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ABSTRACT

We study the exclusive decays of B mesons into a pair of spin-1 mesons.
We look at the occurring asymmetries that could signal CP violation and
estimate their relative size. We find that angular asymmetries are not
significantly smaller than partial rate asymmetries, and that their study

can help disentangle the complicated dynamics of these decays.
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1 Introduction

The topic of CP violation in the B meson sysiem has been the subject of extensive
studies [1]. Most authors have been concerned with the study of partial rate asymme-
tries occurring in different exclusive channels. Bigi and Sanda [2] have classified and
estimated the different possibilities in the decays of a B meson into two pseudoscalars.
In particular they have shown which are the channels where we expect largest and
cleanest signals. These CP odd observables can originate either through mixing or
via interference of at least two amplitudes contributing to the same process. In the
latter one requires, in addition to CP violation, the presence of unitarity phases which

depend on hadron dynamics and are very difficult to estimate reliably.

In this paper we intend to look at the asymmetries that can occur in the decay of
a pseudoscalar B into two vector mesons [3]. What can be gained from this study is
access to information on the unitarity phases, or alternatively one can obtain signals
that do not depend on such phases, similar to the ones appei'iring in hyperon decays
[4]. In section I we will look at the kinematics of the reaction, and thus find which
are the possible asymmetries. In section III we will consider these asymmetries in the

standard model to see how they can arise, and finally in section IV we will attempt

to estimate their relative sizes for specific examples.

The new type of signal that will emerge corresponds to triple product correlations
involving the momentum of one of the vector mesons and the two polarizations. They
thus require reconstruction of the decays of both spin-1 mesons, and in practice one

would then be looking at correlations between momenta of the final particles.

It was realized a long time ago that under time reversal invariance both a par-

ticle’s momentum and spin are reversed and hence that any triple scalar product of



them 1s odd under the naive time reversal operation. It was also noted that when
one considers the full antilinear nature of the quantum mechanical T operator, such
correlations could appear even when all interactions conserved T. They are thus not
very good indicators of T violation unless one can calculate and subtract the induced
terms that mimic T nonconservation. This is very difficult to do. However, as was
realized in the study of hyperon decays, this can be circumvented by comparing a

pair of CP conjugate processes to obtain a correlation that is truly CP odd.

2 Kinematics

Consider the weak decay of a B meson (containing a ) into a pair of vector mesons,
and let us define our notation as B(p) — Vi(k,€;)Va(q,€2). We can write the most
general invariant matrix element for this decay as a sum of three terms that we will

call s, d, and p amplitudes in the form M = as + bd + icp:
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where we denote the masses of particles V1, V3 by m; and m, respectively. In general
the scalars a, b, and ¢ are complex, and can receive contributions from several am-
plitudes with different phases. Occasionally we shall loosely refer to them as isospin

amplitudes. We separate the phases explicitely by writing:

a=3_le; e b= > 1] eueits ¢ = P e'ri gi¥vi (2.2)
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and identify them as one of two kinds. The ¢; are CP violating phases in the weak
Hamiltonian, and the factor of 7 in front of the P amplitude defines our convention in
such a way that if all the @; are zero CP is conserved. The phases é; are the so called
‘unitarity phases’ which can arise since we have to consider all orders in the strong
interaction. The sums extend over all amplitudes that can contribute to the decay,
and may refer to, for example, different isospin configurations. One can then use CPT
invariance to show that the corresponding matrix element for the antiparticle decay

B(p) — V;(k,€;1)V2(q, &), is given in terms of the quantities defined so far by:

M = @& -6+ (prea)(p-e)

myms
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Note that CPT transforms each vector meson into its antiparticle with the same
momentum and changes the sign of the polarization so that the three Lorentz scalars
remain the same. Our task now is to find physical observables that are sensitive to

the phases ¢;. To do so we first square the matrix elements to obtain:
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Summing over the polarizations yields T = PRV M3

SMPP = e (2 + 2% + B (2 - 1)P = lc]* 2(z* — 1) + 2Reab*z(z® — 1)
AL A .

where the parameter z for a specific reaction is:
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All the terms in Eq. (2.6) contain the CP violating phases. The first three terms

correspond to absolute squares of s, d and p amplitudes and are sensitive to interfer-

ence between the different terms that can contribute to each partial wave. They give

rise to partial rate asymmetries similar to the ones occurring in the exclusive decays

of B mesons into two pseudoscalars {2]. The last term is an interference of s and d

amplitudes and gives rise to partial rate asymmetries from relative s-d phases.

These partial rate asymmetries have a very complicated dependence on all the

phases, and in general it will be very difficult to compare any result with a theoretical

prediction. One obtains:
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It appears that in general such a signal will be virtually impossible to analyze. There
are however simple cases in which it might prove useful. In particular, if there is only
one amplitude contributing to each partial wave then the only term that appears is
that of s-d interference. To study isospin interference, the corresponding pseudoscalar

channel is clearly better.

When one sums over polarizations there are not enough independent four-vectors
left to form triple product correlations. That is why interference terms with the p
amplitude are not present in Eq. (2.6). The same would be true if we summed over
only one of the polarizations. One can, however, define quantities sensitive to such
interference terms. For that, one looks at configurations with a definite sign for the

triple product.

Omne way to do so is to define the asymmetry:

chcn s E - € 2 0) - chcn s E - € 2 0
AE: r.( €1 X €5 > N)' t( €1 X €9 < ) (29)
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and then to add the corresponding quantity for the antiparticles Az. In this case one

is looking at:

Ag ~ Imac® ~ |ac|sin(é + ¢)
Ap + Ag ~ |ac|cos(§) sin(@)

Ap — Ag ~ |ac|sin(&) cos(@) (2.10)



Note that Ap can be generated by either CP violation or unitarity phases, but that
Ap+ Az is a clean signal of CP non-conservation. It could also happen that one wants
to determine experimentally what the unitarity phases are, in that case one looks at
Ap — Az. We can now evaluate the kinematics of this asymmetry in the rest frame
of the decaying B. A convenient way to do so is to parameterize the polarizations of

the decay particles with angles defined in their rest frames as:

€, = sinf,cos ¢15g1) + sin 8, sin ¢a16(12) + cos 016(13)
€, = sinfycos ¢ge(21) + sin 8; sin qbge:(f) + cos 826(23) (2.11)

in terms of transverse and longitudinal polarization vectors that can be easily boosted
to the B rest frame. With the momentum of V; defining the quantization axis they

become:

Y = &Y = (0,1,0,0)
d? = 7 =(0,0,1,0)
k| E
E(13) = (L_I"aoaoa_k)
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Summation over polarizations is now equivalent to integration over the solid angles

d),d?, up to a normalization factor:

S M2 R%/dnldng M2 (2.13)



We proceed to find Ap by integrating over the regions where the triple product has a
definite sign, and normalizing both Ag, Ag to the total number of B — W1V, events

we obtain (A = Ap + Ag):

_ (3122 — 155 aicj cos(8si — by;5) sin(Bai — Pp;)
(2 + %) |af + (22 — 1)218° + 2(2? — 1) [¢|* + 2z(2? — 1) Re ab®

(2.14)

When a full reconstruction is done one would have, for example, that V1V, decay

respectively into two pseudoscalars ®;®; and ®3;®,. In this case the correlation
becomes k - pi X P
More complicated correlations may turn out to be kinematically favored, in par-

ticular the following quantity will prove to be better:

Nevents(k €2 §- €1 k-1 x €& >0) —Nevenwlk - 27 €1 k- g X &2 < 0}

Ap = N (2.15)
and in this case the result is (/1 = Ap + flg):
A = (;)ﬁ/%———l X (:’c % a;¢j cos(8si — 8p5) sin(dui — dp;)
+ (2? - 1)z EJ: aic; cos(8ai — bp;) sin(Pa: — ¢’pj)) (2.16)

It is interesting to compare this system with others studied in the literature. The

triple product correlation is the equivalent of observing a net circular polarization in



the case of the decay of a neutral kaon into two photons [5], {6}, (except that in
this case our initial state does not have the CP properties of K so we have to
add incoherently equal amounts of particle and antiparticle decays). In the study
of hyperon decays there are both triple product asymmetries (3-type terms), and
partial rate asymmetries, one also finds a-type scalar product correlations [7]. These
last ones have no counterpart here, where observation of just one polarization does
not lead to new signals. They are also absent in the case where B decays into a vector
and a pseudoscalar. This occurs because factors like (k-€) are present in every term of
the amplitude, and thus they always appear squared in the decay distributions. This
seems to be a general feature of vector particles. One would find such correlations
in B decays into hyperons. A particular example corresponds to the A polarization

recently studied by Eilam and Soni [8].

We can finish this section By comparing the relative sizes of all the signals as
expected from purely kinematical considerations. For this we need, in addition to
the parameter z, two more quantities. Let us denote by y a typical ratio of d or p

to s amplitudes. Using the form factor parameterization of Altomari-Wolfenstein or

Bauer-Stech-Wirbel {10,16,9] one finds:

2m1m2

y~ (2.17)

(mp + my)(mp + m2)

Finally one needs to know the relative sizes of interfering isospin amplitudes. Since
we shall not attempt to calculate these ones let us just call such ratio r. The pattern
for the different signals is then:

AT z(z? — 1)

T ~ rsin(&i)sin(qﬁi)Jrﬂmysin(&)sm(@)
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A ~ g (zycos(8, — &p)sin(d, — &p)
+ (2% = 1)y’ cos(8, — &,)sin(¢, — ¢p)) (2.18)

We have at present no way to estimate the possible unitarity phases. It is known
that in kaon physics those phases are generally small, and it has been argued in the
literature that they are not necessarily small in B decays. We should therefore keep in
mind that partial rate asymmetries are proportional to such phases and that they are
suppressed if the phases are small. On the contrary, the angular correlations defined
above do not vanish with vanishing unitarity phases. Moreover, and perhaps most
important, we saw before that one can use these asymmetries to gain experimental

access to either the CP odd phases or the unitarity phases.

There are two different regirﬁes th'at we can look at. When the decay products
have masses between one third and one half of the B mass, z has a value around
2 and y a value around 0.2. It has also been argued in the literature that it is in
this case when one can expect large final state strong interaction effects [8]. In the
second regime the decay masses are small, the values of ¢ are large, say around 20
and y is of order a few percent. One might expect final state interactions to be less
important, but we do not know much about possible real intermediate states. The

expected kinematical factors are shown in table 1.

When we estimate the different asymmetries it is important to bear in mind
that s-d interference can be very important for low mass decay products, since it

can substantially reduce the branching ratio. There is no agreement in the literature
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[10] as to whether this interference is destructive or not. This point, as well as the
general form of the amplitudes is under further study. In any case if the interference
is indeed destructive there will be an enhancement of the asymmetries relative to the

total decay rate. From the numbers in table 1 we can also see that A is favored over

A and thus we will adopt A4 as the relevant observable. In both regimes we expect the
signals to be around a few percent if there are no additional dynamical suppression
factors. One can also see that for some channels the s-d contribution to the partial
rate asymmetry could be of order one, like the contribution from interference of
amplitudes in the same partial wave (which should be analogous to the pseudoscalar

case).

3 Obtaining the Asymmetry

We now turn to the gquestion of how to generate the CP odd phases within the
Standard Model. For that we shall select decays in which the b quark turns into
an s quark rather than a d quark, although the analysis for that case proceeds in
an analogue manner. We are then interested in the effective weak Hamiltonian with
IAB}{ = |AS! = 1, which at the W mass scale is given by:

Gr

Hegy = “\/—5[UubUJ,(Eb)L(EU)L+Uch;(Eb)L(EC)L

+ UpUL(Eh)L(5t)L] + h.c. (3.1)

where we used the standard notation (g1g2)r = @1v.(1 + vs)g2. Using the properties

of the unitary matrix U, it is convenient to write Eq. (3.1) as:
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Hy = —CF

T (408 + 00) = A0 + 07)]

Jp = (30)c(Tu)r — (g0)(3g)r = (36)L(3g)L] (3.2)

with A., A, standing for:

22 .2 . 2 2\
A, (cicy — s3)cass + Ci1¢asacs{cy — 83) + 1C1C28785
2.2 .2
Ay = (153 —¢;

2 2 :
)C3S3 + C1C252C5(53 - C3) — 2C1C28,5§¢

(3.3)

One then integrates out the heavy top quark following the procedure of Gilman and
Wise [11] to incorporate QCD corrections if needed.

—Gg | ..
H ;= A, tOor +c70 )+ A ¢;0;
=57 (cFOf +c7O7) + A )

01 = (sb)z(Tu)r , Oz = (Sabs)r{Tsua)r
Os = (3b)2 ) _(39)L , Os = (5abs)r ) (Tda)z
05 =

g

(3A°b). > (A °q)r , O = (3b)1 ) (3¢)r (3-4)

where the Wilson coefficients are obtained by solving renormalization group equations.
Also @, 3 are color indices, and ¢ = u,d,s,c.

We shall use the coeflicients including leading log corrections with the numbers
of Ponce [12]. For comparison we show the lowest order numbers which follow from

the standard W exchange and penguin diagrams of Figure (1) and Figure (2).

¢ =

cc=1,c=0,c=2
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2 2
c3 = 2au(s )ln ™) ~ 0.04
3 12r u?

3 :
Cq4 = ""363 ~ —0.12 ; G5 = —563 =~ —0.06 (35)

where the specific numerical values correspond to: m; ~ 40Gev, p = m. = 1.5Gev

and a = 0.35. With QCD corrections these numbers change to [12]:

et =0.774, ¢ = 1.669
¢y = —0.443 , ¢; = 2.316
c3 = 0.037, ¢4 = —0.084

cs = —0.052 , cg = —0.01 (3.6)

As it is well known, a CP odd asymmetry will arise only when there is a rela-
tive phase between two amplitudes. In our effective Hamiltonian there are only two
complex constants: A. and A;. This means that one way to obtain an asymmetry is
to look at a process that proceeds both via W exchange and the penguin diagram.
This already tells us something about the magnitude of the signal. To first order in
KM angles A; = — A, and there is no CP violating phase. To find one we go to next

order in KM angles, and write 4, = — A.e®® with the result:

C1C2C3525,8354

(s + 52C6)2

§¢ ~ (3.7)

It is interesting to see the rephasing invariant combination of angles [13] appearing
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explicitly in Eq. {3.7). We can estimate from bounds on the KM angles ¢5g’>‘§ 0.01.
This means that we can expect asymmetries as large as a few percent within the
standard model. Also the penguin coeflicients are only about 0.05 times the ones
coming from W exchange, an interference will therefore be further suppressed unless
we look at b-u transitions. It is well known that one then pays the price of potentially

large signals with small branching ratios.

A second way to obtain a relative phase is to look at decays in which a quark
decay amplitude interferes with a weak annihilation. The latter is generally expected
to be much smaller than the former [9] thus giving rise to very small asymmetries (we
will briefly return to this point when discussing the vacuum saturation estimate). It
has been argued [2] that in special cases this needs not be true. We shall not consider

this case here.

Also, when one considers neutral B mesons, it is possible to obtain interference
via mixing, by lodking at final states that are common to B and B decays. The time

evolution of the B mesons is generally written in the following way {2]:

g+(t) = —;-e“%'rﬂeimlt(lie—%&l"teiAmt)
1-—
) = : (3.8)
p 1+e

For simplicity we will assume that the neutral B or B is produced along with a

charged B that decays semileptonically, so that we know which one decayed into the
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pair of vector mesons by tagging the charged B. Writing:

A(B —+ ‘;V) = 013+b1d+iclp

A(B - VV) = (a38+ bed +icyp)e™® (3.9)

where ¢ is chosen so that ay, @, are relatively real. To be general we will allow a;, b;, ¢;
to have phases, noting that these will be there only if there are at least two amplitudes

contributing to the decay. It is then standard procedure to write:

M(t) = A(B(t) > VV)

9. (t)(A — % % sin(Amt)A)

= g+(t)(as + bd + icp) (3.10)

Defining p = %e"‘f’ we can directly apply our previous results by simply identifying:

a = aj— %sin(Amt)paz
b = b — %sin(Amt)pbg

c = cl—%sin(Amt)pcg (3.11)

The resulting expression for the time dependent asymmetry induced by mixing looks
like the familiar result for pseudoscalar channels:
AT 2 sin{Amt)

T = 5 (}a;azl Im(p)(2 + 22) + Im (pbbs)(z? — 1)

+ Im{pcic)2(z? - 1) + Im p(azb; + ajbs)z(z? - 1)) (3.12)
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As in the latter, these asymmetries can be substantially large for specific channels.
The analysis proceeds in very similar fashion and we shall not pursue it further. Let
us instead turn our attention to the angular correlations. If, as usual one ignores the

small Ree:

1
Im(ac’) ~ Im(ac") = 2Im(aic})+ 3 sin’(Amt) |p|* Im (azc})

Im(bc*) — Im(b*) = 2Im(byc}) + —12; sin?(Amt) |o|* Im (bsc3) {3.13)

This means that up to small terms proportional to Re ¢ mixing does not generate CP
odd triple product correlations. If these are generated otherwise, say by W-exchange-
penguin interference, mixing does modify the analysis as specified by Eq. (3.13). It is
interesting to note that if one looks at the expression for | M| there are triple product

correlations induced by the mixing that look like:

~ sin{Amt) Rep{ajey — azc])(e - ez)eaﬁ“"ememkupv (3.14)

They are not CP violating and cancel out when one subtracts the CP conjugate

reaction in the same manner as the terms induced by unitarity phases do.

A last way to obtain interference is to consider cascade processes {14]. This
method is useful in channels with more than two particles in the final state which we

will not consider.
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4 Some Examples

There are many channels that can proceed via both W exchange and penguin dia-

grams. These include neutral and cha.rged modes such as:

By — p*"K*~, D**D:”, ¥K*, pK"
B, - KXK*,U®, D:*D:, pd
B~ — pK*, D'D,”, YK*~

B> -+ D'K*, UD'~, pD:" (4.1)

To estimate the size of the asymmetries we use the vacuum saturation approximation,
we shall regard this method as an order of magnitude estimate to compare the different
asymmetries, stressing that its predictions for a given observable are not very reliable.
Within this scheme the amplitude for the decay will be a linear combination of the

following factors:

Fl = (Lrl

Jul B)(V2 J#{0)
F, = (Va4 B)y(Wi|J%[0)
Fy = (W |J,|0)(0[J% B)

Fy = (ViV2|S[0)(0| P} B) (4.2)

where the last factor involving scalar and pseudoscalar densities can appear when one
Fierz-rearranges Os or Og. One can argue (see for example {15]) that the momentum
dependence of the form factors suppresses terms F3 and Fy because they are domi-

nated by a pole of mass smaller than the B meson and the form factors are evaluated



T

at ¢* =~ m%. A typical factor is, with mporg = 1Gev:

although one can find decays where the suppression is milder. We will use as examples
two charged B decays that illustrate the different regimes:B~ — wK*~, and B —
¥ D:~. The first one should give large asymmetries since the W exchange is suppressed
by small KM angles but should have a small branching ratio. The second one is
expected to have a larger branching ratio and smaller asymmetries. We use the
notation of Eq. (4.2) with V; being the charged meson. A vacuum saturation estimate

of the matrix elements yields:

(WK* |H,\B™) = _fF [(%c"’ + g-c‘)Ac + (%cl +c; + %Ca + c4)At] Fy
+ {(gc" - -z-c*')Ac + ey + %cg + ¢3 —;' %q + cs)At] F,
+ [(%c* + g-c‘)Ac + (%q + ¢+ %c3 + c4)At] Fy
+ (%cs + gce)AtF;J

(WD |H, BD) = 2%% H(—gﬁ - g-c‘)Ac + (%ca + c.;)At] F

—4 2 1
+ [(?C-i- + §C_)Ac + (C3 + 564 + Cﬁ)At] F2

4 2 1
+ [(**3“C+ e gc_)Ac -+ (563 -+ C4)At] F3

32 2
+ (5_65 + gCG)AtRi (4.4)
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We parameterize the different form factors following Bauer, Stech and Wirbel [16,9],

obtaining:

g

Fi=-3 A (m¥)e; - 24,(m2)—L
1 g(mp + m1)A(m3)e €2 + 2(m2)m3+m1

(p-a)(p-e)

.25
| V{m2) o878 w€25k
-1 5+ my (m2)6 €1a€258+P5

Z z g
F, = —g(mp + m2)As(mi)e - e2 + 2A2(mi)m(1’ -€1)(p - €2)

. 2g ~
— = V(mH)e*P e 5k 4.5
+%m5+m2 (m1)e* P eraeasky ps (4.5)

where the tilded quantities refer to V2. We use the values of [9] for the form factors
at zero momentum transfer for the first decay and take them to be of ordér 1 for the
second one. The momentum dependence of the form factors is found by assuming
vector dominance of a pole with the relevant quantum numbers, and mass found in
[16,8]. At this point we do not know how to calculate F3 and F,, but in line with
our previous arguments we will treat them as a 5 to 10 percent corrections to the

numbers in Fy, Fp. With all this we write our numerical results for the asvmmetries:

A = aycos(b, — &)

A = a cos(8, — 6,) + azcos(by — &)
r-T )
“];:‘—_I:? = a4 SlIl(é-d — 6,) (46)

The constants a; for the two decays considered are given in table 2. The numbers
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follow from using §é = 0.01, and scale linearly with 8¢ for smaller values. The
asymmetries depend strongly on the values of the form factors, changing the latter
by a few percent changes the former by factors of 2. It is clear that these numbers
can’t be taken too seribusly. What we can say from this analysis is that the relative
sizes of the angular and partial rate asymmetries are consistent with the kinematical
considerations of section 2. We can also see that A is indeed suppressed, and that

this suppression is much larger for large values of x.

A detailed analysis remains to be done but it requires a2 better understanding of

the hadronic matrix elements.

5 Conclusions

We have studied in some detail-a type of CP asymmetry that has been-overlooked
in the past. We find that CP odd observables can arise from interference among
different isospin amplitudes, in a way comparable to the simpler cése of pserudoscalar
mesons. The large number of amplitudes present when we deal with vector particles
makes it much more difficult to extract the CP phases. We also find asymmetries
that originate in the interference of partial wave amplitudes. In all cases the signals

look reasonably large only in specific channels.

Angular correlations appear to be not much smaller than partial rate asymme-
tries. They offer a way to study separately CP odd and unitarity phases. These
asymmetries are not generated via mixing, and a reliable estimate is not possible
at present. A complete calculation would have to consider the decay of the spin-1
mesons and find the corresponding correlations involving only final state momenta.

We have discussed one case of angular correlations, but certainly not the only one.



Other possibilities include the study of baryonic channels and of three or more decay

products.

The B system seems to have a wide variety of places where searches for CP
violation can be done. It is important to look at these signals with the understanding
that it is not enough to see CP violation. It is equally important to be able to
extract quantitative and precise information that can really give us some insight into
the origin of the phenomenon. In this spirit it is therefore important to study all
the possible signals that occur in different channels, with the aim of separating the

information we want from the complicated and poorly understood hadron dynamics.

Aknowledgements. I am grateful to John F. Donoghue, who suggested this prob-
lem, for many useful conversations and for reading the manuscript. I also benefited

from conversations with E. Golowich.



21

Term | Relative z ~ 20 T~ 2
size y ~ 0.04 y ~ 0.2

s? 1 1 1

d? oty 0.5 0.04

p? Ao L)y 0.003 0.03

2(z? -

s—d | ==ly 0.7 0.15

s—p | 2¥220y 00005 —0.002  0.02

§—p %ﬂ@y 0.01 — 0.05  0.03 — 0.06

i—p =002 0015005 0015005

Table 1: Relative sizes of Amplitudes. The relative sizes of the different terms as

they appear from purely kinematical considerations.

Channel X y a1 as as ay

B~ - wK* | 19.2 | 0.037 0.0001 0.003 -0.001 0.05
0.002 0.04 -0.03 0.23

B- - @D | 1.96] 0.16 |1.2x10® 24x10"° 0.0 13x10°°

Table 2: Vacuum saturation estimate of some asymmetries. The second row corre-
sponds to the maximum values we could find by changing the form factors by 10

percent or less.
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Figure 1: W exchange.

Figure 2: Penguin contribution.

22



REFERENCES 23

References

1

Slaughter, A., N. Lockyer, and M. Schmidt, editors, Proceedings of the Work-
shop on High Sensitivity Beauty Physics at Fermilab, Fermilab, 1987. Many of
the relevant papers are referenced in these proceedings.

Bigi, I. and A. Sanda, Nucl. Phys. B 193, 85, (1981). Bigi, I. and A. Sanda,
Nucl. Phys. B 281, 41, (1987).

Donoghue, J. F., B. R. Holstein, and G. Valencia, Int. Journal of Mod. Phys.
A2, 319, (1987).

Donoghue, J. F., X. G. He, and S. Pakvasa, Phys. Rev. D34, 833, (1986).
Sehgal, L. and L. Wolfenstein, Phys. Rev.162, 1362, (1967).
Dreitlein, J. and H. Primakoff, Phys. Rev.124, 268, (1961).
Donoghue, J. F. and S. Pakvasa, Phys. Rev. Lett.55, 162, (1985).
Eilam, G, and A. Soni, preprint UCLA/88/TEP/19, (1988).
Bauer, M., B. Stech, and M. Wirbel, Z. Phys.34, 103, (1987).
Altomari, T., and L. Wolfenstein, Phys. Rev. D 37, 681, (1988).
Gilman, F. and M. Wise, Phys. Rev. D20, 2392, (1979).

Ponce, W., Phys. Rev. D23, 1134, (1981).

Wu, D., Phys. Rev. D33, 860, (1986).

Carter, A., and A. Sanda, Phys. Rev. Lett.45, 952, (1980).
Gavela, M. B. et al., Phys. Lett. B154, 425, (1985).

Wirbel, M., B. Stech, and M. Bauer, Z. Phys.29, 637, (1985).

Donoghue, J., B. R. Holstein, and G. Valencia, Phys. Lett. B178, 319, (1986).



	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24

