Abstract Submitted for the MAR06 Meeting of The American Physical Society

Angular Dependent Torque Measurements on CeCoIn₅ Single Crystals¹ H. XIAO, T. HU, C. C. ALMASAN, Kent State University, T. A. SAYLES, M. B. MAPLE, University of California, San Diego — Angular dependent torque measurements were performed on single crystals of CeCoIn₅ heavy fermion superconductor ($T_{c0} = 2.3 \text{ K}$) in the temperature T range $1.9 \text{ K} \leq T \leq 20 \text{ K}$ and magnetic fields H up to 14 T. Large paramagnetic effect is found in the normal state due to magnetic moment of the magnetic ion Ce³⁺. Torque measurements in the mixed state were also performed. The torque curves show sharp hysteresis peaks at $\theta = 90^{\circ}$ (θ is the angle between H and the c-axis of the crystal), a result of intrinsic pinning of vortices. The anisotropy $\gamma \equiv \sqrt{m_c/m_a}$ in the mixed state was determined from the reversible part of the vortex contribution to the torque signal using Kogan's model [Phys. Rev. B 38, 7049 (1988)]. The anisotropy γ decreases with increasing magnetic field and temperature. The fact that γ is not a constant points towards a multiband scenario in this heavy fermion material.

¹This research was supported by the National Science Foundation under Grant No. DMR-0406471 at KSU and the US Department of Energy under Grant No. DE-FG03-86ER-45230 at UCSD.

H. Xiao

Date submitted: 30 Nov 2005 Electronic form version 1.4