=1\), NCYCLE
    DO \(20 \mathrm{I}=1\), \(M\)
        \(U(I, K)=0\).
        20 CONTINUE
    
## DO $21 \mathrm{~K}=1 . \mathrm{NCYCLE}$

$U(1, K)=0.0007$
21
CONTINETE
C OUTPUT DTSCRETE A B AND H MATRICES
 CALL MPRINT(AE,N,N, AE MATRIX ') CALL MPRINT(A,N,N,'A MATRIX ')
CALL MPRINTCBE,N,M,'BE MATRIX $\quad$ )
CALL MPRINT(B,N, M,'B MATRIX ')
CALL MPRINT(HE,L,N,'HE MATRIX ') CALL MirRINT(H,L,N,'H MATRIX ')
C
COUTPUT MEASUREMENT AND NOISE COVARIANCE MATRICES
CALL MPRINTCQE, M, M, 'PROCESS COV.-QE ')
CALL MPRINTCQ, M, M,'PROCESS COV. -Q ')
CALL MPRINT(RE,L,L,'MEASUREMENT COV.-RE ')
CALL MPRINTCR,L,L,'MEASUREMENT COV.-R ')
C
C SIMULATION
CoINITIALIZE STATE AND ESTIMATE VECTORS
DO $50 \mathrm{I}=1$, N $X(I)=0$. $X D(I)=0$.
50 continue
DO $52 \mathrm{I}=1 . \mathrm{N}$ $X M(I)=0$.
52 continue
DO $55 \mathrm{I}=1$, N
DO $55 \mathrm{~J}=1, \mathrm{~N}$

$$
P M(I, J)=0 .
$$

55 CONTINUE
CMUTPUT INITIAL CONDITIONS ON X \& PP
WRITE(7, $\#$ )
WRITE(7,*) 'CYCLE $=0 \quad$ TIME $=0$,
CALL VPRINT(XP,N,'INITIAL STATE EST-XP')
CALL MPRINT(PP,N,N,'INITIAL COVAR EST-PP')
WRITE(7,*)
C~MAIN LOOP ON K
DO $1000 \mathrm{~K}=1$, NCYCLE
TIME $=K * D T$
C*MCALCULATE STATE VECTOR
CALL STATE (K, X, XD, WE, U, AE, BE, N, M, NCYCLE)

Gall measure ( $K, X, Z, h E, V E, N, L, N C Y C L E)$

```
C
CmanalCulate PREDICTED ESTIMATE & PREDICTED ERROR COVARIANCE.
CALL XPRED(K, XY, XP,A,B,U,N,M,NCYCLE)
    CALL COVARM(A,PP,AT,B,Q,BT,N,M,PM, WK1,WK2,YK3,WK4)
C
CmCALCULATE FILTER GAIN.FILTER ESTIMATE & FILTER ERROR COVARIANCE
        CALL KGAIN(PM,HT,H,R,N,L,KG,WK1,WK2,WK3.WK4)
        CALL XFILTER(XM,KG,Z,H,N,L,XP,WK1,WK2,WK3)
        GALL COVARP(KG,H,PM,N,L,PP,WK1,WK2,WK3)
        WRITE(9,105) TIME,Pr(1,1),PP(1,2),PP(2,2)
        WRITE(9,105) KG(1,1),KG(2,1)
    C
    COUPDATE DELAY VECTOR XD(I)
        DO 120 I=1,N
        XD(I)=X(I)
    120 CONTINUE
C*CALCULATE ANGIE OF ATTACKS 
    CALL ALPHA(X, XM,XP,N,K, ALPA,TIM, TIME)
    COPERFORM ERROR ANALYSIS
C CALCULATE ERROR INDICES
        EV=(X(2)-XP(2))
        EX=(X(1)-XP(1))
        ERRX=ERRX + ABS(X(1)-XP(1))
        ERRV=ERRV + ABS(Z(2)-XP(2))
        C WRITE PI.OT VECTORS TO TAPE
        WRITE(8,130) TIME,X(2),XP(2),X(1),XP(1), EV, EX
        130 FORMAT(8F15.5)
COUUTPUT FILTER RESULTS
        IPRINT =IPRINT + 1
        IF (IPRINT .EQ. ITEST) IPRINT = 1
        IF (IPRTNT .LT. IFLAG(1)) GO TO 1000
        WRITE(7,*) '*)
        WRITE(7,*) 'CYCLE = ',K,' TIME = ',TIME
        CALL VPRINTCX,N,'STATE VECTOR-X ')
        CALL VPRINT(Z,L,'MEASUREMENT VECTOR-Z')
```



```
        CX CALL VPRINT(XM,N,'PREDICTED EST. -XM ')
        CX CALL MPRINT(PM,N,N,'PREDICTED COV.-PM ')
```


CALL VPRINTCXP.N.'FILTER EST.-XP ..... ')

```Call mprint ckg, n.l, 'Kalyan gain matrix ')CALL MPRINT(PP,N.N.'FILTER COV.-PP ')
            WRITE(T,*) '* 
    1000 CONTINUEC ANGLE OF ATTACK OUTPUT
            WRITE(10,*) 'TIME
                                    EXACT ALPHA
        CPREDICTED ALPHA'
            DO 551 K=1.NCYCLE
            WRITE(10, 319)TIM(K), ALPA(K,1),ALPA(K,2)
    549 FORMAT(2Y.FO.3,16X,F12.10,20X.F12.10)
    551 CONTINUE
    C OUTPUT ERROR INDICES
        ERRX=ERRY/NCYCLE
        ERRV-ERRV/NCYCLE
        WRITE(7,*) 'AVERAGE POSITION ERROR = ',ERRX
        WRITE(7,*) 'AVERAGE VELOCITY ERROR = ',ERRV
    C*FORMAT STATEMENTS
    ION FORMAT(2(F15.5.2X))
    105 FORMAT(17(FiJ 5.2Y))
        STOP
        END
C
0ccccccc1 ccceccce2ccccccccc3cccccccc4ccceccc5ccccccccocccccccc7
C SUBROUTINE VPRINT
C THIS SUBROUTINE PRINTS OUT A VFCTOR WITH A TITLE
CcCCCCCCCCCCCCこCCCCCCCCCCCCCCCCCCCCCCCCCCccCccccccccccccccccccccc
            SUBROUTINE VPRINT(X,N,TITLE)
            REAL X(N)
            CHARACTER TITLE*SO
            VRITE(T,2CO)TITLE
            URITE(7,*) X
            WRITE<7,*)
            200 FORMAT(25X,A20)
            RETURN
            END
C
cccccccc1 ccccccccccccccc3cccccccccc{cccccccc5ccccccccoccccccccc7
C
                SUBROUTINE MPRINT
    C THIS SUBROUTINE PRINTS OUT MATRIX A(MXN) VITH TITLE(2O CHAR)
CCCCCCCCCCCCCCCCCCC€CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
        SUBROUTINE MPRINT(A,M,N,TITLE)
        REAL A(M,N)
```

```
\becauseGHARACTER TITLE*30
    WRITE(T, 200)TITLE
        DO :O I=1,M
        WRITE(7,300) (A(I,J),J=1,N)
        20 CONTINUE
        VRITE(T,*)
        200 FORMAT(25X, A20)
        300 FORMAT(8(2X,E9.3))
        RETURN
        END
C
```



```
C
                    SUBROUTINE MADD
C THIS SUBROUTINE ADDS TWO MATRICES (A(MXN) + B(MXN) = C(MXN))
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCссCCCCCCCCCCCCCCCCCCCCCCCCCCC
    SUBROUTINE MADC(A,B,C,M,N) REAL A(M,N),B(M,N), S(M,N)
    DO 10 I=1,M
    DO 10 J=1,N
        C(I,J)=A(I,J) + B(I,J)
        10 CONTINUE
        RETURN
        END
C
C
```



```
C SUBROUTJ.NE MTRANS
C THIS PROGRAMS TAKES THE TRANSPOSE OF MATRIX A(MXN) AND RETURNS
C AT(NXM).
```



```
            SUBROUTINE MTRANS(A,AT,M,N)
            REAL A(M,N),AT(N,M)
            DO 10 I=1,N
            DO 10 J=1,M
                AT}(I,J)=A(J,I
            10 CONTINUE
            RETURN
            END
C
```



```
L
                    SUBROUTINE MMULT
C THIS ROUTINE MULTIPLIES THO MATRICES. (A(LXM) X B(MXN) = C(LXN)).
C
```



```
    SUBROUTINE MMULT(A,B,C,L,M,N)
    REAL A(L,M),B(Y,N),C(L,N)
    DO 10 I=1,L
    DO 10 J=1.N
    C(I,J)=0
    DO 10 K=1,M
    C(I,J)=C(I,J)+A(I,K)*B(K,J)
10 CONTINUE
END
c
ccccccc1 ccccccccc2ccccccccc3cccccccc}4\operatorname{ccccccccs}2\operatorname{cccccccocccccccc7
C
                    SUbROUTINE NOISE
CTHIS SUBROUTINE CHANGES THE GAUSSIAN(O,1) PROCESS aND MEASUREMENT
CNOISE TO GAUSSIAN(O,SIGMAW),AND GAUSSIAN(O,SIGMAV) RESPECTIVELY.
CTHIS CHANGE IS BASED ON THE PROCESS AND MESUREMENT NOISE
CCOVARIANCE MATRICES.
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCccccccccccccccccccccccc
SUBROUTINE NOISE(W,V,SIGMAW,SIGMAV,Q,R,M,L,NCYCLE)
REAL W(M,NCYCLE),SIGMAW(M),G(M,M)
REAL V(L, NCYCLE),SIGMAV(L),R(L,L)
C*CALCULATE NOISE STANDARD DEVIATION FOR PROCESS NOISE
    DO 10 I=1,M
                SIGMAW(I)=SQRT(Q(I,I))
    10 CONTINUE
C*CALCULATE NOISE STANDARD DEVIATION FOR MEASUREMENT NOISE'
    DO 20 I=1,L
        SIGMAV(I)=SQRT(R(I,I)) 20 CONTINUE
C*CREATE GAUSSIAN(O,SIGMAW) PROCESS NOISE
    no 30 I=1,M
    DC 30 J=1,NCYCLE
                H(I,J)=W(I,J)*SIGMAW(I)
        30 CONTINUE
C*CREATE GAUSSIAN(O,SIGMAV) MEASUREMENT NOISE
    DO 40 I=1.L
    DO 40 J=1,NCYCLE
            V(I,J)=V(I,J)*SIGMAV(I)
    40 CONTINUE
        RETURN
    END
ccccccccc1 ccccccccc2ccccccccc3cccccccc4cccccccosccccceccocccccccc7
C
                    SUBROUTINE STATE
C THTS SUBROUTINE GALCULATES THE TRUE STATE VEGTOR AT TIME K
C X(K)=AE*XD(K) + BE*U(K) + BE**(K)
```

```
<ссссссСсссссссссссссссссссссссссссссссссссссссссссссссссссссссссс
    SUBROUTINE STATE(K,X,XD,W,U,AE, BE,N,M, NCYCLE)
    REAL X(N), XD(N),W(M, NCYCLE),UCM,NCYCLE)
    REAL AE(N,N),BE(N,M)
    DO 60 I=1,N
    X(I)=0.
    DO 60 J=1,N
    X(I)=X(I) +AE(I,J)*XD(J)
    60 CONTINUE
    DO ;0 I=1.N
    DO <0 J=1,M
    X(I)=X(I)+BE(I,J)*W(I,K)+BE(I,J)*U(J,K)
    70 CONTINUE
        RETURN
        END
CCCCCCCCC1 CCCCCCCCC2CCCCCCCCCC3CCCCCCCC4 Ccccccccc5ccccccccocccccccc7
C SUBROUTINE MEASURE
C THIS SUBROUTINE CALGULATES the TRUE SYSTEM MEASUREmENTS
C Z(K)=HE*X(K) + V(K)
\operatorname{ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccce}
    SUBROUTINE MEASURE(K,X,Z,HE,V,N,L,NCYCLE)
    REAL X(N),Z(L),HE(L,N),V(L,NCYCLE)
    DO 80 I=1,L
    Z(I)=0.
    DO 80 J=1,N
    Z(I)=Z(I)+HE(I,J)*X(J)
    80 CONTINUE
    DC 90 I=1,L
    Z(I)=Z(I)+V(I,K)
    90 continue
    RETURN
    END
0cccccccc1 ccccccccc2ccccecccc3ccccccec4cccccccc5ccccccccoccccccc7
C
                    SUBROUTINE XPREDICT
CTHIS SUBROUTINE PREDICTS THE STATE VEGTOR PRIOR TO THE MEASUREMENT
C XM(K)=A*XP(K-1) + B*U
<ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
    SUBROUTINE XPRED(K,XM, XP, A,B,U,N,M,NCYCLE)
    REAL XM(N),XP(N),A(N,N)
    DO 10 I=1,N
        XM(I)=0.
    DO 10 J=1,N
        XM(I)=XM(I) + A(I,J)*XP(J)
```

```
        10 continue
    DO 20 I=1,N
    DO 20 J=1,4
    XM(I)=XM(I)+B(I,J)*(U(J,K)
    20 continue
    RETURN
    END
C
C
```



```
C SUBROUTINE COVARM
CTHIS SUBROUTINE CALCULATES THE ERROR COVARIANCE MATRIX PRIOR TO
CTHE MEASUREMENT
C PM(K)=A*PP(K-1)*AT + B*Q*BT
 cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
    SUBROUTINE COVARM(A, PP, AT, B, Q, BT,N,M, PM, PP1, PP2, PP3, PP4)
    REAL A(N,N),PP(N,N),PM(N,N),B(N,M),Q(M,M)
    REAL AT(N,N),BT(M,N)
    REAL PPI (N,N),PP2(N,N),PP3(N,M),PP4(N,N)
C PP1=A*PP(K-1)
C PP2=A*PP(K-1)*AT=PP1*AT
C PP3=8*Q
C PP4 =B***BT=PP3*BT
    Call mTRANS(A,AT,N,N)
    CALL MMULT(A,PF,PP1,N,N,N)
    CALL MMULT(PP1,AT,PP2,N,N,N)
    CALL MTRANS(B,BT,N,M)
    CALL MMULT(B,Q,PP3,N,M,M)
    CALL MMULT(PP3,BT,PP4,N,M,N)
    CALL MADD(PP2,PP4,PM,N,N)
    RETURN
    END
C
cccccc1 CCCCCCCCC22cccCCCCCC3CCCCCCCCC4CCCCCCCC5CCCCCCCC6CCCCCCCCC7
G
                                    SUBROUTINE KGAIN
C This subroutine calculates the kalman gain.
C KG(K)=PM*H'*(H*PM*HT - R!-1
 сссссссссссссссссСсссссссссссссссссссссСсссссссссссссссссссссссссс
    SUBROUTINE KGAIN(PM,HT,H,R,N,L,KG,K1,K2,K3,K4)
    REAL PM(N,N),H(L,N),HT(N,L),KG(N,L),R(L,L)
    REAL K1(N,L),K2(L,L),K3(L,L),K4(L,L)
    REAL WK(130)
C K1=PM*HT
```

```
C K2=H*PM*HT=H*K1
C K3=H*PM*HT +R=K2+R
C KL=[H*PM*HT+R! INVERSE=K3 INVERSE
C KG=P*HT*[H*PM*HT+R!INVERSE= K1*K4
CALL MTRANSCH,HT,L,N)
CALL MMULT(PM,HT,K1,N,N,L)
CALL MMULT(H,K1,K2,L,N,L)
CALL MADD(K2,R,K3,L,L)
CALL GMINV(L,L,K3,K4,0,0,L)
Call mmult(K1,K4,KG,N,L,L)
RETURN
END
C
Ccccccc1 ccccccccc2ccccccccc3cccccccc4ccccccccc5ccccccccocccccccc7
C
                    SUBROUTINE COVARP
C THIS SUBROUTINE CALCULATES THE ERROR COVARIANCE AFTER THE
C measurement has been made.
C PP(K)=[II-KG(K)*H!*PM
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccecccccc
    SUBROUTINE COVARP(KG,H,PM,N,L,PP, II, PP1, PP2)
    REAL KG(N,L),H(L,N), PM(N,N),PP(N,N)
    REAL II(N,N),PP1(N,N),PP2(N,N)
C PP1 = -KG*H
C PP2=II-KG*H=II+PP1
C CREATE IDENTITY MatRIX II(NXN)
    DO 10 I=1,N
    DO 10 J=1,N
        II(I,J)=0.
        IF(I.EQ.J) II(I,J)=1.0
        10 CONTINUE
            CALL MMULT(KG,H,PP1,N,L,N)
C NEGATE PP1 MATRIX
    DO 20 I=1,N
    DO 20 J=1,N
        PP1(I,J)= -PP1(I,J)
    20 CONTINUE
    CALL MADD(II,PP1,PP2,N,N)
    CALL MMULT(PP2,PM,PP,N,N,N)
    RETURN
    END
C
<ccccce1 ccccccccc2ccccccccc<3cccccccc4cccccccccsccccccccoccccccccc7
C
                                    SUBROUTINE XFILTER
```

```
C THIS SUBROUTINE CalCllateS the sTate vector estimate after
C THE mEASUREMENT OCCURS.
C XP(K)=XM(K) + KG[Z-H*XM(K)!
\operatorname{ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc}
    SUBROUTINE XFILTER(XM,KG,Z,H,N,L, XP,HXM,RZ,KGR)
    REAL XM(N),KG(N,L),Z(L),H(L,N),XP(N)
    REAL HXM(L,1),RZ(L,1),KGR(N,1)
C HXM=H*XM
C RZ=2-H*XM=2-HXM=RESIDUALS
C KGR=KG*(Z-H*XM!=KG*R
CALL MMULT(H,XM,HXM,L,N,1)
C NEGATE HXM
    DO 10 I=1,L
        HXM(I,1)=-HXM(I,1)
    10 CONTINUE
    CALL MADD(Z,HXM,R2,L,1)
    CALL MMULT(KG,RZ,KGR,N,L,L)
    CALL MADO(XM,KGR,XP,N,1)
    RETURN END
* SUBROUTINE ALPHA
* THIS ROUTINE CALCLLATES THE EXACT,MEASURED AND *
* PREDICTED ANGLE OF ATTACK, AND STORES THE VAlUES *
* IN ARRAYS. VTRIM IS THE TRIM VELOCITY, AND ALFT *
* IS THE TRIM ANGLE OF ATTACK. *
```

```
    SUBROUTINE ALPHA(X,XM,XP,N,K, ALPA,TIM, TIME)
```

    SUBROUTINE ALPHA(X,XM,XP,N,K, ALPA,TIM, TIME)
    REAL X(N),XM(N),XP(N),TIM(600)
    REAL X(N),XM(N),XP(N),TIM(600)
    REAL ALPA(600,2)
    REAL ALPA(600,2)
    VTRIM=570.0
    VTRIM=570.0
    ALFT=.014
    ALFT=.014
    UO=VTRIM*COS(ALFT)
    UO=VTRIM*COS(ALFT)
    WO=VTRIM SIN(ALFT)
    WO=VTRIM SIN(ALFT)
    ARG1 = (HO+X(2))/(UO+X(1))
    ARG1 = (HO+X(2))/(UO+X(1))
    ARG3=(WO+XP(2))/(UO+XP(1))
    ARG3=(WO+XP(2))/(UO+XP(1))
    C AlPHA CALCULATION
C AlPHA CALCULATION
ALPA(K,1)=ATAN(ARG1)
ALPA(K,1)=ATAN(ARG1)
C ALPHA PREDICTED CALCULATION
C ALPHA PREDICTED CALCULATION
ALPA(K,2)=ATAN(ARG3)
ALPA(K,2)=ATAN(ARG3)
TIM(K)=TIME
TIM(K)=TIME
RETURN

```
    RETURN
```

END sINCLUDE: 'GMINV.FOR'
SINCLUDE: 'VADD.FOR'
$\therefore I N C L U D E ;$ 'DOT.FOR'

The program DKFLAT is identical to DKF with the exception of the subroutine BETA instead of ALPHA as in DKF. Input and output is change to accomodats the different variables, but all logic is the same. BETA will calcuiate the modeled and predicted angle of sideslip from the lateral equations of motion as described in the program and text.

```
##)
    * **
    * SUBROUTINE BET *
    * THIS ROUTINE FINDS ACTUAL AND *
    * PREDICTED ANGLE OF SIDESLIP AND STORES THE VALUES *
    * IN ARRAYS. VTRIM IS THE TRIM VELOCITY, AND ALFT *
    * IS THE TRIM ANGLE OF ATTACK. *
    SUBROUTINE BET(X,XM,XP,N,K,BETA,TIM,TIME)
    REAL X(N),XM(N),XP(N),TIM(600)
    REAL BETA(600,2)
    VTRIM=570.0
    AlFT=.014
    UO=VTRIM*COS(ALFT)
    HO=VTRIM *SIN(ALFT)
            ARG1 = X (1) NTRIM
            ARG2=XP(1) NTRIM
        C BETA CAL.CULATION
            BETA(K,1)=ASIN(ARG1)
in. C BETA PREDICTED CALCULATION
    RETA(K,2)=ASIN(ARGZ)
    TIM(K)=TIME
    RETURN
```

忩

## LONG

The program LONG provides an independent source to compute modeled angle of attack to verify DKF derived angle of attack. This program takes the continuous stability and control matrices and calculates through a Taylor series expansion the response of the system to step control inputs.
C CONG.FOR(1000 DATA POINT VERSION)
C
C

C
C
10 REAL MU, MWDOT, MW, MQ, ME, MT
110 DIMENSION A(4, 4), B(4, 2), EAT (4, 4), E(4,4),G(4,4),AINV(4, 4)
111 DIMENSION P(4,4),PP(4,4),ASUB(4,4)
112 DIMENSION U(2005), W(2005), THET(2005), Q(2005), CON(4), CALPA(2005)
113 DIMENSION EATI(4,4)
20 DIMENSION EVR(4), EVI (4), VECR (4, 4), VECI (4, 4)
30 DIMENSION INDIC(4)
C~ DATA INPUT
114 DATA TAU $0.0333333 /$

## 

300
310

OPEN（2，FILE＝＇PLANE．DAT＇）
READ（2．320）V，ALF，TJ，XU，XW，XE，XT
FORMAT（ノ，ノ，ノ，9X，F6．1，28X，F7．3，ノ，ノ，5X，F9．6，ノ，5X，F9．6，ノ．5X， CF7．4，／．10X，F7．4，ノ，10X，F9．6，ノ） READ（2，340）2Q， 2 ZU, ZWDOT， $2 \mathrm{ZW}, 2 \mathrm{E}, 2 \mathrm{~T}$ FORMATC5X，F7．3，ノ，5X，F7．4，ノ，9X，F9．6，／，5X，F7．4，ノ，10X，F7．2，ノ， C10X，Fi．2．ノ）
READ（2，360）MU，MWDOT ，MW，MQ，ME，MT
FORMAT（5X，F9．6，／，9X，F0．6，／，5X，F9．6，／5X，F5．2，／，10X，FT．2．／， C10X，F9．6，ノ
370 READ（2，380）U（1），W（1），THET（1），Q（1），ELEV，THROT，TI FORMATC／，ノ，3X，F7．2，／，5X，F7．2，／，9X，F7．3，ノ，5X，F7．3，ノ，ノ，／，6X， CF7．4，／，6X，F7．1，／，ノ，33X，F5．1）
C INT INTAL VELOCITY AND TIME
$400 \quad V O=V * S I N(A L F)$
$410 \quad U 0=V * \operatorname{Cos}(A L F)$
420 IT＝TI＊30＋1
$500 \quad A(1,1)=X U$
$510 \quad A(1,2)=X W$
$520 \quad A(1,3)=-32.194$
$530 \quad A(1,4)=-W 0$
$540 \quad A(2,1)=Z U /(1.0-2 W D O T)$
$550 \quad A(2,2)=2 W /(1.0-2 W D O T)$
$560 \quad A(2,3)=0.0$
$570 \quad A(2,4)=(V+2 Q) /(1.0-2 W D O T)$
$580 \quad A(3,1)=0.0$
$590 \quad A(3,2)=0.0$
$600 \quad A(3,3)=0.0$
$610 \quad A(3,4)=1.0$
620 A（1，1）$=2 U * M$ WDOT $/(1.0-2 W D O T)+M U$
$630 \mathrm{~A}(4,2)=2 W * M W D O T /(1.0-2 W D O T)+M Y$
$640 \quad A(4,3)=0.0$
$650 \quad A(4,4)=(V+2 Q) * M W D O T /(1.0-2 W D O T)+M Q$
C
$660 \quad \mathrm{~B}(1,1)=\mathrm{XE}$
$670 \quad B(1,2)=X T$
$680 \quad B(2,1)=2 E /(1.0-2 W D O T)$
$690 \quad B(2,2)=2 T /(1.0-2 W D O T)$
$700 \quad B(3,1)=0.0$
$710 \quad B(3,2)=0.0$
$7203(4,1)=2 E * M W D O T /(1.0-2$ WDOT $)+M E$
$730 \quad 3(4,2)=2 T * M W D O T /(1.0-2 W D O T)+M T$
C EXP $(A T)=I+A T+1 / 2($ ASQ $)(T S Q)+\ldots$
1000 DO $1040 \mathrm{I}=1,4$
1010 DO $1030 \mathrm{~J}=1,4$
$1020 \quad G(I, J)=A(I, 1) * A(1, J)+A(I, 2) * A(2, J)+A(I, 3) * A(3, J)+A(I, 4) *$
Ca( $1, \mathrm{~J}$ )
1030 CONTINUE
$1031 \mathrm{~J}=1$
1040 CONTINUE
1050 DO $1110 \mathrm{I}=1,4$
1060 DO $1100 \mathrm{~J}=1,4$
$1070 \operatorname{EAT}(I, J)=E(I, J)+T A U * A(I, J)+.5 * T A U * T A U * G(I, J)$
1100 CONTINUE
$1101 \mathrm{~J}=1$
1110 CONTINUE

| C.00000 | CALCULATION OF "A INVERSE" |
| :---: | :---: |
| 3000 | $\mathrm{NR}=4$ |
| 3010 | $\mathrm{NC}=4$ |
| 3020 | MT=0 |
| 3030 | MR=0 |
| 3040 | NCOL=43045 DO $3049 \mathrm{I}=1,4$ |
| 3046 | DO $3049 \mathrm{~J}=1,4$ |
| 3047 | ASUBC $I, J$ ) $=A(I, J)$ |
| 3049 | continue |
| 3050 | CALL GMINV (NR, NC, ASUB, AINV, MR, MT, NCOL) |
| C**00 | CALCULATION OF "EAT - I" |

$3200 \operatorname{EATI}(1,1)=\operatorname{EAT}(1,1)-1.0$
$3210 \operatorname{EATI}(1,2)=\operatorname{EAT}(1,2)$
$3220 \operatorname{EATI}(1,3)=\operatorname{EAT}(1,3)$
$3230 \operatorname{EATI}(1,4)=\operatorname{EAT}(1,4)$
$3240 \operatorname{EATI}(2,1)=\operatorname{EAT}(2,1)$
$3250 \operatorname{EATI}(2,2)=\operatorname{EAT}(2,2)-1.0$
$3260 \operatorname{EATI}(2,3)=\operatorname{EAT}(2,3)$
$3270 \operatorname{EATI}(2,4)=\operatorname{EAT}(2,4)$
$3280 \operatorname{EATI}(3,1)=\operatorname{EAT}(3,1)$
3290 EATI(3,2)=EAT(3,2)
$3300 \operatorname{EATI}(3,3)=\operatorname{EAT}(3,3)-1.0$
$3310 \operatorname{EATI}(3,4)=\operatorname{EAT}(3,4)$
$3320 \operatorname{EATI}(4,1)=\operatorname{EAT}(4,1)$


```
8140 WRITE(t,3150)
8150 FORMAT(/, 23X,'"A INVERSE" MATRIX')
8160 DO 8190 I=1,4
8170 WRITE(4,8180)AINV(I,1),AINV(I, 2),AINV(I,3),AINV(I, 4)
8180 FORMAT(3X,F10.6,4X,F10.6,4X,F15.3,4X,F10.6)
8190 CONTINUE
8200 WRITE(4,8210)
8210 FORMAT(/,16X,'"B" MATRIX')
8220 DO 8250 I=1,4
8230 WRITE(4,8240)B(I,1),B(I, 2)
8240 FORMAT(3X,F10.6,4X,F10.6)
8250 CONTINUE
```



```
\(8500 \quad \mathrm{~N}=4\)
\(8510 \quad N M=4\)
8520 CALL EIGEN(N, NM, A, EVR, EVI, VECR, VECI , INDIC)
8530 URITE(4,8540)
8540 FORMAT( \(/, /, 8 \mathrm{X}\), 'EIGEN ANALYSIS')
8550 WRITE(4.8560)
6560 FORMAT( \(/, 10 \mathrm{X}\), 'EIGENVALUES')
8570 DO 850C \(I=1,4\)
8580 WRITE( 1 3590)EVR(I), EVI(I)
3590 FOEMAㄴ(5X, E13.6, 2X,'+', E13.6,'i')
8600 CONTIVUE
8610 WRITE(4,8620)
8620 FORMAT ( \(/, 10 \mathrm{X}\), 'EIGENVECTORS')
8630 DO \(8700 \quad \mathrm{I}=1,1\)
8640 WRITE(4,8641)I
8641 FORMAT ( \(/, 5 X\), 'VECTOR \#', I3)
8642 DO \(8699 \mathrm{~J}=1,4\)
8643 WRITE(4, 8644)VECR(J,I), VECI (J, I)
8644 FORMAI(2X,E11.4,1X,'+',E11.4,'i')
8699 CONTINUE
8700 CONTINUE
```



```
8710 OMEG1 \(=\operatorname{SQRT}(E V R(1) * 2+E V I(1) * * 2)\)
8720 OMEG2=SQRT (EVR(3)**2 + EVI (3)**2)
8730 IF (OMEG1 .LT.OMEG2) GOTO 8800
8740 OMEGF=OMEG2
8750 DAMPP=ABS(EVR(3) \(\mathcal{O M E G P )}\)
8760 OMEGS=OMEG1
8770 DAMPS=ABS(EVR(1)/OMEGS)
8780 GOTO 8850
```



9100 END
\$INCLUDE: 'EIGEN.FOR'
SINCLUDE: 'GMINV.FOR'
SINCLUDE: 'VADD.FOR'
sINCLUDE: 'DOT.FOR'

LAT is the lateral response equivalent of the program LONG. Again, the continuous stability and control matrices are input, along with the prscribed step control input to find the modeled response of the aircraft in the lateral modes. This is used to verify the operation of the lateral estimator program, DKFLAT.


300 OPEN（2．FILE＝＇PLANE．DAT＇）
310 READ（2，320）VEL，ALF，YP，YB，YR，YA，YRD
220 FOPMATC／，ノ．ノ，9X，F6．1，28X，F7．3，ノ，ノ．40X，F9．6，ノ，40X，F9．4，ノ，4UX， CF7．4， $1,15 \mathrm{X}, \mathrm{FT} .4,1,45 \mathrm{X}, \mathrm{F9} .6, \mathrm{C}$
330 READ（2，340）LR，LP，LVDOT，LB，LA，LRD
340 FORMATC $11 \mathrm{X}, \mathrm{F7} .3, /, 11 \mathrm{X}, \mathrm{F7} .4, /, 45 \mathrm{X}, \mathrm{F9} .6, /, 41 \mathrm{X}, \mathrm{F7} .2, /, 46 \mathrm{X}$ ， CF7．2，ノ，46X，F7．2，八
350 READ（2，360）NB，NVDOT，NP ，NR，NA ，NRD
360 FORMATC41X，F9．6，／，45X，F9．6，$, 41 \mathrm{X}, \mathrm{F9} .6, /, 41 \mathrm{X}, \mathrm{F5} .2,1,46 \mathrm{X}$ ， CF7．2， $1.46 \mathrm{X}, \mathrm{F} 9.6, 八$
$\operatorname{READ}(2,380) \mathrm{V}(1), \mathrm{P}(1), \mathrm{PHI}(1), \mathrm{R}(1), \mathrm{A}(\mathrm{L}, \mathrm{RUD}, \mathrm{TI}$ FORMATC／，$/, 40 \mathrm{X}, \mathrm{F7} .2, /, 40 \mathrm{X}, \mathrm{F7} .2, /, 42 \mathrm{X}, \mathrm{F7} .3, /, 40 \mathrm{X}, \mathrm{F7} .3, \mathrm{C}, \mathrm{C}$ ， C／，41X，F7．4，（，41X，F7．4，ノ，ノ，33X，F5．1）
ConITIAL VELOCITY AND TIME
$400 \quad \mathrm{VO}=\mathrm{VEL} * S I N(A L F)$
$410 \quad \mathrm{UO}=\mathrm{VEL*} \operatorname{COS}(A 1 . F)$
420 IT $=T I * 30+1$
C A－MATRIX CALCULATIONS
$500 \quad A(1,1)=Y B / U O$
$510 \quad A(1,2)=$ WO
$520 \quad A(1,3)=-32.194$
$530 \quad A(1,4)=-U 0$
$540 \quad A(2,1)=$ LB $/$ UO
$550 \quad A(2,2)=L P$
$560 \quad A(2,3)=0.0$
$570 \quad A(2,4)=L R$
$580 \quad A(3,1)=0.0$
$590 \quad A(3,2)=1.0$
$600 \quad A(3,3)=0.0$
$610 \quad A(3,4)=0.0$
$620 \quad A(4,1)=$ NB $/$ JO
$630 \quad A(4,2)=N P$
$640 \quad A(4,3)=0.0$
$650 \quad A(4,4)=N R$
C＊B－MATRIX CALCULATIONS
$660 \quad \mathrm{~B}(1,1)=\mathrm{YA}$
$670 \quad B(1,2)=Y R D$
$680 \quad B(2,1)=L A$
$690 \quad B(2,2)=L R D$
$700 \quad B(3,1)=0.0$
$710 \quad B(3,2)=0.0$
$720 \quad B(4,1)=N A$


| 3320 | $\operatorname{EaTI}(4,1)=\operatorname{EaT}(4,1)$ |
| :--- | :--- |
| 3330 | $\operatorname{EATI}(4,2)=\operatorname{EAT}(4,2)$ |
| 3340 | $\operatorname{EATI}(4,3)=\operatorname{EAT}(1,3)$ |
| 3350 | $\operatorname{EATI}(4,4)=\operatorname{EAT}(4,4)-1.0$ |

C
3400 DO $3450 \quad I=1,4$
$3410 \quad$ DO $3440 \mathrm{~J}=1,4$
$3420 \operatorname{PPP}(I, J)=\operatorname{AINV}(I, 1) * \operatorname{EATI}(1, J)+\operatorname{AINV}(I, 2) * \operatorname{EATI}(2, J)+\operatorname{AINV}(I, 3)$
$C * E A T I(3, J)+A I N V(I, 4) * E A T I(4, J)$
3440 CONTINUE
$3441 \quad J=1$
3450 CONTINUE
C MOLTIPLY PPP TIMES B MATRIX
3510 DO $3600 I=1$, 4
3520 DO $3590 \mathrm{~J}=1,2$
$3530 \quad \operatorname{PP}(I, J)=\operatorname{PPP}(I, 1) * B(1, J)+\operatorname{PPP}(I, 2) * B(2, J)+P P P(I, 3) * B(3, J)$
$C+P P P(I, 4) * B(4, J)$
3590 CONTINUE
$3591 \quad J=1$
3600 CONTINUE
C*FINAL MULTIPLICATIUN FOR AINV*(EAT - I)*B*U(T)
$4000 \operatorname{CON}(1)=P P(1,1) * A I L+P P(1,2) * R U D$
$4010 \quad \operatorname{CON}(2)=P P(2,1) * A I L+P P(2,2) * R U D$
$4020 \quad \operatorname{CON}(3)=P P(3,1) * A I L+P P(3,2) * R U D$
$4030 \quad \operatorname{CON}(4)=P P(4,1) * A I L+P P(4,2) * R U D$

8000 WRITE(4,8010)
8010 FORMATC5X, 'FORCED AIRCRAFT RESPONSE TO AILERON/RUDDER C INPUT')
8020 WRITE(4,8030)
8030 FORMAT ( $/, 8 X$, 'INITIAL CONDITIONS ARE AS FOLLOHS: ')
8040 WRITE(4,3050)V(1), P(1), PHI(1), R(1)

CF8.4, $/, 4 \mathrm{X},{ }^{\prime} \mathrm{R}=$ ', FB .4$)$
8051 WRITE(4,8052)AIL,RUD
8052 FORMATC $/$, AILERON INPUT IS:',F6.3,4X,'RCDDER INPUT IS:', CFO. 3)
8060 WRITE (4,8070)
8070 FORMAT ( $/, 6 X$, 'STATE-SPACE SYSTEM OF THE FORM X(DOT)=AX $+B U$ ') 8080 WRITE(4,8090)
8090 FORMATC/, 23X, ".A" MATRIX')
8100 DO $8130 \quad I=1,4$
3110 WRITE(4, 8120)A(I, 1), A(I, 2),A(I, 3), A(I, 4)

```
                FORMAT(3X,F10.6,4X,F10.6,4X,F10.6,4X,F12.6)
8120
8130 CONTINUE
8140
8150 FORMAT( \(/, 23 X\), ".A INVERSE" MATRIX")
8160 DO \(8190 \quad \mathrm{I}=1,4\)
8170 WRITE(4,8180)AINV(I, 1), AINV(I, 2), AINV(I, 3), AINV (I, 4)
8180 FORMAT(3X,F14.6,4X,F14.6,4X,F15.3,4X,F14.6)
8190 CONTINUE
8200 WRITE(4,8210)
8210 FORMAT(/,16X, "B" MATRIX')
8220 DO \(8250 \quad \mathrm{I}=1\), 4
\(3230 \quad \operatorname{WRITE}(4,8240) B(I, 1), B(I, 2)\)
8240 FORMAT(3X,F10.6,4X,F10.6)
8250 CONTINUE
C
9000 WRITE( 1,9010 )
9010 FORMAT( \(/\), \(8 X\), 'AIRCRAFT RESPONSE (BODY AYIS SYSTEM)')
9020 WRITE(4,9030)
9030 FORMAT(5X, 'T', \(7 \mathrm{X},{ }^{\prime} \mathrm{V}\) ', 11 X, ' \(\mathrm{P}^{\prime}, 8 \mathrm{BX}\), 'PHI ', 8X, 'R', 8X, 'BETA')
```



```
\(1500 \quad \mathrm{~N}=1\)
\(1510 \quad T=N * T A U\)
\(1520 \quad M=N+1\)
```



```
\(2030 \operatorname{PHI}(M)=\operatorname{EAT}(3,1) \approx V(N)+\operatorname{EAT}(3,2) * P(N)+\operatorname{EAT}(3,3) \approx P H I(N)+E A T(3,4)\)
\(A * R(N)\)
2100 CONTINUE
C
```



```
\(2200 \quad V(M)=V(M)+\operatorname{CON}(1)\)
\(2210 \quad P(M)=P(M)+\operatorname{CON}(2)\)
2220 PHI (M) - PHI (M)+CON(3)
2222 ARG=V(M) A/EL
2225 BETA( \(M\) ) \(=A S I N(A R G)\)
\(2230 \quad R(M)=R(M)+C O N(4)\)
C INCREMENTAL TIME RESPONSE OUTPUT
9050 VRITE(4,9060) T,V(M), P(M), PHC(M), R(M), BETA(M)
```

```
9000 FORMAT(2X,F5.2,4X,F8.3,3X,FT.3,3X,FT.4,4X,F6.3,4X,F7.5)
9070 N=N+1
9080 IF (N.LT.IT) GOTO 1510
9090 CONTINUE
9100 END
$INCLUDE: 'GMINV. FOR'
SINCLUDE: 'VADD.FOR'
SINCLUDE:'DOT.FOR'
```

APPENDIX E<br>F-15A AIRCRAFT DESCRIPTION

## F-15A AIRCRAFT DESCRIPTION

The following data and diagram were extracted from AFFTC TR-70-48 [18].


Area (Total)
111.36 sq Ft

MAC
8.28. tt 28.25 Et

Vertical Tails (Each):
Area $\qquad$
NC $\qquad$
62.61 sq ft

Spen (Exposed) 6.75 ft 10.32 ft

Figure E1. F-15 General Aircraft Layout

## F-15A Aircraft Data

Aircraft
Length
62.52 Ft
Height
18.63 Ft
Wetted Area
2608.8 Ft
Takeot'f Gross Weight
Internal Fuel Capacity
39,770 Lbs
11,138 Lbs
Wing
Reference Area $608 \mathrm{Ft}^{2}$
Span
Aspect Ratio
42.81 Ft
Taper Ratio
3.0
Incidence
Leading Edge Sweep
Mean Aerodynamic Chord
0. 25
Theoretical Root Chord
Horizontal Stabilators
Area
120 Ft
Span
28.25 Ft
Deflection Limits
+15 to -29Mean Aerodynamic Chord
8. 27 Ft
Root Chord
$\mathrm{I}_{6} \cdot 1$ Length (. $25 \overline{\mathrm{c}}_{v}$ to $.25 \overline{\mathrm{c}}_{\mathrm{T}}$ )
11.43 Ft
20.08 Ft

| Vertical Stabilizers |  |
| :--- | :--- |
| Area | 125.22 Ft |
| Span | 10.32 Ft |
| Mean Aerodynamic Chord | 6.75 Ft |
| Root Chord | 9.58 Ft |
| Tail Length $C .25 \overline{\mathrm{c}}_{v}$ to $.25 \overline{\mathrm{c}}_{v}$ | 17.69 Ft |

## KEY INS/AIR DATA OUTPUTS



Figure F1. F-15A HIDEC INS

## AR DATA COMPUTER (SPERRY)



## CHARACTERISTICS

- Digital Computer.
- Continuous BIT and Initiated BIT capability provided.
- Initiated BIT available on ground ONLY.
- Weight - 12 pounds.
- Volume - 508 cubic inches.
- Power Required - $115 \mathrm{v}, 400 \mathrm{~Hz}, 53$ wâtts.

Figure F2. F-15A HIDEC Air Data Computer System

## TABLE F1

KEY SENSOR OUTPUTS

| Quantity | Source |
| :---: | :---: |
| $\theta$ | INS |
| $\phi$ | INS |
| $\psi$ | INS |
| $p$ | Flight Control Computer |
| q | Flight Control Computer |
| r | Flight Control Computer |
| $\mathbf{a}_{x}$ | INS |
| $a_{y}$ | INS |
| $a_{=}$ | Flight Control Computer |
| $v_{E}$ | INS |
| $v_{N}$ | INS |
| $V_{\text {cin }}$ | INS |
| ${ }^{\boldsymbol{V}} \mathbf{T}$ | ADC |
| h | INS/ADC |
| Mach | ADC |
| ? | ADC |
| q | Computed |
| * | Computed rrom Fuel Totaiizer and Basic Veight |

## APPENDIX G

F-15A STABILITY DERIVATIVE MODELS

The following figures depict the developmental fight test data used to formulate stability derivative models for the $F-15 A$ Inflight a Estimator. In all cases, flight test data precedes modeled parameters used in the estimator. References for documents from which the actual flight test data plots were extracted from are included immediately following the figure title. All data and graphs are unclassified.


Figure G1. F-15A Subsonic Trimmed Lift Curve (U) [19]

WING-BODY AMGLE OF ATTACK MODEL


Figure G2. F-15A Three Dimensional a Estimator Model



F-15A ANGLE OF ATTACK ESTIMATOR


Figure G6. F-15A Estimator IXX Model

F-15A ANGLE OF ATTACK ESTIMATOR
IYY PROGRFM CODE MOOEL


Figure G7. F-15A Estimator IYY Model

# F-15A ANGLE OF ATTACK ESTIMATOR 

 IZZ PROGRAM CODE MODEL geconi order folynamial fit

Figure G8. F-15A Estimator IZZ Model

## ELEXI PROGRAM aOA

The program AOA is the modification of the basic inflight a estimator, altered for implementation on the NASA ELEXI computer. The computer allows both post flight and actual real time inflight data reduction. The enumerated input sisnals are read in and the program then sequentially reduces each time segment of data before moving on to the next increment. The result is similar to onboard implementation of the algorithm for real time estimaticn of angle of attack.


```
PROGRAN AOA
-
-
* THIS PROGRAM UTILIZES AIRCRAFT GEOMETRY. 6 STABILITY DERIVATIVES. AND
* INPUTS FRCM THE INS AND CADC TO GALCULATE ANGLE OF ATTACK OF THE
* AIRCRAFT IN ANY FLIGHT CONDITIOH. (VERS'ON 2 CLEAN CONFIGURATION)
*
INPUTS FROM FLIGHT OATA FORMAT:
FUEL - FUEL WT ON BOARD (LBS)
                    - currently a calculated parameter
THETA - PITCH ANGLE
    - enO3. AOC/INS (DEG)
PHI - BANK ANGLE
    - mnO4, ADC/INS (DEG)
PSI - HEADING ANGLE
    - EnO7. ADC/INS (DEG)
    - mOLL RATE
    - dd25. DFCC (OEG/SEC)
    - PITCH RATE
    - GOOI. OFCC (OEG/SEC)
    - yAW RATE
    - बO28. OFCC (OEG/SEC)
    AX - BOOY X ACCELERATION
    - IbSO. INDICATED LONGITUDINAL ACCELERATION AT C.G. (G)
    AY - BODY Y ACCELERATION
    - dOZ7, LATERAL ACCEL (FT/SEC*OZ)
    AZ - BODY Z ACCELERATION
    - ddO2. NOPMAL ACCEL UFCC `(DEG/SEC)
    VE - VELOCITY EAST
        - ENOS. INS (FT/SEC)
    VN - VELOCITY NORTH
        - EnOB, INS (FT/SEC)
    - VELOCITY DOWN
        - enl0. INS (FT/SEC)
    VT - TRUE AIRSPEED
        - Ig22, AOC/INS (KTS)
    4 ~ - ~ A l T I T U D E ~
        - enO8, ADC/INS (FY
    RMACH - MACH NUMBER
        - 1g23. ADC/INS
    RHO - AIP DENSITY (%
        - Ig25 s.1.s. denslty
    QDOT - PITCH ACSELEAATION, OFF INS (DEG/SEC) * ESTIMATED
        .. ESTIMATED FROM O
*
-
    EXTERNAL OPENF, OPENW, FREAD, FWRITE, CLOSER, CLOSEW
    LDGICAL OPENR, OPENWW, FREAD, FWRITE
    CMARACTER*It SIGS(50)
    REAL-8 ROATA(50). M
    INTEGER=4 UNITI, UNITO. NIN, NOUT, NAVAIL

```

* 

**

- open data files and set lo output files
IF(.NOT. OPENR(UNITI.'FLDT.IN'.NAVAIL)) THEN
WRITE(7.100)
STOP
END IF
IF(.NOT. OPENW(UNITO,'FLDT.OUT',NOUT,SIGS,'OMP2')) THEN
WR:TE(7, 200)
STOP
END IF
100 FORMAT (//'ODPS 1//)
200 FORMAT(//'OOPS 2'/)
* 
* 
* INITIALIZE PROGRAM PARAMETERS
* 1000 S =608.0
1100 XT - 17.7
1110 XSM - 0.0300 - 15.94
1200 CBAR - 15.94
1300 B = 42.81
1400 WTORY - 29503.00
1500 STORES = 0.0
Pl - 3.141592854
OTOR - PI / 180.0
* 

```

```

- mead in flight data parameters for specific time increment.
300 IF( FREAD(UNITI,TIME,RDATA)) THEN
.

| FUEL | - pdatar 1) |
| :---: | :---: |
| THETA | - Roatal 2) |
| PHI | - roatal 3) |
| PSI | - roatar 4) |
| P | - roatar 5) |
| 0 | - Roatar ©) |
| R | - roatar 7) |
| $A X$ | - roatar 8) - \%2.1!4 |
| AY | - ROAT.. ( 3) |
| AZ | - -1.0. RDATA(10) |
| VE | - Roatar ${ }^{\text {a }} 1$ ) |
| VN | - RDATA (12) |
| VDWN | - poata (13) |
| $V \mathrm{~T}$ | - RDATA (14)* 1.68\%778 |
| H | - RDATA (15) |
| Amach | - Roata (19) |
| RHO | - ROATA, ) 0 0.0923769 |
| AINF |  |
| WT | - wTORY + jtORES + PUEL |

- 
- 
- change angular paraveters from negreES to radians ano calculate
- TRIGOMETRIC FUNCTIO:NS. CALCULATE QDOT.
* 

| PHI | - PM: DTOR |
| :---: | :---: |
| PS 1 | - PSI CTOR |
| theta | - THETA - OTOR |
| - | - otop |
| 0 | - - Dtor |
| , | - R - otom |

```
```

        COSPHI = COS(PHI)
        COSPSI - COS(PS:)
        COSTHA - COS(THETA)
        SINPHI = SIN(PHI)
        SINPSI - SIN(PSI)
        SINTHA - SIN(THETA)
    \bullet
GDOT - (O - QL) * 20.0
QL - O
*

```

```

- 
- model stability derivatives

```

```

* 

```

```

* 
* estimate vx ano vz
- VX = ( COSTHA - COSPSI ):VN -
VX=ABS(VX)
VZ - ( (SINPHI © SINPSI) * (COSPHI * SINTHA * COSPSI) ) * VN *
( (-SINPHI - COSPSI) + (COSPHI - SINTHA = SINPSI) ) \& VE +
( COSPHI COSTHA ) - VOWN
- 
* 
- compute no wind estimate of alpha based on inertial velocities in the
- boDY dIqECTIONS.
- 

```
```

VZABS e ABS(VZ)

```
VZABS e ABS(VZ)
    ALPHAG - ATAN(VZABS/VX)
    ALPHAG - ATAN(VZABS/VX)
    if (VZ .LT. O.O) ALPHAG - -alphag
    if (VZ .LT. O.O) ALPHAG - -alphag
c
c
-
```

- 

```


```

- 

```
-
- derive loao factor from az
- derive loao factor from az
*
*
6000 N-(-1.0. ( COS(ALPHAG) AZ SIN(ALPHAG) AX : / 32.2)
6000 N-(-1.0. ( COS(ALPHAG) AZ SIN(ALPHAG) AX : / 32.2)
                        + 1.0
                        + 1.0
-
```

- 

```


```

* 

```
*
- calgulation of alpha estimated
- calgulation of alpha estimated
*
*
*
*
7000 C: - ( (N*WT*XY) + (ODOT*R|YY) + (P*R*(R|XX-R|ZZ)) -
7000 C: - ( (N*WT*XY) + (ODOT*R|YY) + (P*R*(R|XX-R|ZZ)) -
                                    CMO*(0.5*RHO*(VT**2))*S*CB|.R ) /
                                    CMO*(0.5*RHO*(VT**2))*S*CB|.R ) /
                                ((0.5*RHO=(VT=-2)) S S XT (1.O+(XSM/XT)) )
                                ((0.5*RHO=(VT=-2)) S S XT (1.O+(XSM/XT)) )
                            AWB = 0.79 + 15.44* CL - 2.75*RMACH
                            AWB = 0.79 + 15.44* CL - 2.75*RMACH
AWBR - AWB - DTOR
AWBR - AWB - DTOR
*
```

* 

```


```

-3-D WINO EALCULATION

```
```

-3-D WINO EALCULATION

```
```

COSAWB - COS(AWBR)
SINAWB - SIN(AWBR)
VAN - ( COSPSI - COSTHA - COSAWB + SINAWB * SINTHA COSPHI SINAW * SINAWB ) VT
VAE - ( SINPSI COSTHA - COSAWB
SINPSI - SINTHA COSPHI SINAWB -
COSPSI - SINPHI SINAWB ) - VT
VAZ - (-1.0 SINTHA COSAWE.
COSTHA - COSPHI - SIMAWE ) . VY

```
```

* VWN - VN - VAN
WWE - VE - VAE
VWZ = VDWN - VAZ
* 
- 
- standard wind calcllations
- 

VW = SQRT(VWN==2 + VWE*=2)
ARG = VWN/VT
DIR = ACOS(ARG) + 3.1714
IF (VWE .LT. O.O) DIR = DIR - 3.174
VV = - 1.0-vwz
*
*

- set up new output parameters ano write output file.
RDATA(19) - AWB
RDATA(20) * WW
ROATA(21) = VV
RDATA(22) - DIR
gOATA(23) - ALPHAG / DTOR
PDATA(24) = VWN
RDATA(25) - VWE
ROATA(28) - VWZ
ROATA(27) - QDOR
ROATA(28) = VX
ADATA(29) - VZ
CALL FWRITE(UNITO.TIME.ROATA)
* 60 TO 300
ENO IF
- 

*************************************************************************)
*
CALL CLOSER(UNITI)
CALL CLOSEW(UNITO)
-

```

```

    STOP
    ENO
    - 

```


\section*{FLIGHT TEST CARD}

The following is the actual NASA flight test card used for the robustness test on the NASA F-15A HIDEC aircraft. Test point 22 is the modified split-S maneuver designed specifically to test the a estimator. The test point was flown once as printed and repeated once, substituting a 30 degree left wing down bank at 2 s's for step 22B.
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { F-15 } \\
& \text { FLT }
\end{aligned}
\] & \begin{tabular}{ccc} 
NO. 8 & NASA 335 & PAGE 6 of 6 \\
DATE
\end{tabular} \\
\hline & 20K'\%.5 - J.9M \\
\hline 16. & MIL THRUST ACCEL. 0.5-0.9M COUPLED ( 228 - 423 KCAS ) \\
\hline 17. & MIL THRUST 5-6g TURN, 0.9M COUPLED. 10 SECONDS
\[
20 K^{\prime} / 0.4-0.9 \mathrm{M}
\] \\
\hline 18. & MAX THRUST AOCEL. 0.4-0.9M UNCOUPLED ( 182 - 423 KCAS ) \\
\hline 19. & REPEAT COUFLED
\[
20 K^{\prime} / 0.6 \mathrm{M}(275 \mathrm{KCAS})
\] \\
\hline 20. & MIL THRUST 3.4 g TURN, O.6M UNCOUPLED 30 SECONDS \\
\hline 21. & REPEAT COUPLED
\[
\underline{20 K^{\prime} 0.7 \mathrm{M}}(324 \mathrm{KCAS})
\] \\
\hline 22. & \begin{tabular}{l}
PERFORM THE FOLLOWING MODIFIED SPLIT-S MANEUVER. \\
A. HDG TRUE NORTH \\
B. 30 DEG RWD BANK/2g's \\
C. ROLL INVERTED \\
D. MOD. SPLIT-S MANEUVER/4-5g's
\end{tabular} \\
\hline 23. & RTB \\
\hline
\end{tabular}

Figure I1. NASA f-15A HIDEC Flight Test Card Robustness Test

\section*{BIBLIOGRAPHY}
1. Thacker, Thomas. Use of State Estimation to Calculate Angle of Atta \(=k\) Postion Error From Flight Test Data. M.S.
Thesis, GaE/AA/85J-3, Wright-Patterson AFB, Ohio: Air Force Institute of rechnology, Oct 85.
2.McRuer, Duane, Irving Ashkenas, and Dunstan Graham. dircraft Dynamics and Automatic Control. New Jersey: Princeton University Press. 1973.
3. Laerus, Mel, YPEA. Personal interviéw, Aeronautical Systems Division, Wright-Patterson AFB, Ohio, 25 Jul 85.
4. Department of the Air Force. USAF Series F-111F Flight Manual. T. O.1F-111F-1. McClellan AFB, CA: Sacramento ALC/MMSRB, 1 Aug 83.
5. Department of the Air Force. Specification for USAF Standard Form, Fit and Function (F3) Medium Accuracy
Inertial Navigation Set/Unit. SNU 84-1. Aeronautical Systems Division, Wright-Patterson AFB, Ohio, 15 Oct 84.
6. Griffiths, Barry and E. Michael Geyer. Interfacing Kalman Filters with the Standard INS. AFWAL-TR-84-1139. WrightPatterson AFB, Ohio: Avionics Laboratory, September 84.
7. Freeman, Duane. Angle of Attack Computation System. AFFDL-TR-73-89. Wright-Patterson AFB, Ohio: Air Force Flight Dynamics Laboratory, Oct 73.

16. Jumper, Eric J., S.J. Schreck, and R.L. Dimmick.
"Lift-Curve Characteristics for an Airfoil Pitching at Constant Rate". AIAA 24 th Aercspace Sciences Meeting. AIAA-86-0117. American Institute of Aeronautics and Astronautics, Reno, NV, Jan 86.
17. Department of the Air Force. USAF Series F-15A Flight Manual. T. O. 1F-15A-1. Robins AFB, GA: WR -ALC/MMEDT, Nov 87.
18. Tanaka, Arthur Y. and Rodrigo J. Huete. F/TF-15A Flying Qualities Air Force Development Test and Evaluation. AFFTC-TR-76-48. Edwards AFB, CA: Air Force Flight Test Center, Jul 77.
19. Zaloga, Thomas. F-15A Performance Air Force Development Test and Evaluation. AFFTC-TR-77-7. Edwards AFB, CA: Air Force Flight Test Center, Jul 77. CONFIDENTIAL
20. Jones, Gerald L. and Charles P. Winters. Initial Air Force Development Test and Evaluation of the Flying Qualities of the F-15A Aircraft. AFFTC-TR-74-8. Edwards AFB, CA: Air Force Flight Test Center, Apr 74. CONFIDENTIAL

CAPTAIV JOSEPH E. ZEIS. JR.
211-48-9715

AFSC: 28:1B. FLIGHT TEST VAVIGATOR, FIGHTER

Captain juseph E. Zeis. Jr. is alizht Test Navigator assirned to the 6310 Test, Ming, F-15 Combined Test Force, Edwards Air Force Base, California. He is 29 years old.

Captain Zeis was born in Washington, D.C. on 20 September 1953. He attended Montsomery Blair llish School in Silver Sprins, Maryland, where he was involved in numerous activities. including debating team, band, and National Honor Society. He graduated third in the Class of 1976.

Following graduation, Captain Zeis attended Syracuse University, where he majored in derospace Ensineering. He obtained an appointment to the United States dir Force Academy in the Class of 1981 and entered on 27 June 1075 . As a Cadet, he was actively involved in the USAFA Debate Team, earniner four letters in that intercolleriate orsanization. lle sraduated 36 out of 8.5 and was designated a distinguished sraduate, with a Bactielor of Science defree in deronautical Enfineoring.

Followine graduation, Captain Zeis attented Undersraduate Navinator Training, where he won the ATC Commander's Trophy and the Husik Memorial Trophy as top graduate in the class. Following upgrade training at Cannon Air Force Base, Nex Mexico, he was assifred to Royal dir Force Station Lakenheath as a Weapon Systems ofricer in the F-111F. Captain Zeis served as an Instructor WSO in the 48 Tactical Fighter Wing there until returning stateside in August 1985 to participate in the Joint AFIT/lest Pilot School Program.

Captain Zeis attented the Air Force Institute of Technology at Mright-Patterson Air Forse Base, Ohio, for Master's of

Science in deronautical Engineering course work. Upon completion, he attended the United States dir Force Iesc Pilot School, where he was designated a Distinguished Graduate in December 1987. He is currently serving as Chief, F-15E Armament Branch, in the F-15 Test Force and actively flying \(F-15\) and \(F-4\) test missions.

Captain Zeis is a member of the American Institute of Aeronautics and dstronautics and the Air Force Association. He is also a member of the Edwards AFB Catholic parish and in his free time, he flies sailplanes and plays golf. He is a recipient of the Air Force Commendation Medal and Air Force Combat Readiness Medal.

Permanent Address: 1606 White Oak Drive Silver Spring, Maryland 20910

\section*{REPORT DOCUMENTATION PAGE}
\begin{tabular}{|c|c|c|c|c|}
\hline 1a. REPCRT SECSRITY CLASSIF:CATION UNCIASS LNTED & \multicolumn{4}{|l|}{10. RESIRICTIVE MARKINGS} \\
\hline 2a. SECURITY CLASSIFICATION AUTHORITY
20. DECLASSIFICATION I DOWNGRADING SChEDULE & \multicolumn{4}{|l|}{3. DISTRIGUTION/AVAILAZILITY OF REPORT Approved for public release; distribution unlinited.} \\
\hline 4. PERFORMING ORGANIEATION REPORT NUMBER(S) AFIT/CAE/AA/88J-2 & \multicolumn{4}{|l|}{5. MONITORING GRGANIZATION REPORT NUMBER(S)} \\
\hline \begin{tabular}{l}
6a. NAME OF PERFORMING ORGANIZATION \\
School of Ingineering \\
6b. OFFICE SYMBOL \\
(If applicable) \\
\(A F T T /\) Bry
\end{tabular} & \multicolumn{4}{|l|}{7a. NAME DF MONITORING ORGANIZATION} \\
\hline \begin{tabular}{l}
6c. ADORESS (City, State, and ZIP Code) \\
A1r Force Institute of Technology \\
WrAght-Patters on AFB, Ch10 45433-6583
\end{tabular} & \multicolumn{4}{|l|}{7b. ADORESS (City, State, and ZIP Code)} \\
\hline \begin{tabular}{l}
8a. NAME OF FUNDING / SPONSORING ORGANIZATION USAF Test Pilot School \\
80. OFFICE SYM8OL \\
(If applicable) ITNX
\end{tabular} & \multicolumn{4}{|l|}{9 PROCUREMENT INSTRUMENT IOENTIFICATION NUMBER} \\
\hline 8 CL ADORESS (Gity. State, and ZIP Code) & \multicolumn{4}{|l|}{10. SOURCE OF FUNDING NUMBERS} \\
\hline \begin{tabular}{l}
USAF Test Pilot School \\
Edvards Are, California 93523
\end{tabular} & PROGRAM ELEMENT NO. & \[
\begin{aligned}
& \text { PROJECT } \\
& \text { NO. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { TASK } \\
& \text { NO }
\end{aligned}
\] & \[
\begin{aligned}
& \text { WOR } \\
& A C C E
\end{aligned}
\] \\
\hline
\end{tabular}
11. Tifle (include Security Ciassification)

ANGIA GF ATMACK AND SIDEGIIP ESTIMATICN USING AN INEPTLAL REFGRENCE PLATFORM
12. PERSONAL AUTIHOR(S)
\begin{tabular}{|c|c|c|c|}
\hline 13a. TYPE OF REPORT
IS Zhesis & \[
\begin{aligned}
& \text { 138. TIME COVERED } \\
& \text { FROM TO }
\end{aligned}
\] & 14. OATE OF REPORT (Year, MOATh, Day) 1988 June & \[
\begin{array}{|l}
\hline \text { 15. PAGE COUNT } \\
168
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{16. SUPPLEMENTARY NOTATION} \\
\hline 17. & \multicolumn{2}{|l|}{Cosati cooes} & \multicolumn{3}{|l|}{\multirow[t]{4}{*}{13. SLBAETT TERMS (Continue on reverse if necesiary and ldentify by block number) F-15. Perameter Estimation, Angle of Attack. Angle of Sideslip, Angle of Attack Estimation, Inertial Navization System, Inertial Reference System}} \\
\hline FIELD & GRO', \({ }^{\text {a }}\) & SUP-GROUP F- & & & \\
\hline 1 & 04 & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
asirad (Continue on reverse if necessary and igentify by block number) \\
Thesis Chairman: Dr. Robert Calico \\
Professor of Aeronautical Engineering
\end{tabular}}} \\
\hline & & & & & \\
\hline \multicolumn{4}{|l|}{20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
Q UNCLASSIFIEDNNLIMITED DI SAME AS RPT. D OTIC USERS} & 2i. ABSTRACT SECURITY CLASSIFICATIO UNCLASSIFTED & \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
22a. NAME OF RESPONSIBLE INDIVIDUAL \\
Dr. Rodert Calico
\end{tabular}} & 22b. TELĒPMONE (Inclưo Ares Code) AV 785-2362 & 22c. OFFICE SYMBOL ANIT/ENY \\
\hline
\end{tabular}

Recent advances in the stability, accuracy and reitability of inertial navigation and reference systems now allow angle of attack and sideslip information to be calculated from internal airemaft systems and a central air data computer. Conflicting demands for inflight angle of attack information and post-flight argle of attack and sideslip data reduction requires that two separata methods be developed. Infifght algorithms require fast, accurite angle of attack, with no assumptions on vertical wind. Post-flight usage, however. demands great accuracy with no assumptions on either sideslip or vertical windage. From the aircrait equations of motion, angle of attack and sideslip algorithms will be developed, with velocity and angular rate inputs of the type expected from an aircraft central air data computer and inertial navigation system. A computer program Hill then be developed to validate these equations. A Kalman filter algorithm hill also be designed to aid in estimating data output from these sources.

Fifght test will consist of two parts. Initially, signals will be picked of a standard inertiai reference system on a NASA F-15A aircraft. These signals will be processed using the inflight algorithn developed. The estinated angle of attack output will then be compared to angle of attack as measured by a flight test boom. Finally, a demonstration will be conducted on the NASA F-15A to determine usability and accuracy of inertially derived angle of attack informatian in a highly maneuvering environment.```


[^0]:    Assuming that the matrices $Q$ and $R$ are stationary, the

