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ABSTRACT Deep learning based image hashing methods learn hash codes by using powerful feature

extractors and nonlinear transformations to achieve highly efficient image retrieval. Formost end-to-end deep

hashing methods, the supervised learning process relies on pair-wise or triplet-wise information to provide

an internal relationship of similarity data. However, the use of pair-wise and triplet loss function is limited not

only by expensive training costs but also by quantization errors. In this paper, we propose a novel semantic

learning based hashing method for image retrieval to optimize the deep features structure in the hash space

from a perspective of angular view. Specifically, we proposed an angular hashing loss function that explicitly

improve intra-class compactness and inter-class separability between features in hash space. Geometrically,

angular hashing loss can be regarded as imposing hash constraints on hypersphere manifold. In order to solve

the training problem on the multi-label case, we further designed a dynamic Softmax training strategy that

can directly train the network using gradient descent method. Extensive experiments on two well-known

datasets of CIFAR-10 and NUS-WIDE demonstrate that the proposed Angular Deep Supervised Hashing

(ADSH) method can generate high-quality and compact binary codes, which can achieve state-of-the-art

performance as compared with conventional image hashing and deep learning-based hashing methods.

INDEX TERMS Image retrieval, quantization, supervised learning-based hashing, Softmax loss, A-Softmax,

neural network, convolutional neural network.

I. INTRODUCTION

With the rapid development of social media and smartphones,

huge amount of image data is uploaded to the Internet every

minute, such as human face and online products. Most recent

researches in visual search use content-based image retrieval

(CBIR) [1] without relying on label and text information.

Basically, CBIR retrieves images similar to a given query

image in terms of visual or semantic similarity. A common

CBIR method is to represent database images and query

images by handcrafted real-valued features such as SIFT [2]

and HOG [3]. Then, the image search can be performed by

sorting the images of the database according to the feature

The associate editor coordinating the review of this manuscript and
approving it for publication was Jeon Gwanggil.

distance between each database image and the query image.

The image with the smallest distance is considered as the

most similar image. In general, these handcrafted features

are distinctive with low mismatch probability and good for

indexing. However, the high dimensionality of the feature

domain makes searching very challenging, especially for

large-scale image databases. To address this problem, many

hash-based Approximate Nearest Neighbor (ANN) search

methods [4]–[7] have been proposed. Since the hash-based

approach [8] can encode an image into a compact binary code

with similarity preservation, the burden of computation and

memory requirements can be reduced.

Hash-based methods can be roughly divided into

two categories: data-independent and data-dependent. For

data-independent methods, the hash function is generated
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independently without training data, such as Local Sensitive

Hash (LSH) [9], which randomly projects the image into the

feature space and then performs binarization for generating

the binary code. For data-dependent methods, hash functions

attempt to learn from training data, commonly referred to

as Learning to Hash (L2H) algorithms, including Iterative

Quantization (ITQ) [10], K-means Hashing (KMH) [11], and

Minimum Loss Hash (MLH) [12].

Recently, deep neural networks have demonstrated the

effectiveness of end-to-end representation learning and hash

coding using nonlinear hash functions. With deep neural

network as the bedrock, many deep learning L2H algorithms

are proposed. For example, Xia et al. [13] combines Convo-

lutional Neural Network (CNN) with the hash function. They

proposed CNNH [13], a two-stage trainingmethod that learns

good image rendering and a set of hash functions. Later,

the connections between deep hashing and metric learning

began to be noticed, and the latter were widely used for visual

object recognition and verification tasks [14]–[16]. The core

idea of metric learning is to learn a feature space that brings

similar images closer to each other while making dissimilar

images farther apart. Inspired by this idea, DSH [17] is pro-

posed with supervision under contrastive loss function using

pair-wise training samples. Similarly, DPSH [18] uses the

likelihood of image pairs to simultaneously perform feature

learning and hash code learning. In addition, DTSH [19] and

DNNH [20] use triplet loss training, and triplets are assumed

to contain more information than image pairs. To further

improve performance, much work has been done to solve

the quantization error problem. For example, HashNet [21]

propose continuous activation function to address ill-posed

gradients. DQN [22] controls the quantization error by using

a product quantized codebook, and DHN [23] imposes a

pair-wise quantization loss to constrain the output around

−1 and 1.

Metric learning, which is closely related to deep hash

learning, can achieve additional intra-class compactness and

inter-class separability in the hash space. But it has the disad-

vantage of preventing the network from learning high-quality

hash codes. First, metric learning based methods typically

utilize pair-wise or triplet-wise labels as supervised informa-

tion, requiring complex sample selection strategies to identify

hard samples during training. This complicates the training

process with the number of training pairs or triplets reaching

O(N 2) or O(N 3). Second, in order to solve the non-smooth

discrete optimization problem, many methods use relaxed

binary constraints to control the performance degradation of

quantization. However, it is difficult to completely avoid the

uncontrollable quantization errors caused by binarizing the

continuous embedding into hash codes.

Geometrically, in the binarization process based on sign

function, the metric learning-based hashing methods usually

follow region-to-point pattern when implementing binariza-

tion. For example, contrastive loss encourages relative sim-

ilarity relation among embeddings by forming region based

feature space as shown on the left side of Figure 1. In the

FIGURE 1. Left: Region-to-point hashing pattern, and Right:
Angle-to-point hashing pattern. Different color points belong to different
categories.

process, the same color data points should be pulled together

in same region, and different color data points should be

pushed away. The hashing method can also be considered

as an angle-based approach with each hash code in the hash

space representing by a range of angular spaces, as shown

on the right side of Figure 1. This angular margin-based

hashing approach may help achieve better hash code gener-

ation. Of course, the solution to the angular margin of the

hashing method is to use Softmax loss, which allows the Con-

volutional Neural Network (CNN) to learn angular features.

Recently, deep face recognition studies have also validated

the effectiveness of angular margin on continuous space.

For example, SphereFace [24] constructs a discriminant of

hyperspherical manifolds, and NormFace [25] is interpreted

to constrain learning features with L2 norms.

On the other hand, there are very few attempts to imple-

ment hashing methods by preserving semantic information.

DCWH [26] uses a normalized probability model to learn

compact feature spaces, while SSDH [27] trains network to

minimize objective function defined on classification errors

and other expected hash code attributes. Similar to this work,

DLBHC [28] uses Softmax loss to supervise the hidden

layers to represent potential concepts. However, the conven-

tional Softmax loss cannot generate compact feature and may

result in suboptimal hash code. Therefore, we ask a question

whether we can generate compact hash features under the

Softmax loss framework, which has angular margin and effi-

cient training. To answer this question, we proposed Angular

Deep Supervised Hashing (ADSH) method that can gener-

ate centralized and compact hash codes. Basically, we use

A-Softmax [24] to encourage intra-class compactness and

inter-class differences. Then, we further consider the relative

structure of deep features in the hash space. Specifically,

we propose a novel angular hashing loss to guide the direction

of the angular weights to maximum feature separability in the

hash space.

Overall, the proposed method has three desirable

advantages.

(1) The proposed angular hashing method has a clear geo-

metric interpretation and is supervised by a flexible

learning objective with adjustable constraints.

(2) The deep features learned by the proposed method can

naturally adapt to the hash space, which can generate

high-quality binary code without performance degen-

eration due to quantization operations.
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FIGURE 2. Overview of the end-to-end ADSH deep hashing framework, which comprised of four key components: (1) standard convolutional neural
network (CNN), eg. AlexNet and ResNet, (2) the fully connected hash (FCH) layer for generating the k-dimensional feature representation, (3)
dynamic Softmax for constraining learned features to be discriminative on a hypersphere manifold, and (4) the hashing distance matrix for
adjusting the structure of deep feature in discrete space.

(3) A new training strategy is designed to solve the multi-

label problem by creating a dynamic Softmax layer

based on multi-label instances during training.
Experimental results show that this method can effectively

improve image retrieval performance. More specifically,

the proposed method not only inherits all the advantages of

A-Softmax, but also considers the structure of learning fea-

tures with angular margins between different classes. In addi-

tion, a clear geometric interpretation also contributes to

the proposed loss. The proposed method can be considered

as adjusting the feature structure of hyperspherical feature

space.

The rest of this paper is organized as follows. In Section II,

we use a toy example with geometric interpretation to present

the proposed ADSH method and detail the proposed angular

hashing loss and training method. The experimental results

based on two well-known datasets are provided in Section III.

Finally, conclusion is given in Section IV.

II. ANGULAR DEEP SUPERVISION HASHING (ADSH)

In this section, we first introduce the basic framework of the

proposed ADSH method, and then use a toy example to visu-

ally analyze the deep feature distributions using different loss

functions as well as proposing to adjust the angular direction

to minimize incorrect binary code generation due to quantiza-

tion. Inspired by the distribution observation, we developed

an angular hashing loss function with consideration of Ham-

ming distance matrix to improve the quality of the hash code.

Finally, we designed a dynamic training strategy to support

the training process for multi-label cases.

A. DEEP HASHING STRUCTURE

The main goal of the L2H methods is to improve the dis-

criminative power of the hash feature. Intuitively, it is criti-

cal to minimize intra-class variations while keeping features

of different classes separable. Unlike traditional supervised

hashing methods that utilize pair-wise or triplet-wise labels

as supervised information, the proposed ADSH focuses

on point-wise based hashing methods that effectively use

semantic information. The main idea of ADSH is to use CNN

to achieve feature extraction, and the feature learning is con-

strained to be discriminative with angular margin. For math-

ematical representations, we denote the RGB image space as

�, and the goal of ADSH is to learn CNN-based mapping F

from � to k-bit binary code, F : �→ {+1,−1}k .

The architecture of the proposed ADSH learning frame-

work is shown in Figure 2. A conventional CNN such as

AlexNet [29] or ResNet [30] with fully connected layers at

the last few layers can be used as the backbone network.

Moreover, the last fully connected layer is used as fully

connected hash (FCH) layer for generating binary hash code

by binarization process with use of sign function, which is

defined as:

sign (x) =

{
1, if x ≥ 0

−1, otherwise
(1)

On the other hand, the FCH layer is connected to a dynamic

Softmax layer to output the probability of each class for

calculating the cross-entropy loss. In ADSH, we propose to

use the A-Softmax loss based on angular hash loss to achieve

the discriminative power of features in continuous space.

At the same time, we consider the relative position of the

deep features in the Hamming distance space by adjusting

the direction of each class. This approach not only enjoys

effective training but also minimizes the effects of quanti-

zation errors with clear geometric interpretation. Moreover,

the dynamic Softmax training strategy allows CNN to train

directly on multi-label datasets using the gradient descent

method. After training, the query images and the database

images are encoded by network forward propagation, which

makes the framework easy to implement in practical image

retrieval systems.

B. SOFTMAX AND A-SOFTMAX FOR HASHING

In this subsection, we use a MINIST dataset [31] based toy

example to demonstrate the advantages of A-Softmax loss

compared to Softmax loss for hash code generation using the
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FIGURE 3. The distribution of deeply learned features under the supervision of (a) Softmax, (b) A-Softmax, and (c) A-Softmax with the fixed
direction. The points with different colors denote features from different classes.

proposed ADSH learning framework. The importance of the

feature distribution structure is also analyzed. Similar to the

Center loss experiment of [32], we use LeNets++ network

architecture with the last output layer reduced to 2 for feature

visualization. Furthermore, we only selected four categories

with total 4,000 images from theMNIST dataset instead of all

10 categories so as to demonstrate a simple example of 2-bit

hash code generation with an upper limit of 4 classes. There-

fore, we can visualize the quantization boundaries realized by

the sign functions of these four classes on the 2D space. The

Softmax loss is defined as

Lsoftmax = −
1

m

∑m

i=1
log

e
wTyixi+byi

∑C
j=1 e

wTj xi+bj
(2)

where xi ∈ R
k is an input deep feature with class label

yi among the C classes. wyi ∈ R
k is the yi-th column of

Softmax layer weight W ∈ R
k×C , and byi ∈ R

1 is the

bias corresponding to class yi. Moreover, m and k denote

the number of samples in min-batch and feature dimension,

respectively. In order to compress intra-class features with

strong constraints, many methods such as Center loss [32],

A-Softmax [24] and L-Softmax [33] have been proposed.

In this paper, we mainly study their application to hashing

methods from the angular view. Therefore, we use A-Softmax

to learn the features with large angular boundaries between

classes. The A-Softmax loss is defined as

LA−softmax =−
1

m

∑m

i=1

× log
e‖xi‖ψ(θyi,i)

e‖xi‖ψ(θyi,i)+
∑c

j=1,(j 6=yi) e
‖xi‖ cos(θj,i)

(3)

where ψ
(
θyi,i

)
= (−1)r cos

(
µθyi,i

)
− 2r and θyi,i ∈[

rπ
µ
,
(r+1)π
µ

]
with r ∈ [0, µ− 1]. Specifically, θj,i is the

angle between vector wj and xi, and µ is the hyperparameter.

The deep feature distributions of MINIST dataset with

only 4 classes generated by using Softmax and A-Softmax

losses are plotted in Figure 3, which provides us with some

interesting observations. Under the supervision of conven-

tional Softmax loss, the learned features are well separated

from each other as shown in Figure 3(a), but the intra-class

variation is relatively large. In addition, some of the features

of the red class crossed the quantization boundary (y-axis)

and generated incorrect binary code (code for green class)

after quantized by the sign function.

Figure 3(b) shows the feature distribution under the

supervision of A-Softmax loss, which can achieve larger

inter-class separation and compress inter-class variation. This

distribution characteristic is better for hash code genera-

tion as compared with using Softmax loss. Unfortunately,

some of the blue-class features crossed the sign function

based quantization boundary (y-axis) with results of incorrect

binary code generations. In addition, quite a lot of feature

points of the blue, green and orange classes are distributed

very close to the quantization boundaries. It is because the

direct use of A-Softmax based supervision does not consider

the difference between discrete space and continuous space.

However, the intra-class features should keep away from the

quantization boundaries to avoid orminimize incorrect binary

code generation after the feature quantization process.

To address this issue, it is important to consider the relative

angular direction of deep features, which can increase inter-

class separability and keep the intra-class features further

away from the quantization boundaries. Therefore, we pro-

pose to adjust the angular direction of A-Softmax loss to

minimize incorrect binary code generation due to the quan-

tization process. Figure 3(c) shows the feature distribution

under the supervision of A-Softmax loss with angular direc-

tion correction, where the weights W of Softmax layer are

set corresponding to the hash point in 2D space. It can be

seen that the feature distribution is more separable, and each

feature point can fall on a safe area with more buffered space

from the quantization boundaries. Thus, this angular direction

adjustment is possible to improve the quality of the hash code

and the details of this A-Softmax loss with angular direction

adjustment will be provided in the following subsection.

C. ANGULAR HASHING LOSS

1) HAMMING DISTANCE MATRIX

Basically, in this study, we want to develop an effective loss

function to improve the discriminative ability of deep learning

features and the intra-class feature performance in hash space.

Let us consider the multi-class case first with a given training
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FIGURE 4. (a) An example of binary codes for three classes ‘dog’, ’cat’,
‘deer’, (b) the distance matrices for each binary bit, and (c) the Hamming
distance matrix G among those classes.

set with C classes. We denote bi ∈ {−1, 1}
k as the repre-

sentative k-bit hash code for the i-th class and b
j
i as the j-th

bit in the hash code. Heuristically, we use Hamming distance

matrix between classes as a metric to generate a discriminant

hash code. In detail, the Hamming distance matrix G can

be computed by XOR operations, where the entry of the

matrix Gi,j is the Hamming distance between bi and bj. This

process is shown in Figure 4 with C = 3 as an example.

Figure 4(a) lists the binary codes of these three classes (Dog,

Cat and Deer). The distance matrix of each bit is illustrated

in Figure 4(b), and the Hamming distance matrix G is shown

in Figure 4(c). To maximize the distance between classes in

the hash space, we maximize the value of each cell in the

Hamming distance matrix, which represents the degree of

difference between the two classes in the hash space. This is

equivalent to maximizing the mean of the Hamming distance

matrix or minimizingmean
(
−Gtriu

)
, whereGtriu is the upper

triangular matrix of G. On the other hand, we also consider

the balance of the matrix, because we find that the network

can easily oppress some parts of the matrix, which may lead

to redundancy in the hash code.

We discovered that in metric learning-based hashing meth-

ods, such as DSH [17], some of the hash bits are always

1 or -1 and do not contribute to the retrieval task. Therefore,

we further minimize the variance of the matrix G to ensure

that these binary codes can cover all matrix elements and

there is no short board in the bucket theory. This criterion

favors binary bit with an equal discriminability in the learning

objective. These constraints are combined to generate better

binary code and more discriminating bits for each class.

Based on the two constraints, we defined a loss function LM
in discrete space as

LM = α · mean
(
−Gtriu

)
+ β · variance

(
Gtriu

)

= α · E1 + β · E2 (4)

where E1 encourages hash codes to be optimal in terms of

distinctiveness, and E2 ensures that the binary bits can be well

balanced. The hyper-parameters α and β control the strength

of regularizations in the final loss function. Note that Eq. (4)

is the sum of losses that SGD can effectively minimize by

backpropagation.

2) PARAMETER SHARING

In order to let the network learn the distribution for each

representative hash code, we can simply pull the Euclidean

distance between the weight of Softmax layer
{
wyi
}C
i=1

and

another set of updateable parameters hash codes
{
byi
}C
i=1

.

This is similar to Center loss [32] idea, but the proposed

ADSH cast a view on angular margin. in which the network is

jointly supervised through A-Softmax and hash matrix, these

two loss functions share lots of common in learned deep fea-

ture space. In short, Softmax maximizes W T
yi xi, and our goal

is to adjust the angular direction of Wyi by minimizing LM .

During the learning process, the weight Wyi will gradually

approach the representative hash code byi in term of angular

distance. This implies that Wyi and byi may have parallel

directions in well-trained CNNs. In order to reduce parameter

redundancy, we let the two losses share the same parameters,

and byi can be expressed as

byi = tanh

(
Wyi∥∥Wyi

∥∥

)
(5)

where tanh is a scaled sigmoid function to limit output range

from −1 to 1, and
Wyi

‖Wyi‖
is a unit-length vector pointing in

the same direction asWyi.

3) RELAXATION

The optimization in the Hamming distance matrix is not

traceable due to the calculation of the matrix by XOR oper-

ations. Thus, we cannot update the parameters directly. This

problem is solved by relaxing the constraints with the good

relationship between Hamming distance and Euclidean dis-

tance. For example, given a pair of bi and bj with k dimension,

we define the distance function as

distH
(
bi, bj

)
=

1

2

(
k − 〈bi , bj

〉)
(6)

where distH (∗, ∗) is Hamming distance between two binary

codes, and 〈∗ , ∗〉 is inner product between two vectors.

With these modification, the network can be trained using a

backpropagation algorithm with a mini-batch SGD method.

The gradient of LM with respect to final layer weight wj can

be computed as:
∂LM

∂wj

= α �

∂E1 (W )

∂wj
+β �

∂E2 (W )

∂wj
(7)

∂E1 (W )

∂wj

=
∂mean

(
−Gtriu

)

∂wj
=
∑C

i=1,(i 6=j)

∂E1 (W )

∂Gi,j

∂Gi,j

∂bj

∂bj

∂wj

=
∑C

i=1,(i 6=j)

bi

C (C − 1)
(1−tanh2

(
Wj∥∥Wj

∥∥

)
)

1∥∥Wj

∥∥ (8)

∂E2 (W )

∂wj

=
∂variance

(
Gtriu

)

∂wj
=
∑C

i=1,(i 6=j)

∂E2 (W )

∂Gi,j

∂Gi,j

∂bj

∂bj

∂wj

=
∑C

i=1,(i 6=j)
(
2Gi,j − 1

C(C − 1)
)bi(1−tanh

2

(
Wj∥∥Wj

∥∥

)
)

1∥∥Wj

∥∥ (9)
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FIGURE 5. The forward process of the proposed dynamic Softmax, (a) shows the generation of the new semantic weight, and (b) shows the
multi-label case on 2-D dimension.

Then, we use joint supervision of A-Softmax and distance

matrix for training. A-Softmax is used to train CNN for dis-

criminative feature learning while Hamming distance matrix

guides the relative position and direction of the deep features

in the hash space. The overall loss function is defined as

L= LA−softmax + LM

= LA−softmax+α � mean
(
−Gtriu

)
+β � Variance

(
Gtriu

)

(10)

where LA−softmax and LM are the A-softmax loss and the

proposed loss in Eq.(4), respectively. This loss function is

optimized by standard SGD as shown in Algorithm 1.

Basically, we summarize the learning details in CNN

under joint supervision. Furthermore, the proposed method

has a clear geometric interpretation as shown in Figure 3.

A-Softmax provides good margins between classes, reducing

coding errors in buffer space. In addition, Hamming distance

matrix adjusts the position and angle of the features to maxi-

mize the discriminative power in the hash space.

Compared to the conventional metric learning-based

hashing methods using pair-wise and triplet-wise training

samples, the proposed ADSHmethod does not require a com-

plex sample selection strategy. The angular based hashing

approach learns the optimal hash code more directly because

the learned features can be naturally converted to hash codes

without quantization constraint in training process.

4) DYNAMIC A-SOFTMAX FOR MULTI-LABEL CASE

Basically, Softmax loss is designed for multi-class classifica-

tion tasks with a single label as input. To perform Softmax

loss on a multi-label, it may be necessary to put all the

possibilities of inputting labels on the Softmax layer. But it

is unrealistic due to the explosive growth of the number of

class combinations. A common solution is to use sigmoid

function to provide independent probabilities, but our goal is

not to perform classification on the hashing space. We want

to use A-Softmax to reduce the intra-class distance in the

feature learning phase. Therefore, a dynamic Softmax layer

is proposed to generate discriminative features for multi-label

situation. Among themwe dynamically change the number of

neurons in the Softmax layer to fit the algorithm.

More specifically, given a multi-label dataset containing C

different concepts, X = {xn}
m
n=1 and L = {ln}

m
n=1, in which m

is the number of samples in a batch, are used to denote the

Algorithm 1 ADSH Training Algorithm

Input: Training data {xi}. Initialized parameters θ in

convolutional layers and parametersW in fully

connected layers, weight in softmax layer wyi
Output: The parameters θ,W, bj,wyi
Begin: The number of iterations t ← 0

While not converge do:

1. t ← t1

2. Calculate the representative binary code

byi = tanh
(

wyi

‖wyi‖

)

3. Calculate the distance matrix{
Gi,j|i = 1, 2, . . . ,C, j = 1, 2, . . . ,C

}
, where i, j

represent the entry of i-th row and j-th column

4. Compute the joint loss by Lt = L
t
A−softmax + L

t
M

5. Compute the backpropagation error

6. Update the parametersW

7. Update the parameters θ

End while

deep feature and one-hot label vectors, respectively. There

are two steps during batch optimization. We first filter the

common labels by removing duplicated items from the label

vector and count the number of non-repetitive labels as K .

The Softmax layer can then be reconstructed to generate

new semantic weights by looking up the mid-angle of each

specified class. For example, an image xn with the label ‘‘cat’’

and ‘‘dog’’ is given and then the combination of {cat, dog} is

considered a new semantic center. The forward process of this

proposed dynamic Softmax layer is illustrated in Figure 5,

where the generation of the new semantic weights and the

special multi-label case on 2D surface are shown in Fig-

ure 5(a) and 5(b), respectively. The new semantic weight ŵn
is obtained as

ŵn =
1

∑C
i=1 l

′

ni

C∑

i=1

l
′

niwyi (11)

where {l
′

n|n = 1, 2, . . . ,K} is the new one-hot label vec-

tors without duplicate item, l
′

ni = 1 represents that i-th

label is assigned to sample, wyi is yi-th column of the orig-

inal weight parameters W = [w1,w2, . . . ,wC ], ŵn ∈ R
d

is n-th column of the new semantic weight parameters

Ŵ = [ŵ, ŵ2, . . . , ŵK ].
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In addition, to make loss function to compute the corre-

sponding probabilities based on new label instance, we need

tomodify the label of each sample. The new label L = {l̂n}
m
n=1

is reassigned as follows:

l̂n = z, s.t.l
′

z = ln (12)

With these settings, we can train the network like a normal

classification task, except that the Softmax layer is generated

based on the multi-label instance. In next section, we will

show the proposed ADSH could achieve state-of-the-art per-

formance on two well-known datasets for image retrieval

application.

III. EXPERIMENTS

In this section, we will provide detailed information on the

experiments to evaluate the image retrieval task of ADSH.

In the first two experiments, we performed two evaluations

using two datasets, CIFAR-10 and NUS-WIDE, with differ-

ent sizes. The ablation experiment analyzed the impacts of

hyperparameters and the performance of quantization con-

trol on the proposed loss function. In addition, extensive

experiments were conducted to compare traditional meth-

ods with deep feature based methods. Finally, we visualize

the high-dimensional distribution of deep features through

t-SNE, which is a good explanation of the behavior of various

hashing methods.

A. DATASET AND IMPLEMENTATION SETTING

We conducted experiments on two widely used benchmark

datasets, CIFAR-10 [34] and NUS-WIDE [35]. CIFAR-10 is

a multi-class dataset containing 60,000 32× 32 color images

with each image associated with only one label of 10 cat-

egories and each category containing 6,000 images. NUS-

WIDE is a multi-label dataset with nearly 270,000 images

from the web. Unlike CIFAR-10, each image in NUS-WIDE

can be annotated with one or more labels with 81 semantic

concepts. In our experiments, following the protocol in [17],

we selected 198,512 images, of which 21 were the most com-

monly used concepts as our dataset. Moreover, each of these

concepts contains at least 5,000 images. For the multi label

dataset, the images sharing at least one label are considered

as similar images.

The implementation uses pre-trained AlexNet [29] as

the feature extractor and the FCH layer contains k nodes.

For optimization, SGD with 0.001 initialized learning rate,

0.9 momentum and 0.0005 weight decay is used. Heuristi-

cally, set α and β are set to 1, while the hyperparameter µ

of A-Softmax is set to 4. All experiments run on PyTorch

platform.

B. BASELINE AND EVALUATION PROTOCOL

To demonstrate the effectiveness for image retrieval task,

ADSH is compared with the well-known or state-of-the-art

hashing methods. These methods can be roughly divided

into two categories: (1) conventional hashing methods

of SH [36], ITQ [10], FastH [37] and SDH [38], and

(2) deep hashing methods of DNNH [20], DSH [17],

DPSH [18], DLBHC [28], and HashNet [21]. For con-

ventional hashing methods, 512-dimensional GIST descrip-

tor from CIFAR-10 images and 1134-dimensional feature

vector from NUS-WIDE images are used as input. The

results from previous work [18] are used for compari-

son since the experimental settings are similar. For deep

hashing methods, the results are obtained by running the

source codes provided by their authors to train the model

by ourselves. The pretrained AlexNet architecture is used

as the backbone of the feature extraction, and resized raw

image is directly feed into the network to generate the hash

code.

Following the setting of [18], we conducted experiments

under two settings with different number of training images.

The code length k was set to 12 bits, 24 bits, 32 bits and

48 bits. Note that for the NUS-WIDE dataset, we return

5,000 samples to calculate MAP (MAP@5000) in the first

experimental setup, and we use MAP @ 50000 in the second

experimental setup.

C. RESULTS OF THE FIRST EXPERIMENT SETUP

In the first experimental setup, we randomly selected

100 images for each category in CIFAR-10 dataset. A total

of 1,000 images are selected as query images. For the

unsupervised hashing methods, all remaining images are

used as training images. For supervised hashing methods,

we randomly selected 5,000 images (500 per class) from

the remaining images. The rest of the images are treated as

database images. For NUS-WIDE dataset, 100 images per

class, (i.e. 2,100 images), are randomly sampled as query

images. Again, the rest images are used as training images

for unsupervised hashing methods. For supervised hashing,

we randomly selected a total of 10,500 images (500 per class)

as training set for all baselines. The remaining images made

up the dataset set.

Table 1 shows the overall image retrieval performance of

the two datasets with different hash code lengths (12 bits,

24 bits, 32 bits, and 48 bits). We can observe that the deep

hash methods are generally superior to the non-deep hash

methods by a large margin. The significant performance

improvements indicate that CNN-based image representa-

tion is advantageous than handcrafted feature representa-

tion. In terms of the deep hash method, ADSH method is

always better than the competitor HashNet by about 4%.

An interesting phenomenon is that the performance gap in

the CIFAR-10 dataset is much larger than that in NUS-WIDE

dataset. Specifically, ADSH can achieve a 12% performance

improvement on CIFAR-10, compared to 0.4% performance

improvement on NUS-WIDE, which are very impressive.

This may be due to the small image size (32×32) of CIFAR-

10, which is considered a challenging dataset. For multi-

label dataset, we adopt the setting that image sample sharing

at least one label are considered as similar image. It may

result in smaller performance gap because it reduces the

criteria for retrieval tasks. We also noticed the significant
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TABLE 1. Mean average precision (MAP) results of different methods on both datasets under the first experiment setting, which return 5,000 top
neighbors for NUS-WIDE.

FIGURE 6. The comparison results of ADSH and other deep-hashing methods on the CIFAR-10 dataset under three evaluation matrices. (a) P-R curve
at 48 bits (b) precision curve w.r.t top-N at 48bits (c) precision curve within hamming radius 2.

performance boost between ADSH and DLBHC, which also

used Softmax loss to guide network training for larger image

retrieval. Specifically, ADSH outperformDLBHC by 65% on

CIFAR-10 dataset.

The performance of precision in terms recall, top return

samples and number of bits are shown in Figure 6 and

Figure 7 for CIFAR-10 and NUS-WIDE datasets, respec-

tively. For recall of Figure 6(a) and Figure 7(a), it is clear that

ADSH line is higher than other methods, which indicates that

ADSH can achieve higher accuracy at the same recall level.

This is ideal for practical systems that require high precision

with a small amount of return samples. From Figure 6(b) and

Figure 7(b), we can observe an increase in the precision of

the top return samples.

The performance in terms of precision with dif-

ferent number of bits (code lengths) is shown in

Figures 6(c) and 7(c). When the code length is 12 bits,

ADSH achieves the highest P@H = 2 on all two datasets.

This demonstrates that ADSH can learn more compact

binary code for efficient image retrieval because each query

requires only O(1) time for Hamming ranking at Hamming

Radius 2. These results confirm the performance improve-

ment of ADSH method over other well-known hashing

methods.

D. RESULTS OF THE SECOND EXPERIMENT SETUP

The second experiment is designed to evaluate the perfor-

mance of ADSH against the deep hashing methods under

more training images. In CIFAR-10 dataset, 10,000 images

(1,000 images per class) were selected as the query set, and

the remaining 50,000 images were used as the training set

and image database. In NUS-WIDE dataset, 2,100 images

(100 images per class) were randomly sampled as test query

images, and the remaining images (193,734 in total) were

samples of training set and image database. The experimental

results of the second experiment setup with the comparison

between the deep hashing methods is shown in Table 2. It can

be found that ADSH is still much better than all compared

methods. In particular, ADSH method performed better than

HashNet by approximately 2% on CIFAR-10 and 3% on

NUS-WIDE. ADSH can also achieve better results than the

DLBHC method because ADSH can maximize the semantic

information in the hash space. Therefore, ADSH works well

under different protocols.

E. EMPIRICAL ANALYSIS

1) IMPACTS OF THE HYPERPARAMETERS

In this subsection, we study the effects of hyperparameters α

and β, where α controls the weight of the mean of Hamming
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TABLE 2. Mean average precision (MAP) results of different methods on both datasets under second experiment setting, which return 50,000 top
neighbors for NUS-WIDE.

FIGURE 7. The comparison results of ADSH and other deep-hashing methods on the NUS-WIDE dataset under three evaluation metrics. (a) P-R
curv at 48 bits (b) precision curve w.r.t top-N at 48bits (c) precision curve within hamming radius 2.

distance matrix, and β dominates the variance of Hamming

matrix during the training process. All of this is important

to the proposed ADSH model. Therefore, we conducted two

experiments to illustrate the sensitivity of these two parame-

ters to CIFAR-10. In the first experiment, we change the value

of α from 0 to 100, where β is set to 0.1. Figure 8(a) shows

the verification accuracy of thesemodels. It is obvious that the

accuracy has improved significantly from 0.692 with α = 0,

to 0.743 with α = 1. However, when α = 100, the per-

formance drops to 0.721. The results show that Hamming

distance matrix is helpful to achieve discriminative feature

in the hash space.

In the second experiment, we changed the value of β from

0 to 100, and α = 1. The results are shown in Figure 8(b).

Different from the first experiment of this subsection, the

performance of the model remains stable over a wide range

of β and drops sharply to 0.69 at β = 100. As we have seen,

the role of variance in Hamming distance matrix may bemore

like a generalization term used to balance the output of the

network.

2) COMPARISON WITH TRADITIONAL HASHING METHODS

USING DEEP FEATURES

In order to validate the effectiveness of the proposed method

and show that it does not only depends on the powerful

feature extraction of CNNs, the proposed ADSH is com-

pared with traditional methods by using deep features from

FIGURE 8. Accuracies on CIFAR-10, respectively achieve by (a) models
adopt different α with fixed β = 0.1, (b) models with different value of β

and fixed α = 1.

pre-trained AlexNet model under the same experimental

setup. We extract 4096-dimension feature from the penulti-

mate layer as our input data. Table 3 compares the mean aver-

age precision (MAP) of various methods. It shows that ADSH

can still achieve significant improvements on the CIFAR-10

dataset. The MAP of ADSH is about 25% higher than that of

the best competitor FastH. It indicates that the advancement

of our algorithm plays an important role in this image retrieval

task.

3) EVALUATION OF QUANTIZATION ERROR

In this subsection, we gain a deeper understanding of the

efficacy of quantization error control through joint super-

vision. We studied three semantic learning cases: (1) The
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TABLE 3. Mean average Precision (MAP) result under the first
experimental setting on CIFAR-10 dataset.

TABLE 4. Mean average precision (MAP) results of Softmax, A-Softmax,
and ADSH on CIFAR-10 with 32 bits.

FIGURE 9. The t-SNE of hash codes learn from (a) Softmax, (b) A-Softmax,
(c) HashNet, and (d) the proposed ADSH method.

network is only supervised by Softmax; (2) The network is

only supervised by A-Softmax; (3) Supervise the network

through joint supervision of the proposed method (ADSH).

We perform these methods under the same network structure

settings, and compute MAP with input of deep feature and

hash code, respectively. For the deep features, we use cosine

similarity as the distance metric and these results are shown

in Table 4.

Through joint supervision under the A-Softmax and Ham-

ming distance matrix, ADSH is much better than A-Softmax

and Softmax in both cases. Interestingly, after feature bina-

rization, the performance of MAP is reduced in Softmax and

A-Softmax, but there is small performance boost in ADSH.

Besides, we also notice that ADSH can achieve better result

than A-Softmax in term of MAP without sign. This means

that ADSH can even optimize the feature structure in the

original feature domain. In general, the performance gap

between deep features and hash codes verifies that ADSH

method is an effective solution for controlling quantization

errors.

4) VISUALIZATION OF HASH CODES

As mentioned earlier, if the training network only behaves

under the supervision of Softmax like DLBHC, it will not

be able to produce high quality hash codes. To under-

stand this situation more clearly, we compare Softmax loss,

A-Softmax loss, HashNet and the proposed ADSH meth-

ods with t-SNE visualization of hash codes. Specifically,

we train these four methods on the same CIFAR-10 dataset.

Figure 9 shows the visualization of the four methods. We can

observe that the hash code generated by Softmax loss is

more similar to the random distribution of data points.

For A-Softmax, although the hash codes from different

categories are well separated, it does not have the clear

structure as ADSH. In addition, ADSH generates more com-

pact hash codes than HashNet. This verifies that the hash

code generated by the proposed ADSH method is more

discriminative, enabling image retrieval to be performedmore

efficiently.

IV. CONCLUSION

In this paper, we proposed a new image retrieval hashing

method based on A-Softmax loss, called ADSH (Angu-

lar Deep Supervision Hashing). In order to reduce the gap

between continuous space and discrete space, we used angu-

lar hashing loss to optimize the deep features in the hash

space with joint supervision of Hamming distance matrix and

A-Softmax loss. This new loss function not only enjoys effec-

tive training, but also minimizes the effects of quantization

errors, with clear intuition and geometric interpretation as

shown in a toy example. In addition, we also proposed a

dynamic Softmax training strategy to address training prob-

lem on multi-label datasets. Compared to the conventional

metric learning-based hashing method using pair-wise and

triplet-wise training samples, ADSHmethod does not require

a complex sample selection strategy. Comprehensive exper-

iments confirmed that ADSH encourages the network to

generate more compact hash codes, resulting in the most

advanced image retrieval performance on the CIFAR-10 and

NUS-WIDE benchmark datasets.

In the future, we plan to enhance the dynamic Softmax con-

cept in order to improve the results for multi-label datasets.

In addition, the benefits of metric learning and semantic

learning can be combined into a single end-to-end training

network.
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