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ANGSD: Analysis of Next Generation
Sequencing Data
Thorfinn Sand Korneliussen1*, Anders Albrechtsen2 and Rasmus Nielsen1,3

Abstract

Background: High-throughput DNA sequencing technologies are generating vast amounts of data. Fast, flexible and

memory efficient implementations are needed in order to facilitate analyses of thousands of samples simultaneously.

Results: We present a multithreaded program suite called ANGSD. This program can calculate various summary

statistics, and perform association mapping and population genetic analyses utilizing the full information in next

generation sequencing data by working directly on the raw sequencing data or by using genotype likelihoods.

Conclusions: The open source c/c++ program ANGSD is available at http://www.popgen.dk/angsd. The program is

tested and validated on GNU/Linux systems. The program facilitates multiple input formats including BAM and

imputed beagle genotype probability files. The program allow the user to choose between combinations of existing

methods and can perform analysis that is not implemented elsewhere.

Keywords: Next-generation sequencing, Bioinformatics, Population genetics, Association studies

Background
Next generation sequencing (NGS) platforms can gen-

erate large amounts of sequencing data, but often with

high sequence error rates. For low to medium depth data

fast and efficient implementation are needed to handle

the data. Arguably, downstream analyses should be per-

formed in a probabilistic context by working with the raw

data in form of genotype likelihoods (GL) [1]. ANGSD

is a novel and efficient program that allows for multiple

error models used within the GL calculation. The remain-

der of this section describe the typical work flow used

for analyzing data. The implementation section lists and

describes existing (published) methods and new methods

that are available in our tool. The majority of methods in

ANGSD are not implemented in other software and in the

results section we have therefore limited the comparisons

with existing tools to basic analyses of SNP-discovery and

genotype calling.

The first step in a bioinformatic pipeline for analyz-

ing NGS data is usually to align the reads to a reference

*Correspondence: thorfinn@binf.ku.dk
1Centre for GeoGenetics, Natural History Museum of Denmark, Copenhagen,

Denmark

Full list of author information is available at the end of the article

genome using a fast short read aligner [2-5]. State-of-the-

art alignment programs will, in addition to inferring the

genomic start position of the reads, provide additional

information such as the mapping quality scores (mapQ),

and possibly also indicate which parts of an alignment

may be affected by indels. Information regarding sequenc-

ing quality is included in quality scores (qscores), typically

provided by the sequencing technology, and often modi-

fied using downstream re-calibration [6-8]. Based on the

aligned reads, and associated mapping and sequencing

quality scores, a genotype likelihood (GL) is then calcu-

lated. The GL is (up to a scaling factor) the marginal

probability of the sequencing data given a genotype in a

particular individual, in a particular site. Most data anal-

yses then proceed by calling SNPs and genotypes from

the GLs, typically combining information from multi-

ple individuals, often also combining the GL with prior

information, such as the inferred distribution of allele fre-

quencies. For many applications based on high-quality

deeply sequenced data, this is a near-optimal strategy

for analyzing the data. However, for low or medium

coverage data, there is often a distinct statistical advan-

tage in working on the raw data, or GLs, rather than

called genotypes in downstream analyses [9-14]. Work-

ing directly on GLs facilitates the incorporation of sta-

tistical uncertainty regarding genotypes. The uncertainty
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regarding genotypes in low coverage data arises from sev-

eral sources, including mapping and sequencing errors,

and the random sampling of (haploid) reads from a diploid

genotype.

The de facto standard format to store and distribute

NGS data in, is the BAM format which allows for random

access within the sequencing data. When analyzing many

individuals simultaneously, due to memory constraints, it

is often convenient to analyze regions or single sites inde-

pendently instead of reading all the data into memory.

This is achieved by reading parts of each BAM file, align-

ing and then passing the aligned sites for analysis. Here

we present an open source mutithreaded C/C++ program

called ANGSD with this capability. ANGSD provides easy

user access to methods for population genetic analyses

and association mapping utilizing the full information of

the data and taking uncertainty regarding SNP calling

and genotype calling into account, by working directly on

user-provided, or de novo estimated, GLs.

Examples of existing general multisample NGS analysis

programs are the singlethreaded SAMtools [15] (C) and

the multithreaded GATK [8] (Java). There are many dif-

ferences between the three programs, but the key advan-

tage with ANGSD is that it 1) allows for multiple input

data types relating directly to raw sequencing data (text

mpileup, binary genotype likelihood files, VCF files), 2)

allows the user to choose between multiple methods for

intermediate analysis such as different ways to calcu-

late GL and 3) includes implementations of a large set

of downstream analyses not implemented in any other

software.

Implementation
Input formats

ANGSD can currently parse a variety of different input

formats including binary BAM files and mpileup text

files. Genotype likelihoods input are supported for simple

genotype likelihood formats and it also supports geno-

type (posterior) probabilities in the BEAGLE [16] for-

mat. ANGSD can perform various analyses, but some

of these can be limited by the chosen input format e.g.,

sequencing depth calculation can only be performed on

the basis of raw sequencing files and not GLs. The depen-

dency between the different analysis and input formats

is depicted in Figure 1. Indexed BAM files facilitate ran-

dom access and this feature is implemented in ANGSD.

Random access is not supported for other file formats.

Methods

Some analyses can be performed on a single-site basis

such as simple allele frequency estimation (MAF) and

site-wise association testing. For analyses on genome

wide data, the work-flow is divided into two steps: 1)

ANGSD generates specific input data for the analysis. 2)

A secondary associated program is used to perform the

downstream analysis based on the ANGSD output [17].

For simple tests such as ABBA-BABA/D-statistic [18] the

secondary program can be a simple Rscript, but for com-

putational intensive methods it can be a multithreaded

c/c++ program. A description of the main methods are

found in Table 1. ANGSD allows a number of different

types of input data, but not all analyses can be performed

if the input data is not sequencing data. For example, only

a few methods are applicable if the input data is genotype

probabilities, e.g., likelihood ratio test for SNP calling can

only be performed on GLs and not genotype probabilities

(posteriors probabilities) (see Figure 1).

Genotype likelihoods

For low and medium coverage NGS data, the recom-

mended practice is to avoid basing downstream analysis

on the raw counts of sequenced bases or called genotypes

[1], but instead use a probabilistic approach by using GLs.

Many of the methods within ANGSD are based on GLs

(Table 1). ANGSD supports four different models for cal-

culating GLs: 1) The recalibrating SOAPsnp model [6]. 2)

The original GATK model [8] 3) SAMtools 1.16+ mod-

ified Maq model [23]. 4) The type specific error model

[10]. The sequencing error rates in these GL models are

either fixed, obtained from qscores, or estimated from the

data. The four implemented GL models assume diploid

samples.

Allele frequency estimators

The sample allele frequency in a site is the frequency of

the allele among the individuals included in a specific

sample. The population allele frequency is the (unknown)

frequency of the allele in the entire population. With-

out genotype uncertainty, the sample allele frequency is

known and the population allele frequency can be esti-

mated from the sample allele frequency. However, in the

presence of genotype uncertainty, the sample allele fre-

quency is unknown, but can be estimated from the raw

data or from the genotype likelihoods [9]. We have imple-

mented several estimators of population (e.g., [10,21])

and sample allele frequencies (e.g., [9]), that can be esti-

mated based on GL’s, base counts or genotype posteriors.

By using the population allele frequency we have imple-

mented a likelihood ratio test (LRT) of the site being

variable which can be used as a SNP discovery criterion,

and a Bayesian approach for calling genotypes.

Population genetic analysis based on sample allele

frequencies

Several analyses are based on sample allele frequency like-

lihoods instead of single individual genotype likelihoods.

A sample allele frequency likelihood is (up to a scal-

ing factor) the probability of all read data for multiple
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Figure 1 Data formats and call graph. A) Dependency of different data formats and analyses that can be performed in ANGSD. B) Simplified call

graph. Red nodes indicate areas that are not threaded. With the exception of file readers, all analyses, printing and cleaning is done by objects

derived from the abstract base class called general.

individuals at a site, given the sample allele frequency. The

methods in [9] use the sample allele frequency likelihood

in several applications, including estimation of the site

frequency spectrum (SFS), and estimation of Tajima’s D

and various other neutrality tests can be estimated taking

genotype uncertainty into account [12]. These methods

are included in the ANGSD package as separate programs

that utilize ANGSD output. Various Bayesian estimation

procedures are also implemented, including maximum a

posteriori probability (MAP) estimates of the sample allele

frequency [9]. The implementation in ANGSD allows

for the use of externally estimated posterior probabili-

ties (obtained for example using haplotype imputation

based methods) for the calculation of posterior sam-

ple allele frequencies and other downstream analyses.

Importantly, ANGSD also allows for the joint estima-

tion of sample allele frequencies from two populations

(2D-SFS):

Assuming two populations with n1 and n2 diploid indi-

viduals sampled from population 1 and 2, respectively.

Then the 2D-SFS is the matrix γ : (2n1 + 1) × (2n2 + 1)

of frequencies of derived sample allele counts in the two

populations, i.e. γij is the probability of observing i and

j derived alleles population 1 and 2, respectively, in a

randomly chosen site.

Let p
(

Xd
s | Dd = i

)

denote the likelihood for the

sequencing data, in population d for site s, given a total

of i derived alleles in population d. This likelihood is cal-

culated using the algorithm described in ref. [9]. We can

then write the likelihood for a single site s for the 2D-SFS

as:

L (X|γ ) =

N
∏

s=0

L (Xs | γ ) =

N
∏

s=0

2n1
∑

i=0

2n2
∑

j=0

γijp
(

X1
s | D1 = i

)

× p
(

X2
s | D2 = j

)

(1)
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Table 1 Overview of analyses implemented in ANGSD

Analysis Basis Reference

Contamination estimates based on the X-chromosomes BC [19]b

Type specific error estimation estimated by simultaneously estimating allele frequen-
cies and genotype likelihoods

GL [10]

Type specific error estimation based on an outgroup and a high quality genome BC [20]ab

Genotype likelihoods (GL) (diploids) BC/Seq [6,8,10,15]

Allele frequencies for a site BC/GL/GP [21]b [10]

SNP discovery (LRT) used for rejecting that the allele frequency is different from zero GL [10]

Genotype posteriors (GP) can be used for calling genotypes by specifying a cutoff GL/SAF [9,10]

Sample allele frequencies (SAF) the probability of all read data given the sample allele
frequency

GL/GP [9]b

Population differentiation statistics Fst SAF [14]ac

Population structure via principle components analysis (PCA) GP [14]ac

Admixture analysis (NGSadmix) NGS data GL [22]ab

Detection of ancient admixture ABBA-BABA/d-statistics BC [20]b

Estimation of SFS (1D) SAF [9]ab

Estimation of SFS (2D) SAF

Selection scans, Neutrality tests (e.g θ ’s and Tajima’s D) SAF [12]ab

Estimation of individual and site-wise Inbreeding coefficients. Also MAF and GP estima-
tion for inbreed individuals

GL [13]abc

Allele frequency based association for case/control data) GL [10]

Association score test in a generalized linear model framework for both quantitative
and case/control data while allowing for additional covariates

GL-GP [11]b

Table of the supported analyses in ANGSD. aindicates methods that require a secondary program in ANGSD package. bindicates methods for which ANGSD is the de

facto implementation and care user supplied extensions for ANGSD. The basis for each analysis is either the sequencing data (Seq), base counts (BC), genotype

likelihood (GL), sample allele frequencies (SAF) or genotype probabilities (GP).

In order to find the maximum likelihood we use an EM-

algorithm. Assuming γ old is our current parameters, a

next iteration in the EM-algorithm is given by:

γ new
ij =

N
∑

s=0

p
(

X1
s | D1 = i

)

p
(

X2
s | D2 = j

)

/L
(

Xs | γ old
)

.

The algorithm then iterates updates of all ij simultane-

ously until the difference in successive likelihood values is

below some tolerance.

Population structure

Genomes for admixed individuals represent a mixture

of alleles from different ancestral populations. Inferring

individual admixture proportions along with a frequency

estimate for the different ancestral populations is possible

based on genotype likelihoods [22] based on output from

ANGSD. Similarly the sample allele frequency likelihoods

generated in ANGSD can be used to calculate statis-

tics relevant to population structure analyses including

inbreeding coefficients [13], Fst and principal component

analyses (PCA) [14].

Another approach for detecting admixture including

ancient admixture is the ABBA-BABA test also called the

D-statistic [18]. For sequencing data the strategy for this

test is based on sampling a single base at each position

of the genome [24]. This strategy removes bias caused by

depth differences which is a fundamental problem of NGS

data. Given an outgroup ANGSD gives D-statistics for all

possible combinations of the chosen individuals.

Association

Finding disease causingmutation is often done using asso-

ciation studies based on called genotypes. ANGSD pro-

vides two approaches for performing association studies

that are appropriate for NGS data. Both are based directly

on genotype likelihoods which takes all the uncertainty of

the NGS data into account. The first method can be used

in a simple case/control setting [10] where differences in

allele frequencies between cases and controls are com-

pared. The other approach is a more flexible generalized

linear regression framework [11] which allows for quanti-

tative traits and inclusion of covariates. This approach is

also implemented for genotype probabilities such as the

ones estimated from haplotype imputation.
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Base error estimation

Several error estimates of type specific base error rates

are implemented. The simplest is based on the mismatch

rate that also forms the basis of SOAPsnp [6]. Another

approach that tries to estimate the real error rate and not

the mismatch rate is based on an outgroup [20,24] and

a high quality individual. The third approach estimates

error rates, genotype likelihoods and allele frequencies

simultaneously in order to determine the base error rate

of polymorphic sites [10].

Limitations & roadmap

Most statistical methods in ANGSD assume a diploid

organism and does not support pooled data. Indels are

represented internally in ANGSD, but no method cur-

rently utilizes this information. We also acknowledge that

bcf/vcf files are heavily used and have begun including

basic vcf input/output in the development version. No

analysis in ANGSD uses pedigree information such as

GATK’s PhaseByTransmission. The CRAM format has

been suggested as a successor to the BAM format, but

ANGSD does not support this in the current version and

depending on the general acceptance of this new format

we might include it in future versions. Finally SAM-

tools and GATK include many different filters at the site

level whereas these have not been included in ANGSD

yet.

Results and discussion
ANGSD is the de facto(sole) implementation of many pub-

lished methods (see Table 1), and we will in this section

show examples of how to use ANGSD including a novel

method of estimating the joint site frequency spectra for

two populations and an implementation of the ABBA-

BABA D-statistic [18] for NGS data. We will also show

that having the ability to decide which method to use

for some of the intermediate analyses, such as calculation

of GL, is important and can have a large effect on the

downstream analyses.

The genotype likelihoodmodel affects downstream

analysis

As an example of the effect of genotype likelihood

model on the analysis, we estimated the SFS for 12

European (CEU) and 14 African (YRI) unrelated sam-

ples from the 1000 genomes project [25] sequenced using

the Illumina platform. We used the method described

in [9] implemented in ANGSD to estimate the site-

frequency spectrum. This is a two step procedure that

first involves calculating the sample allele frequency like-

lihoods followed by a numerical optimization for finding

the maximum likelihood estimate of the SFS. Ances-

tral sites were obtained from the PanTro2 genome from

themultiz46way dataset sync://hgdownload.cse.ucsc.edu/

goldenPath/hg19/multiz46way/maf (available from the

UCSC browser), and the analysis was based on a 170 Mb

region from chromosome 1 by limiting our analysis to the

sites with high mappability and discarding telomeres and

centromeres. The ANGSD command used was

./angsd -bam CEU.list -rf regions.txt

-doSaf 1 -out ceu.gl1 -anc ancestral.fa

-GL 1 -nThreads 20 -sites filters.txt

We use the BAM files for the European samples

listed in the file “CEU.list”, limit our analysis to the

non-centromeric/telomeric regions defined in the file

“regions.txt”, estimate the sample allele frequencies like-

lihoods (-doSaf), define the output files (-out) with

prefix ceu.gl1, and use the genotype likelihood model

from SAMtools (-GL 1). In order to estimate the joint

allele frequency with YRI at a later stage we restrict

the printed output to sites that are also present in

the African sample and specified in the filters.txt

file.

We also repeat the above analysis using the YRI popu-

lation, and repeat the analyses for both populations using

the GATK genotype likelihood model [8] (-GL 2).

From the sample allele frequency likelihoods for each

site we then estimate the SFS using the Expectation Max-

imization (EM) algorithm:

./realSFS ceu.gl1.saf 24 -P 20 >ceu.sfs

Here realSFS is the secondary program written in

c++, and finds the optima of equation (5) in [9]. We

supply the realSFS with the file containing the sam-

ple allele frequency likelihoods (ceu.gl1.saf ) and tell the

program that the file contains 24 chromosomes (12

diploid individuals) and it should try to use 20 com-

puter cores. The resulting four frequency spectra (SAM-

tools/GATK,CEU/YRI) are shown in Figure 2. From the

figure it is evident that the analysis is highly sensitive

to the chosen GL model. We emphasize that there is

a clear need for more research on comparing methods

for estimating GLs, and possible for developing new and

more appropriate methods for estimating GLs. However,

such research is beyond the scope of this paper. We here

emphasize that the ANGSD approach for estimating the

SFS has been shown by others [26] to be superior to

the genotype calling approaches used by SAMtools and

GATK.

Joint site frequency spectrum

We have generalized the approach for estimating the

one dimensional SFS [9] to allow for two populations

(see Methods section). To obtain the maximum likeli-

hood estimate of the joint frequency spectrum we use

sync://hgdownload.cse.ucsc.edu/goldenPath/hg19/multiz46way/maf
sync://hgdownload.cse.ucsc.edu/goldenPath/hg19/multiz46way/maf
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Figure 2 1D SFS for different GL models. SFS estimation based on a 170 megabase region from chromosome 1 using 12 CEU samples A) and 14

YRI samples B)” from the 1000 genomes project. The analysis was performed for both the GATK GL model (green, light brown) and SAMtools GL

(yellow,dark brown). Notice the difference in estimated variability (proportion of variable sites) for the two GL models, with GATK GL based analyses

inferring more variable sites and an associated larger proportion of low-frequency alleles. The two categories of invariable sites have been removed

and the distributions have been normalized so that the frequencies of all categories sum to one for each method.

an EM algorithm (equation 1) by evoking the following

command:

./realSFS 2dsfs ceu.gl2.saf yri.gl2.saf

24 28 -P 30 >ceu.yri.sfs.

The result is shown on Figure 3. Unlike joint SFS based

on SNP chip data (e.g. [27]), where most SNPs are poly-

morphic in both African and Europeans, this plot shows

that most derived alleles are private to one of the popula-

tions. This is also observed between Chinese and Africans

[28] and the difference between the SNP chip data and

the sequencing data is caused by ascertainment biases

in the chip data where SNPs are often chosen because

they are common in populations such as European [27].

We have also performed a proper simulation study by

simulating genotypes for two populations that follows a

demographic pattern similar to European and African

populations, assuming realistic recombination and muta-

tion rates for humans. We simulated genotypes corre-

sponding to a 10 Mb region using MSMS [29], and based

on the genotypes we calculated genotype likelihoods using

the method described in [12]. This was done by assum-

ing a mean sequencing depth of 2X and an error rate

of 0.2%. The true spectrum is visualized as a heat map

in Additional file 1: Figure S1, and our estimated spec-

trum in Additional file 2: Figure S2 and Additional file 3:

Figure S3.

ABBA-BABA

To illustrate the use of the ABBA-BABA analyses [18,24]

we demonstrate two analyses: (1) an analysis of modern

human samples, and (2) a comparison of modern human

sequences and ancient DNA from theDenisovan hominin.

For the modern individuals we tested a European

(French), a Native American (Karitiana), a Papuan

(Papuan1), a Han Chinese and an African (Yoruba)

[30]. The ANGSD command used in the first analysis

was

./angsd -doAbbababa 1 -bam modern.ind

-out modern -doCounts 1 -anc

chimpHG19.fa -minMapQ 30 -minQ 30

-blockSize 5000000

Rscript R/jackKnife.R

file=modern.abbababa

indNames=modern.indnames

The ABBA-BABA test is based on a sample of counts

of bases (-doCount 1), an outgroup (-anc ), which in this

case is the chimpanzee, 5 Mb block size (-blockSize), and

a strict filtering of bases based on quality scores (-minQ

30) and mapping quality (-minMapQ 30). A small Rscript

is used to perform a blocked (uneven m-delete) jack knife

procedure to obtain standard deviations and resulting the

Z-scores. The results are shown in Table 2. The results
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Figure 3 Joint SFS (2D-SFS). Two dimensional SFS estimation based on a 170 megabase region from chromosome 1 using 12 CEU samples and

14 YRI samples from the 1000 genomes project.

are consistent with the current understanding of human

migration out of Africa and even shows the recently

proven link between Europeans and Native Americans

through a shared ancestral central Asian population

[31].

In the second analysis we used the following commands:

./angsd -doAbbababa 1 -bam denisova.ind

-out deniRes -doCounts 1 -anc

chimpHG19.fa -minMapQ 30 -minQ 30

-rmTrans 1

Rscript R/jackKnife.R

file=deniRes.abbababa

indNames=denisona.indnames

In the command line above, we removed transitions

(-rmTrans) which are known to have extremely high error

rates for ancient genomes. A more elaborate scheme for

filtering bases using base quality scores can also be used to

specify a different threshold for each individual and each

of the four bases, and has also been implemented [24,32].

The results for the tests are shown in Table 3. This test for
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Table 2 D-stat results for modern samples

H1 H2 H3 nABBA nBABA Dstat jackEst SE Z

1 HGDP00521 (French) HGDP00998 (American) HGDP00927 (Yoruba) 355539 360029 -0.01 -0.01 0.00 -1.40

2 HGDP00521 (French) HGDP00778 (Han china) HGDP00927 (Yoruba) 361594 369006 -0.01 -0.01 0.00 -2.40

3 HGDP00998 (American) HGDP00778 (Han china) HGDP00927 (Yoruba) 332227 334990 -0.00 -0.00 0.00 -0.90

4 HGDP00521 (French) HGDP00542 (Papuan1) HGDP00927 (Yoruba) 360153 383994 -0.03 -0.03 0.00 -6.80

5 HGDP00998 (American) HGDP00542 (Papuan1) HGDP00927 (Yoruba) 347593 366979 -0.03 -0.03 0.00 -5.80

6 HGDP00778 (Han china) HGDP00542 (Papuan1) HGDP00927 (Yoruba) 347017 363467 -0.02 -0.02 0.00 -5.20

7 HGDP00927 (Yoruba) HGDP00998 (American) HGDP00521 (French) 653515 360029 0.29 0.29 0.00 60.60

8 HGDP00927 (Yoruba) HGDP00778 (Han china) HGDP00521 (French) 639280 369006 0.27 0.27 0.01 53.00

9 HGDP00998 (American) HGDP00778 (Han china) HGDP00521 (French) 384915 407967 -0.03 -0.03 0.01 -5.40

10 HGDP00927 (Yoruba) HGDP00542 (Papuan1) HGDP00521 (French) 626366 383994 0.24 0.24 0.01 43.10

11 HGDP00998 (American) HGDP00542 (Papuan1) HGDP00521 (French) 399343 450303 -0.06 -0.06 0.01 -10.10

12 HGDP00778 (Han china) HGDP00542 (Papuan1) HGDP00521 (French) 405942 433790 -0.03 -0.03 0.01 -5.50

13 HGDP00927 (Yoruba) HGDP00521 (French) HGDP00998 (American) 653515 355539 0.30 0.30 0.00 61.20

14 HGDP00927 (Yoruba) HGDP00778 (Han china) HGDP00998 (American) 711281 334990 0.36 0.36 0.01 71.80

15 HGDP00521 (French) HGDP00778 (Han china) HGDP00998 (American) 486385 407967 0.09 0.09 0.01 15.10

16 HGDP00927 (Yoruba) HGDP00542 (Papuan1) HGDP00998 (American) 660154 366979 0.29 0.29 0.01 53.80

17 HGDP00521 (French) HGDP00542 (Papuan1) HGDP00998 (American) 445929 450303 -0.00 -0.00 0.01 -0.80

18 HGDP00778 (Han china) HGDP00542 (Papuan1) HGDP00998 (American) 394958 477720 -0.09 -0.09 0.01 -15.30

19 HGDP00927 (Yoruba) HGDP00521 (French) HGDP00778 (Han china) 639280 361594 0.28 0.28 0.00 57.00

20 HGDP00927 (Yoruba) HGDP00998 (American) HGDP00778 (Han china) 711281 332227 0.36 0.36 0.01 72.70

21 HGDP00521 (French) HGDP00998 (American) HGDP00778 (Han china) 486385 384915 0.12 0.12 0.01 20.80

22 HGDP00927 (Yoruba) HGDP00542 (Papuan1) HGDP00778 (Han china) 666222 363467 0.29 0.29 0.01 55.10

23 HGDP00521 (French) HGDP00542 (Papuan1) HGDP00778 (Han china) 459135 433790 0.03 0.03 0.01 4.70

24 HGDP00998 (American) HGDP00542 (Papuan1) HGDP00778 (Han china) 401357 477720 -0.09 -0.09 0.01 -14.20

25 HGDP00927 (Yoruba) HGDP00521 (French) HGDP00542 (Papuan1) 626366 360153 0.27 0.27 0.01 54.00

26 HGDP00927 (Yoruba) HGDP00998 (American) HGDP00542 (Papuan1) 660154 347593 0.31 0.31 0.01 60.60

27 HGDP00521 (French) HGDP00998 (American) HGDP00542 (Papuan1) 445929 399343 0.06 0.06 0.01 9.50

28 HGDP00927 (Yoruba) HGDP00778 (Han china) HGDP00542 (Papuan1) 666222 347017 0.32 0.32 0.01 61.90

29 HGDP00521 (French) HGDP00778 (Han china) HGDP00542 (Papuan1) 459135 405942 0.06 0.06 0.01 10.40

30 HGDP00998 (American) HGDP00778 (Han china) HGDP00542 (Papuan1) 401357 394958 0.01 0.01 0.01 1.30

Results of the ABBABABAanalysis for modern individuals from the human genetic diversity panel.
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Table 3 D-stat for ancient sample

H1 H2 H3 nABBA nBABA Dstat jackEst SE Z

1 HGDP00927 (Yoruba) HGDP00542 (Papuan1) T_hg19_1000g (Denisova) 103016 90667 0.06 0.06 0.01 12.10

2 T_hg19_1000g (Denisova) HGDP00542 (Papuan1) HGDP00927 (Yoruba) 286551 90667 0.52 0.52 0.00 127.10

3 T_hg19_1000g (Denisova) HGDP00927 (Yoruba) HGDP00542 (Papuan1) 286551 103016 0.47 0.47 0.01 88.60

Results of the ABBABABA analysis for 2 modern individuals and one ancient sample.

introgression between Papuan ancestors and Denisovans

rejects the tree (((Yoruban,Papuan),Denisova), chimpan-

zee), with a Z score of 12.1, in accordance with the current

understanding in the field [30,32].

SNP discovery and genotype calling

Population genetic analyses are traditionally based on

called genotypes, but this poses a significant problem for

NGS data due to the nature of the technology. Geno-

types are not directly observable, but must be inferred

from the data. For low or medium coverage data there

can be considerable uncertainty in genotype inferences,

potentially leading to errors or biases in downstream anal-

yses. Arguably, the optimal solution to this problem is to

avoid genotype calling altogether, and instead base infer-

ences on methods that incorporate genotype uncertainty

with the GLs [9-14,22,26,33]. However, we recognize that

many analyses have not been generalized to be based on

GLs instead of called genotypes, and we have therefore

included basic SNP discovery and genotype calling into

ANGSD, using methods that efficiently can take advan-

tage of estimated priors derived from GL based analyses.

In ANGSD SNPs are inferred based on allele frequency

estimation using a likelihood ratio test that can reject

that the allele frequency is 0 [10]. We compare SNP

calling using GATK (UnifiedGenotyper, default parame-

ters), SAMtools (-q 10) and ANGSD based on 33 CEU

samples from the 1000 genomes project [25]. ANGSD,

SAMtools and GATK take into account the quality of

the called bases (qscores) by modeling the uncertainty of

possible genotypes, but differ in GL model, SNP calling

criterion, filtering, etc (see [34]). In the commands below

we perform SNP calling for all combinations of 1) p-value

of site being variable 10−6, 0.01-snp_pval 2) using local

qscore recalibration with the BAQ model [35] -baq 3)

SAMtools or GATK GL model -GL.

./angsd -b bam.list -doMaf 1 -doMajorMinor

1 -snp_pval 0.01 -GL 1 -P 4

-baq 0 -ref hg19.fa -minQ 13 -minMapQ 10

Figure 4 Overlap between inferred SNPs with a critical p-value threshold of 10−6 and not using BAQ. Venn diagram of the overlap between

the SNP discovery for ANGSD, GATK and SAMtools for 33 CEU samples for chromosome 1. We used default parameters with GATK for SAMtools we

discarded reads with a mapping quality below 10. For ANGSD we choose an p-value threshold of 10−6 and didn’t enable BAQ. In A, we used the

SAMtools genotype likelihood model in ANGSD, in B we used the GATK model in ANGSD.
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Venn diagrams of the overlap of sites are shown in

Figure 4 (p-value < 10−6, no BAQ), Additional file 4:

Figure S4 (p-value < 10−2, no BAQ), Additional file 5:

Figure S5 (p-value < 10−2, with BAQ), and Additional

file 6: Figure S6 (p-value < 10−6, with BAQ). Notice the

difference in variable sites for the different GL models,

and the decrease of variable sites when applying BAQ.

When choosing a lenient p-value threshold (0.01) ANGSD

infers more SNP sites than the other two methods when

choosing a strict p-value threshold (10−6) fewer sites are

called. In these analyses we removed sites that were called

as homozygous for alternative alleles for SAMTools and

GATK.

Assuming a segregating site is diallelic, there are 3

possible genotypes. In ANGSD we allow for 3 different

methods for calculating genotype posteriors (GP), and we

can define simple genotype calling criteria using these

posteriors. We can either choose the genotype with the

maximum posterior probability, or more sensibly, we can

define a cutoff such that a genotype will be set tomissing if

it is below a certain threshold. Our 3 models for calculat-

ing GP are 1) assuming uniform prior (raw ML based on

GL) (ML) 2) using an estimate of the population frequency

as prior (AF) [10] 3) using the SFS as prior by calculating

the genotype probabilities for an individual conditional on

the information for all individuals [9] (SFS).We compared

the three different ANGSD approaches with two existing

tools for genotype calling (SAMtools,GATK) by using 31

CEU individuals that are part of the 1000genomes project

and the HapMap project [36]. The exact commands used

for this analysis in Additional file 7.

We include reference genome information for all meth-

ods even though ANGSD does not need the information.

Additionally, we force all methods to call genotypes for

all sites. Each genotype call is assigned a probability or

quality score. A threshold can then be applied to remove

low quality calls. For sites where the different method

did not provide a genotype call we set the genotype as

homozygous for the reference allele and give the call the

worst possible quality score. The results for the 1,456,587

HapMap sites for all 5 methods are shown in Figure 5. The

jaggedness of the SAMtools/GATK curves are due to the

discretization of the phred scaled genotype qualities. We

observe no big difference between the different methods

for high call rates. For lower call rates we see that the ML

method in ANGSD is somewhere between the GATK and
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Figure 5 Error rate vs call rate for called genotypes. Error rate and call rates for genotype calls based on different methods. The error rate is

defined as the discordance rate between HapMap genotype calls compared to the same individuals sequenced in the 1000 genomes. Genotype

where called for all sites for all individuals for all methods. Each genotype call has a score which was used to determine the call rate. Due to the

discrete nature of some of the genotype scores we obtain a jagged curve.
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Table 4 Computational speed of GATK,SAMtools and ANGSD

SAMtools GATK ANGSD GATK (2cores) ANGSD (2cores) GATK (4cores) ANGSD (4cores)

50 Samples 2722 1706 602 1744 1171 1765 1646

100 Samples 5097 4049 1270 4143 2457 4373 4013

200 Samples 10615 9672 2704 9951 5032 10330 7352

Wallclock time (not CPU) measured in seconds for different samples sizes and different number of allocated cores. Commands used are found in Additional file 7. We

did the analysis twice (in different order) and picked the lowest value. Notice that the runtime for GATK and ANGSD does not decrease with 2 and 4 threads. This could

be an indication that the file reading is the bottleneck.

SAMTools methods. For very low call rates we see that

SAMtools outperforms the other methods.

Computational speed

To compare the running time of ANGSD with existing

tools we performed simple SNP discovery and allele fre-

quency estimation for ANGSD, GATK and SAMtools.

This we did with 50 samples, 100 samples and 200 samples

(using the first 20 megabase region of human chromo-

some 21). For ANGSD and GATK we redid the analysis,

but this time allowing for 2 and 4 cores (commands used

are found in Additional file 7). The result is shown in

Table 4. A fair comparison between tools is impossible

for several reasons: 1) The tools perform slightly differ-

ent analyses. 2) The storage subsystemmight behave very

different on different systems. 3) SAMtools is in its cur-

rent version non thread-able in downstream analyses. 4)

Difference in workload at runtime. In practice most anal-

yses can be run in parallel over different chromosomes or

even smaller regions, which makes the lack of threading

in SAMtools more of a nuisance than a real problem. We

would expect the runtime to be linear in the region size

for all programs, and observed similar memory usage for

all three tools. From the table we observe that ANGSD is

faster in all scenarios, but we emphasize that can not con-

clude that ANGSD is generally faster, but we do not expect

that it is significantly slower than SAMtools and GATK on

any given system.We also note that the bottleneck for sim-

ple analyses is the file reading, and allocating an unlimited

number of cores will not decrease the running time, but

might actually increase it. This is what we observe for both

ANGSD and GATK for this simple analysis. In a more

complex analysis setting such as SAF estimation we would

expect a better utilization of the threads. See Additional

file 7 for commands used.

Conclusions
We have developed a fast program for analyses of NGS

data that enable researchers to perform various analy-

ses, particularly population genetic analyses that are not

implemented in any other existing programs. For many

of the analyses we use the full information of the data

by avoiding genotype and SNP calling and instead bas-

ing analyses on GLs, calculated using different methods,

typically using quality scores. This is especially useful for

low-coverage data and for non-human organisms where

imputation can not be performed reliably due to the lack

of a reference population.

Availability and requirements
• Project name: ANGSD (version 0.612 or higher)
• Project home page: http://www.popgen.dk/angsd,

https://github.com/ANGSD.
• Operating system(s): Platform independent. But

only tested on the Linux distribution Ubuntu.
• Programming language: c/c++.
• Other requirements: zlib. For some downstream

analysis R is required.
• License: GPL version 2.
• Any restrictions to use by non-academics:None.

Additional files

Additional file 1: Figure S1. True 2D site frequency spectrum. A heatmap

of the two dimensional site frequency spectrum simulated on the basis of

known genotypes using a demographic model to mimick 12 European

individuals and 8 african samples. The estimated spectrum can be found in

Additional file 2: Figure S2.

Additional file 2: Figure S2. Estimated 2D site frequency spectrum. A

heatmap of the two dimensional site frequency spectrum estimated on

the basis of genotype likelihoods for simulated genotypes. Data was

simulated assuming a sequencing depth of 2X and an errorrate of 0.2%.

The true estimates are seen in Additional file 1: Figure S1, and the

difference between the true and the estimated can be found in Additional

file 3: Figure S3.

Additional file 3: Figure S3. Difference between true proportions vs the

estimated proportions. Plot of the estimated proportions and the true

proportions. The estimated proportions are based on genotype likelihoods

calculated assuming 2X sequencing depth and 0.2% error rate. The

genotypes are simulated using msms and should reflect the difference

European individuals (bottleneck followed by rapid expansion), and African

individuals.

Additional file 4: Figure S4. Overlap between inferred SNPs, a critical

p-value threshold of 10−2 and not using BAQ. Venn diagram of the overlap

between the SNP discovery for ANGSD, GATK and SAMtools for 33 CEU

samples for chromosome 1. We used default parameters with GATK for

SAMtools we discarded reads with a mapping quality below 10. For ANGSD

we choose an p-value threshold of 0.01 and didn’t enable BAQ. In A, we

used the SAMtools genotype likelihood model in ANGSD, in B we used the

original GATK GL model in ANGSD.

Additional file 5: Figure S5. Overlap between inferred SNPs, a critical

p-value threshold of 10−2 with BAQ. Venn diagram of the overlap between

the SNP discovery for ANGSD, GATK and SAMtools for 33 CEU samples for

http://www.popgen.dk/angsd
https://github.com/ANGSD
http://www.biomedcentral.com/content/supplementary/s12859-014-0356-4-s1.pdf
http://www.biomedcentral.com/content/supplementary/s12859-014-0356-4-s1.pdf
http://www.biomedcentral.com/content/supplementary/s12859-014-0356-4-s2.pdf
http://www.biomedcentral.com/content/supplementary/s12859-014-0356-4-s2.pdf
http://www.biomedcentral.com/content/supplementary/s12859-014-0356-4-s3.pdf
http://www.biomedcentral.com/content/supplementary/s12859-014-0356-4-s3.pdf
http://www.biomedcentral.com/content/supplementary/s12859-014-0356-4-s4.png
http://www.biomedcentral.com/content/supplementary/s12859-014-0356-4-s4.png
http://www.biomedcentral.com/content/supplementary/s12859-014-0356-4-s5.png
http://www.biomedcentral.com/content/supplementary/s12859-014-0356-4-s5.png
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chromosome 1. We used default parameters with GATK for SAMtools we

discarded reads with a mapping quality below 10. For ANGSD we choose a

p-value threshold of 0.01 and enabled BAQ. In A, we used the SAMtools

genotype likelihood model in ANGSD, in B we used the GATK model in

ANGSD.

Additional file 6: Figure S6. Overlap between SNP sites, a critical value of

10−6 with BAQ. Venn diagram of the overlap between the SNP discovery

for ANGSD, GATK and SAMtools for 33 CEU samples for chromosome 1. We

used default parameters with GATK for SAMtools we discarded reads with

a mapping quality below 10. For ANGSD we choose a p-value threshold of

10−6 and enabled BAQ. In A, we used the SAMtools genotype likelihood

model in ANGSD, in B we used the GATK model in ANGSD.

Additional file 7: Commands used for some of the analyses. Text file

containing the commands used in various analysis in the text. We used

SAMtools version 0.1.19-44428cd, and GATK version 2.4-7-g5e89f01.
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