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ABSTRACT

The blast overpressure acting on a rigid target is known to vary

between the normally reflected overpressure and the incident

overpressure as a function of the angle between the target and the

direction of travel of the blast wave. Literature guidance for

determining the exact effects of angle of incidence are unclear,

particularly when considering the negative phase. This paper presents

the results from a series of well controlled experiments where pressure

transducers are used to record the pressure-time history acting on the

face of a large, rigid target at various angles of incidence for varying

sizes of hemispherical PE4 charge and stand-off distances. The test

data demonstrated remarkable repeatability, and excellent agreement

with semi-empirical predictions for normally reflected overpressures.

The oblique results show that peak overpressure, impulse and duration

are highly dependent on angle of incidence for the positive phase, and

are invariant of angle of incidence for the negative phase.

Keywords: Angle of Incidence; Blast; Experimental Validation; Negative

Phase; Positive Phase; UFC-3-340-02
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p
r, max

peak reflected overpressure

p
r, min

peak reflected underpressure

p
so, max

peak incident overpressure

p
so, min

peak incident underpressure

R distance from charge centre (stand-off)

R
Gi

distance from charge centre to gauge i, where i = 1:4

t time

t
a

time of arrival of blast wave

t
d

positive phase duration

negative phase duration

W charge mass

Z scaled distance

θ angle of incidence

θ
Gi

angle of incidence for gauge i, where i = 1:4

1. INTRODUCTION
A large amount of energy is released after the detonation of a high explosive material, causing

rapid expansion of the surrounding air and generating a blast wave. As this blast wave

propagates outwards away from the source of the explosion, the compressible nature of air

causes the blast wave to ‘shock up’, resulting in an effectively discontinuous increase in

pressure, density and energy of the travelling shock [1]. The pressure profile associated with a

blast wave takes the form of the idealised pressure-time history shown in Figure 1: ambient

pressure (p
0
) is recorded until the arrival time of the blast wave (t

a
), followed by a sharp rise to

peak pressure and temporal decay back to ambient conditions. Immediately after the end of the

positive phase (the duration of which is defined as t
d
) comes a subsequent period of below-

atmospheric (‘negative’) pressure caused by an inertial response and over-expansion of the

previously compressed air. The duration over which negative phase pressures are acting is

defined as . The term ‘overpressure’ refers to the pressure increase above normal atmospheric

conditions caused by the blast wave, which is relevant for design purposes. Similarly the term

‘underpressure’ refers to blast pressures which are below atmospheric conditions.

−td
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Figure 1. Idealised pressure-time profile for a blast wave
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If a blast wave is propagating through free air, the blast wave is known as an incident

wave, and the peak positive overpressure and negative phase underpressure are defined as

p
so, max

and p
so, min 

respectively. Here, the peak overpressure and underpressure are defined 

as the maximum or minimum pressure value relative to atmospheric conditions. The

impulses associated with the positive and negative phase, i
so

and , are the temporal integral

of the blast overpressures over the positive and negative phase respectively. If a blast wave

impinges normally onto a rigid target, conservation of mass, momentum and energy at the

interface results in an increase in the blast pressures, which are given the subscript _r to

denote ‘reflected’ values. The reflected overpressure is at least twice the magnitude of the

incident overpressure for weak shock conditions, but can be significantly higher for stronger

shocks.

1.1. PREDICTING BLAST LOADS ON STRUCTURES
Kingery and Bulmash [2] provide a semi-empirical method for predicting blast wave

parameters based on a compilation of a wide range of test data and computer analyses. The

blast parameter relationships derived from this body of work are usually presented

graphically as scaled distance relationships, where the scaled distance, Z, is given as

(1)

where R is the distance (or stand-off) from the explosive to the point of interest (m) and W

is the mass of explosive (kg of TNT equivalent). Hopkinson-Cranz scaling states that

similarity exists between the blast waves produced at identical scaled distances from two

explosive charges of similar geometry but different sizes [1]. That is, the blast pressure

profile at a distance of R from an explosive mass W will be similar to the blast pressure at a

distance of KR from a mass of K3W, where K is an arbitrary length scale factor. In this pair

of scenarios, the peak overpressure will be the same, whilst the time-scales will be different

by the scale factor K. The scaled distance relationships therefore have a wide range of

application and form the basis of literature guidance including the US Department of

Defence Design Manual UFC-3-340-02, Structures to Resist the Effects of Accidental

Explosions [3], and the computer code ConWep [4].

The angle of incidence between a target and a blast, θ, is defined as the angle between the

outward normal of the reflecting surface and the direct vector from the explosive charge to

that point [5]. If θ = 0.0°, the surface will be subjected to the fully reflected overpressure,

and if θ = 90°, the blast wave will have incident values as it is propagating parallel (or ‘side-

on’, hence incident values having the subscript _so) to the target surface. The blast

overpressure for any oblique blast wave impinging at an angle of incidence between these

two extremes will comprise some combination of the reflected and incident values.

For positive phase parameters, the effect of angle of incidence is generally well

understood, however the guidance in the literature appears contradictory. Positive phase

reflection coefficients can be determined graphically – from curves based on either semi-

empirical data (Figures 2-193 and 2-194(a) and (b) in [3], repeated here in Figures 2(a) and

(b)) or analytical solutions of shock equations (Figure 5-8 in [6]) – or by using simplified

expressions. Randers-Pehrson and Bannister [7] suggest a trigonometric relation for

calculating the oblique blast overpressure as a function of p
r, max

, p
so, max

and θ, and

Remennikov [5] suggests using full reflected values for θ ≤ 45°. It is known that the angle

of incidence affects the pressure and the impulse differently. Furthermore, for θ > 45°, 

=Z
R

W 1/3

−iso
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Figure 2. (a) Reflection coefficient versus angle of incidence, (b) oblique
scaled impulse versus angle of incidence (adapted from Figures 2-193
and 2-194(a)/(b) in [3]), and (c), formation of the Mach stem
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the reflected shock front and propagating incident shock front will coalesce to form the

Mach Stem [6], which can lead to large amplification in the oblique pressure, often

exceeding the normally reflected overpressure at that point. This phenomenon is illustrated

schematically in Figure 2(c).

The negative phase is frequently ignored in the literature, despite it having been shown

that the negative phase can be of significance for flexible structures at relatively large scaled

distances [8-10]. Because of its perceived lack of importance, there has been no research into

the effect of angle of incidence and there remains very little guidance for quantifying the

negative phase for oblique reflection. As stated in the methodology manual for the US Army

Blast Effects Design Spreadsheet, SBEDS [11]:

‘so little is known about the negative phase blast load, including the effect of angle of

incidence… the lack of a well-validated method for predicting the negative phase blast

load is a legitimate reason for using the traditional approach of ignoring negative

phase blast load when calculating component response.’

Accordingly, SBEDS recommends using the full reflected negative phase underpressure

for θ ≤ 45° and the full incident negative phase underpressure for θ > 45°. There remains an

opportunity, therefore, to study oblique blast waves with a view to providing more rigid

guidance for researchers and practising engineers. This paper presents the results from a

series of well controlled experiments to determine the effects of angle of incidence on

positive and negative phase blast parameters.

2. EXPERIMENTAL SETUP
A series of experimental trials was conducted at the University of Sheffield Blast &

Impact Laboratory in Buxton, Derbyshire, UK. Four Kulite HKM pressure gauges were

embedded flush to the surface of small steel plates which were affixed to the outer surface

of a large, reinforced concrete bunker wall using M10 bolts such that the bolts sat flush

to the face of the steel plates, maintaining a smooth, regular reflecting surface for the

blast wave to propagate over. The primary pressure gauge, labelled G1, was located at

ground level. Two subsequent pressure gauges, G2 and G4, were also located at ground

level, 2 m and 3 m along the bunker wall away from G1. A final pressure gauge, G3, was

situated in line with G1, 2 m vertically above it. The pressure gauge location can be seen

in Figure 3.

Hemispherical PE4 explosive charges were placed on a 50 mm thick steel anvil, in line with

G1. The charges sat on a level, flat concrete ground slab which was swept clean after each test,

following the approach set out in Ref. [12]. This enabled the detonation to be considered as a

hemispherical surface burst propagating over a rigid ground surface. Pressure was recorded

using a TiePie Handyscope 16-Bit Digital Oscilloscope at a sample rate of 200 kHz, triggered

via a voltage drop in a breakwire embedded in the charge periphery to synchronise the

recordings with the detonation. The distance from the centre of the charge to the bunker wall

was measured for each test using a Hilti laser range meter and was triangulated against two

points on the bunker wall to ensure the charge was orthogonal to G1.

The charge masses, W, and normal distances from the bunker wall, R
G1

, were selected to

ensure the maximum amount of data overlap, i.e. a range of angles of incidence for the same

scaled distance. With reference to Figure 4, for each series of three tests to have a common

scaled distance (and since R
G2

= R
G3

) the expression in Equation 2 must be satisfied.
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Figure 3: Pressure gauge location and general test arrangement
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Figure 4: Choice of charge masses to achieve similar scaled distances
at different angles of incidence

(2)

where W
1
, W

2
and W

3
are the charge masses used in tests 1, 2 and 3, R

G1
is the normal

distance from the explosive to G1, and R
G2

and R
G4

are the slant distances from the explosive

to gauge G2 and G4 respectively, as per Figure 3. If the normal distance is constant for the

= = =
R

W

R

W

R

W
Z

( ) ( ) ( )

G G G1

1

1/3

2

2

1/3

4
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three tests, then Equation 2 can be rearranged to express W
2

and W
3

in terms of W
1

and R
G1

,

as in Equation 3.

and (3)

For normal distances of 4 m and 6 m, Equation 3 gives ratios of W
1
: W

2
: W

3
as 1.00: 1.40:

1.95 and 1.00: 1.17: 1.40 respectively. This arrangement maximises the potential of the data

to yield useful scaled distance-angle of incidence relationships. Tests were also conducted at

2 m normal stand-off to give angles of incidence ≥ 45°. A summary of the test plan is given

in Table 1, which shows normal and slant scaled distances and angles of incidences for each

test. A total of 18 tests were conducted. Scaled distances are in terms of kg of TNT

equivalent, using an equivalence factor of 1.20 for PE4 as determined previously by the

authors [13, 14].

3. CURVE FITTING TO EXPERIMENTAL DATA
A short duration of artificial ringing following the shock front is a common feature of

experimental blast trials [9, 15] and the peak recorded pressure is often a misrepresentation of

the applied blast pressure. Because of this, and the tendency for the signals to display some

degree of electrical noise, the experimental data was processed using curve fitting techniques.

The positive phase of the temporal variation of blast overpressure, p
r
(t), can be

represented by the ‘modified Friedlander equation’ [16], shown in Equation 4.

(4)

where t is time, b is a coefficient that controls the decay of the exponential curve and p
r, max

and t
d

are the peak reflected overpressure and positive phase duration as introduced
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Table 1. Summary of test plan

R
G1

W Z(m/kg1/3) θ (°)

Test (m) (g PE4) G1 G2 G3 G4 G1 G2 G3 G4

1-2 2 250 2.99 4.23 4.23 5.39 0.00 45.0 45.0 56.3

3-4 2 210 3.17 4.48 4.48 5.71 0.00 45.0 45.0 56.3

5-6 4 350 5.34 5.97 5.97 6.68 0.00 26.6 26.6 36.9

7-10 4 250 5.98 6.68 6.68 7.47 0.00 26.6 26.6 36.9

11-12 4 180 6.67 7.45 7.45 8.33 0.00 26.6 26.6 36.9

13-14 6 350 8.01 8.45 8.45 8.96 0.00 18.4 18.4 26.6

15-16 6 290 8.53 8.99 8.99 9.54 0.00 18.4 18.4 26.6

17-18 6 250 8.96 9.45 9.45 10.02 0.00 18.4 18.4 26.6



previously. A Friedlander curve was fit to the positive phase of the experimental data, where

the positive phase duration was estimated from the pressure readings and a least-squares

approach was adopted to determine the values of b and p
r, max

which best represented the

data. Data for the first ˜25% of the positive phase was omitted to prevent the sensor ringing

from influencing the curve fit. This procedure was adopted for all tests with the exception of

Tests 1-4, where the peak overpressure for the oblique shots (G2, G3 and G4) was estimated

from the pressure readings because of the presence of the Mach Stem, which resulted in a

non-regular decay of the positive phase.1 The arrival time was given directly by the

experimental recordings. Numerically integrating the recorded pressure time history may be

sensitive to sensor ringing, hence the positive phase impulse was determined from the

integral of the fitted Friedlander equation, shown in Equation 5.

(5)

Similarly, a least-squares curve was fit to the recorded data from the negative phase. The

cubic expression of Granström [17], given in Equation 6, was used to approximate the negative

phase based on the findings from previous validation work conducted by the current authors [9].

(6)

Again the negative phase duration, , was estimated from the pressure readings and the

peak negative phase underpressure, p
r, min

, was given by the curve fit. To construct an

idealised negative phase from the experimental recordings, any features of the second shock

were removed from the data set used for the curve fit, as was data which was judged to have

been recorded after the arrival of the diffraction wave from the top edge of the bunker wall.

Estimations of negative phase duration were adjusted to take this into account. The idealised

negative phase impulse, therefore, is given as the integral of Equation 6, which is shown here

in Equation 7.

(7)

4. EXPERIMENTAL RESULTS
The compiled experimental results are presented in this section, with time and impulse

values scaled by W−1/3 to allow for comparison with semi-empirical predictions. Positive

phase parameter predictions are taken directly from ConWep [4], and negative phase

parameter predictions are taken from relationships developed by the current authors

(Equations 3 and 4 in Ref. [9]). Both are based on data presented in UFC-3-340-02 [3].
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1For these tests, the angles of incidence were 45° or greater, meaning that the Mach stem had formed by the time

the blast wave had reached the gauge location. For these traces, the overpressure-time history could not be

represented by a simple ‘Friedlander’ equation (See Figure 11 in Section 5.2), hence the peak overpressures were

estimated from the data rather than applying the curve fit.



Whilst the complete data set is mainly presented graphically in this section, tabulated

parameters for each test are available in Tables A1, A2 and A3 in the Appendix.2 It is the

authors’ intention to make these results available in the literature as a complete data set for

use in validation of numerical modelling approaches and benchmarking of physical test data.

Figure 5 shows scaled arrival times versus scaled distance for all tests. The mean arrival

time for each set of repeat tests is presented in Figure 6, normalised against the semi-

empirical predicted arrival time.

Scaled positive phase parameters – i.e. pressure, impulse and duration – are presented in

Figure 7 versus scaled distance. Reflected predicted values are shown by the solid lines, and

incident values by the broken lines. Again, the mean value from each set of repeat tests has been

normalised against the semi-empirical prediction, where the pressure and impulse are

normalised against the full reflected values at that scaled slant distance. Normalised positive

phase values are shown in Figure 8. Scaled negative phase parameters are shown in Figure 9,

with normalised values shown in Figure 10. Again, oblique experimental parameters have been

normalised against fully reflected parameters to show the effects of angle of incidence.
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Figure 9. Negative phase parameters versus scaled distance for 
(a) underpressure, (b) scaled impulse, and (c) scaled duration. UFC-3-
340-02 [3] semi-empirical reflected and incident values shown by solid
and broken lines respectively
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(a) underpressure, (b) scaled impulse, and (c) scaled duration



To enable better characterisation of the effects of angle of incidence, the mean value of the

normalised data was determined for each value of θ, assuming angle of incidence effects are

invariant of scaled distance for this test series. This is not strictly true, since, as shown in

Figures 2(a) and (b), the reflection coefficient is related to the intensity of the side-on

overpressure, which itself varies with scaled distance. However, this approximation can be

justified for the following reasons. Firstly, the tests in which the gauges were located at

intermediate values of angle of incidence (18.4° ≤ θ ≤ 36.9°), i.e. tests 5-18, all lie within the

far-field where weak shock conditions exist and angle of incidence effects will not change with

scaled distance. This can be seen in the reflection coefficient plot in Figure 2(a) – the reflection

coefficient is invariant of angle of incidence for θ ≤ 45° at small incident overpressures (i.e.

those expected in tests 5-18). Secondly, the tests in which the gauges were located at large

angles of incidence (θ ≥ 45°) lie within a narrow band of scaled distances, over which the angle

of incidence effects will be relatively constant. Thirdly, the normally reflected values will not

exhibit any angle of incidence effects regardless of the relatively large range of scaled distances

in which they are situated. Table 2 shows the mean values of normalised positive and negative

phase parameters for each angle of incidence, where a value >1 shows an increase in pressure,

impulse or duration from angle of incidence effects, and a value <1 shows a decrease.

5. DISCUSSION
5.1. NORMAL REFLECTION
The test data has demonstrated remarkable repeatability and excellent agreement with semi-

empirical predictions for the normally reflected recordings. The largest relative difference

between experiment and prediction occurred in Test 2, where the peak recorded

overpressure was 8.4% greater than the UFC-3-340-02 prediction. The remainder of the

tests typically lie within +/-5% of the semi-empirical predictions for all parameters, as can

be seen in Figures 8(a-c) and 10(a-c).

When this experimental spread is averaged out over the entire test series, as in the first

row of Table 2, the agreement becomes even more apparent. The typical relative difference

between positive phase durations is within 3% of the predicted values, with the positive

phase overpressure and impulse, and negative phase underpressure, impulse and duration

exhibiting a typical difference of ˜1%. This strongly implies that blast parameters published

in the literature can be used with confidence as a means for quantifying the normally

reflected blast pressure a target will be subjected to. Interestingly, the negative phase
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Table 2. Mean values of normalised positive and negative phase
parameters for each angle of incidence, θ

Mean values of normalised parameters

Positive phase Negative phase

θ (°) p
r, max

i
r
/W1/3 t

d
/W1/3 p

r, min
i
r

_

/W1/3 t
d

_

/W1/3

0.00 0.992 1.016 0.972 0.998 0.995 0.997

18.4 0.989 0.999 0.921 0.988 0.969 0.981

26.6 0.982 0.976 0.929 0.978 0.977 1.000

36.9 0.959 0.940 0.927 0.979 0.966 0.987

45.0 1.039 0.871 0.869 0.996 1.016 1.021

56.3 1.414 0.819 0.814 0.994 1.015 1.021



parameters, despite receiving little attention in the literature, appear to offer a valid and

accurate approximation of the negative phase load.

Furthermore, the test data suggests that it is possible to produce reliable and highly

consistent, repeatable results if test conditions are carefully controlled; the implications of

which have recently been discussed by the current authors [12]. This is in agreement with

findings from other researchers [18-20].

5.2. ANGLE OF INCIDENCE EFFECTS ON POSITIVE PHASE PARAMETERS
The arrival times for all tests appear to be in very good agreement with the semi-empirical

predictions, as can be seen in Figures 5 and 6. For far-field loading the scaled arrival time is

a function only of scaled slant distance, on account of the reflected shock not possessing

sufficient velocity to overtake the incoming incident wave due to weak shock conditions.

This is confirmed by the experiments, which exhibit no angle of incidence effects for arrival

time. Also, arrival time is a direct measure of the energy of the explosive and it is easier to

determine a definite value when compared to other parameters such as pressure and impulse.

Good agreement and repeatability of the arrival time gives confidence that the experimental

tests are being well controlled and that the physical processes are behaving as expected.

With reference to Table 2, the oblique reflected overpressure can be seen to gradually

decrease relative to the normally reflected overpressure for increasing angles of incidence.

This continues until θ ≥ 45°, where a large amplification in peak overpressure is seen, which

occurs as a result of the Mach Stem (see Figure 2(a)). For structures whose response time is

small in relation to the duration of the blast, the dynamic displacement is primarily driven by

the peak overpressure. However, for structures with long response time and/or for short load

durations, the dynamic displacement is primarily driven by the impulse. It is worth pointing

out, therefore, that the Mach Stem has a relatively insignificant effect on the positive phase

impulse, which can be seen to gradually decrease with increasing angle of incidence. A point

on a target with angle of incidence of θ = 56.3° to the blast source will be subjected to a peak

overpressure that is 41% larger than the normally reflected overpressure at that point,

however will only be subjected to 82% of the normally reflected impulse.

Interestingly, the reduction in impulse with increasing angle of incidence appears to tie in

directly with a reduction in positive phase duration. This can be explained by the fact that at

higher angles of incidence, the reflected blast wave has an increasingly large component of

velocity directed along the target surface. This causes the blast pressure to ‘clear’ laterally

along the target, as flow is initiated from the higher pressure reflected regions to the lower

pressure ambient regions immediately adjacent to the loaded part of the target, in the same

mechanism as blast wave clearing [21]. This effect becomes more apparent at higher angles

of incidence, both with increasingly non-normal impingement and with the increasing

magnitude of lateral velocities associated with the Mach Stem.

Figure 11 shows, as an example, pressure recordings for Test 2 at G4, and Test 5 at G1,

which have similar scaled distances of ~5.35 m/kg1/3 but different angles of incidence of 0.0°

and 56.3° respectively (see Table 1). Normally reflected overpressure and underpressure from

UFC-3-340-02 [3] are included for comparison. The experimental data was time-shifted such

that the arrival time corresponded to that predicted by ConWep (for this figure only). It can be

seen that for Test 2, the increase in overpressure caused by the Mach Stem (relative to the

normally reflected pressure in Test 5) has a short duration, and is followed by a marked

decrease in pressure from 9.5 ms/kg1/3 onwards. This lateral expansion of the air is a common

feature for all tests at θ = 56.3° and adequately explains the shortening of the positive phase

duration.
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5.3. ANGLE OF INCIDENCE EFFECTS ON NEGATIVE PHASE PARAMETERS
In contrast to positive phase parameters, which displayed a strong dependence on angle of

incidence, there appear to be no such effects for the negative phase. Mean normalised parameters

in Table 2 are within +/-5% of the normally reflected values for all angles of incidence. Indeed,

the negative phase durations for Test 2 G4 and Test 5 G1, seen in Figure 11(b), appear to be

almost identical, despite one of the traces being measured at θ = 0.0° and one at θ = 56.3°.

This raises an interesting prospect, in that the negative phase is invariant of angle of

incidence. Because the negative phase is an inertial over-expansion of the previously

compressed air, it stands to reason that there should be no directionality effects. This over-

expansion of the air is driven by the residual internal energy of the air at the end of the

positive phase, which is a feature of the distance from the source of the explosion only.

Negative phase parameters published in this article do not appear to be tending towards

incident values in the same way that the positive phase parameters are. It is postulated that
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Figure 11. Overpressure-scaled time histories for Test 2 at G4, and Test 5
at G1 for (a) positive phase, and (b) positive and negative phase.
Normally reflected overpressure and underpressure from UFC-3-340-02
[3] are included for comparison
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the ‘reflected’ negative phase parameters published in the literature may simply be caused by

the presence of a rigid object limiting the available volume for the air to expand into 

(a quarter sphere, for hemispherical blast waves impacting a large, rigid target), and that

‘incident’ negative phase parameters represent a situation where the air is free to

hemispherically expand outwards.

The shortened positive phase duration, decreased magnitude of positive phase impulse

and unchanged negative phase impulse (i.e. increased negative phase impulse relative to the

positive phase) suggests that the negative phase may have an even greater impact on flexible

systems subjected to non-normal blast waves than previously thought. More research is

required on this topic, however this article offers useful insights into the effects of angle of

incidence on positive and negative phase blast parameters.

6. SUMMARY
This paper presents the results from a series of well controlled experiments investigating

the effects of angle of incidence on positive and negative phase blast parameters. Pressure-

time histories were recorded at different locations using pressure transducers embedded

within the outside surface of a large, rigid, reinforced concrete bunker wall. Hemispherical

PE4 charges between 180-350 g were detonated at normal distances of 2, 4, and 6 m from

the bunker wall, giving scaled distances between 2.99-10.02 m/kg1/3 and angles of

incidences up to 56.3°.

The normally reflected pressures showed remarkable agreement with semi-empirical

predictions from UFC-3-340-02, with the majority of experimental parameters lying within

a range of +/-5% of the predicted values for both the positive and negative phase.

Positive phase parameters showed a marked dependence on the angle at which the blast

wave strikes the target. Peak overpressure increases caused by the Mach Stem were observed

for angles of incidence of 45° and greater, however the impulse and positive phase duration

was seen to significantly decrease with increasing angle of incidence. A ~20% reduction in

positive phase duration was observed for θ = 56.3° when compared to the normally reflected

duration at that scaled slant distance, which may have been caused by progressive lateral

‘clearing’ of the blast along the face of the target.

Negative phase parameters were shown to be independent of angle of incidence, as the

negative phase is primarily an inertial response of the air rather than a feature of wave

impingement.
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Table A1. Experimental arrival times. Refer to Table 1 for charge mass,
scaled distance and angle of incidence

t
a

(ms)

Test G1 G2 G3 G4

1 2.268 4.219 4.060 6.103

2 2.186 4.148 4.035 6.077

3 2.309 4.332 4.183 6.241

4 2.360 4.291 4.193 6.211

5 6.692 8.110 7.823 9.533

6 6.784 8.059 7.839 9.431

7 7.070 8.381 8.190 –

8 7.066 8.400 8.192 –

9 6.907 8.218 8.072 9.631

10 7.010 8.228 8.126 9.574

11 7.455 8.745 8.617 10.15

12 7.367 8.678 8.580 10.10

13 11.94 12.89 12.78 13.95

14 12.01 12.89 12.83 13.92

15 12.14 13.09 13.01 14.17

16 12.19 13.15 13.01 14.21

17 12.39 13.33 13.20 14.41

18 12.40 13.33 13.23 14.39

Table A2. Experimental positive phase parameters

p
r, max

(kPa) i
r

(kPa.ms) t
d

(ms)

Test G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4

1 337.5 145.0 150.0 120.0 147.5 86.82 85.34 61.99 1.830 1.941 1.934 2.172

2 362.5 144.0 148.0 115.0 155.0 86.26 89.22 63.99 1.870 2.017 2.293 2.123

3 256.3 129.0 136.0 118.0 136.3 80.97 80.13 57.12 1.790 1.885 2.043 2.002

4 262.5 135.0 133.0 113.0 131.3 76.19 80.32 56.00 1.780 1.981 2.033 2.039

5 91.29 68.88 67.70 56.17 90.42 73.26 78.02 62.23 2.780 2.840 2.747 3.017

6 87.59 73.85 71.14 58.81 91.10 75.27 76.08 64.07 2.513 2.661 2.897 2.819

7 73.90 61.08 60.21 – 68.77 59.86 59.77 – 2.380 2.489 2.610 –

8 69.52 61.78 56.17 – 70.96 59.95 58.26 – 2.459 2.470 2.708 –

9 70.91 60.16 64.10 47.89 73.19 59.52 63.98 51.16 2.453 2.482 2.828 2.560

10 70.32 58.44 61.66 47.37 72.59 60.39 60.94 53.59 2.564 2.592 2.855 2.966

11 60.92 50.68 50.22 39.23 55.96 47.06 47.27 41.77 2.324 2.415 2.493 2.547

12 56.21 50.32 46.55 38.34 55.68 47.24 50.25 38.79 2.351 2.392 2.600 2.363

13 41.97 39.87 40.13 32.93 55.81 51.99 53.64 44.63 2.947 3.057 3.097 3.240

14 42.71 38.82 39.80 34.28 58.51 51.16 54.74 46.86 3.074 3.225 3.113 3.386

15 39.85 34.77 37.78 30.90 49.28 44.93 47.33 42.59 2.815 2.963 3.110 3.123

16 39.30 36.87 37.32 32.33 48.42 46.31 45.37 44.82 2.844 2.857 3.056 2.887

17 36.11 32.80 35.44 28.79 45.01 42.94 43.40 36.07 2.786 2.868 2.896 2.703

18 36.47 32.01 36.07 28.26 45.40 41.89 43.67 39.61 2.764 2.928 2.913 2.929

APPENDIX



Table A3. Experimental negative phase parameters

p
r, min

(kPa) i
r

_
(kPa.ms) t

d

_
(ms)

Test G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4

1 26.48 17.95 18.13 13.50 120.6 89.24 89.80 70.04 8.100 8.840 8.806 9.225

2 27.07 16.81 18.23 13.63 123.3 85.42 86.86 69.78 8.100 9.035 8.472 9.100

3 24.62 16.30 16.82 13.35 106.6 78.72 79.24 64.24 7.700 8.584 8.374 8.557

4 25.01 16.81 17.09 13.84 109.0 80.65 80.50 66.56 7.750 8.528 8.374 8.550

5 13.80 12.39 11.66 11.66 81.76 73.53 67.10 65.27 10.53 10.55 10.23 9.950

6 13.92 12.02 12.12 11.57 77.55 70.88 69.95 66.70 9.903 10.48 10.26 10.25

7 12.63 10.94 11.72 – 64.31 58.63 60.63 – 9.050 9.530 9.200 –

8 12.43 11.48 11.87 – 62.22 60.22 60.78 – 8.900 9.330 9.100 –

9 12.54 10.70 11.79 9.738 64.45 58.96 60.35 50.99 9.140 9.800 9.100 9.309

10 12.85 10.80 11.42 9.987 63.09 55.78 55.39 48.65 8.726 9.180 8.620 8.660

11 11.67 10.36 10.49 8.293 53.97 49.18 49.52 39.65 8.221 8.440 8.390 8.500

12 10.57 10.53 9.530 9.168 49.25 49.93 45.14 44.04 8.282 8.430 8.420 8.540

13 9.381 8.495 8.696 8.552 56.03 50.42 51.96 49.60 10.62 10.55 10.62 10.31

14 9.016 9.171 8.678 8.661 53.35 54.59 49.11 47.23 10.52 10.58 10.06 9.694

15 8.702 8.494 8.920 7.718 49.14 46.59 45.56 42.15 10.04 9.750 9.080 9.710

16 9.172 8.049 8.519 7.724 51.41 44.33 47.61 41.28 9.965 9.790 9.934 9.500

17 8.268 7.770 8.103 7.422 43.85 42.83 42.85 40.45 9.429 9.800 9.400 9.689

18 8.259 8.219 8.371 6.589 44.79 44.12 44.06 35.13 9.640 9.544 9.356 9.479
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