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We present the angular distributions of muon pairs obtained in a high-statistics experiment using a
194-GeV/c =~ -beam impinging on a tungsten target. Our results arc based on the analysis of 145 000
events with positive Feynman x and mass above 4.07 GeV/c?, excluding the T region. Simple
first-order QCD relations allow us to determine the ratio of annihilation with gluon emission to the
sum of annihilation and gluon Compton scattering, which is found to be about 58% to 75%. We
determine the parton square intrinsic transverse momenta to be of the order of 0.6 (GeV/c)?, and
about 30% larger in the pion than in the nucleon. At large Xx;, our data agree with the higher-twist
hypothesis, and support the interpretation of the relevant scale parameter as the dimuon square tran-

sverse momentum.
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1. Introduction

The angular distributions of the lepton pairs produced in hadronic interactions have long been recog-
nized to provide information on the production mechanism complementary to that provided by other
differential distributions. In particular, for the angular distributions, predictions can be made which are
largely independent of the detailed parton distributions, and also insensitive to normalization.

In the framework of the parton model, hadronic lepton-pair production is described by the anni-
hilation of a quark from one of the hadrons with an antiquark from the other hadron into a tran-
sversely polarized virtual photon, which then decays into a pair of leptons (Fig. 1a). This picture, the
so-called “naive” Drell-Yan [1] mechanism, reproduces fairly well the gross features of the data at low
values of the transverse momentum P of the pair. It fails however to explain the absolute normaliza-
tion, and the large number of events observed at high Pr. Inclusion of the intrinsic transverse
momenta of the partons is not sufficient to reconcile the predictions with the data. On the other hand,
the QCD processes to first order in the coupling constant g qq - v G (annihilation with gluon emis-
sion, Fig. 1b and 1¢), and qG - v*q (gluon Compton scattering, Fig. 1d and le), where the
momentum of the gluon balances the transverse momentum of the photon, reproduce the experimen-
tal PT distributions fairly well. These predictions are however sensitive to the quark and gluon distri-
butions, and the latters are outside the present predictive power of QCD.

The angular distribution predicted by the “naive” Drell-Yan model is 1+ cos*8, where @ is the
polar angle between the incoming hadrons and the decay leptons in the center-of-mass system of the
latters. In QCD, the angular distributions will depend not only on 8, but also on the azimuthal angle
¢, and will be described by three coefficients (aside from normalization). For the gluonic annihilation
process, and in a particular reference frame, one of these coefficients is a function of kinematical vari-
ables only, i.e., independent of the parton distributions [2— 5], while for the Compton scattering pro-
cess it depends, but only weakly, on these distributions [3—7].

In the case of = -nucleon interaction, higher-twist (i.e., non-perturbative) effects (8] (Fig. 1f and
1g) can become important at large value of the relative momentum x, of the antiquark, and give rise

to longitudinally polarized photons, with a specific angular distribution.



Several published experiments [9— 13] have given results on the polar distribution 1+ Acos?#.
These are all in agreement, within errors, with the “naive” Drell-Yan prediction A =1, except at large
Xy, where one experiment {10] confirmed the higher-twist prediction. More recently, an experiment [11,
12] gave results for the angular distributions in cos# and ¢. However, its limited statistics does not
allow to draw definite conclusions; in particular, no higher-twist effect was observed. Conversely, that
effect was clearly seen in an other recent experiment [13); on the other hand, the statistics were too low
to see any departure from a uniform azimuthal distribution.

In the next section, we shall define the angles # and ¢ in several reference frames, and give the
relations between these frames. In the third section, we shall describe our experiment, the data selec-
tion, the Monte-Carlo, and the analysis procedure. The fourth section contains the results and the fifth

one the comparison with the predictions from QCD. The last section contains our conclusions, and

some kinematical relations are given in an appendix.
2. Reference frames and angle definitions

In the "naive” Drell-Yan model, the transversc momentum of the partons is neglected, so that the
partons move parallel to the colliding hadrons. In the center-of-mass system of the lepton pair, the
partons are hence collinear, and the angular cross section of the pair is described by
(1/o)de/d2 = [3/2(A+3)] (1 + Acos?f), (1)
where 8 is the angle between the momentum P’# of one of the muons and the line of flight of the par-
tons, and A=1. However, when the transverse momentum PT of the photon is not neglected, the
quark and antiquark momenta are not collinear any longer; one expects A <1, and the angular distr-
bution will depend also on the azimuthal angle ¢ (Fig. 2).
The choice of axes in the center-of-mass system of the dilepton is arbitrary, and many special

choices have been proposed. We shall restrict ourselves to the following three frames:

— z parallel to the beam momentum ffb: this is the t-channel (or Gottfried-Jackson [14], GI)

frame;

—  Z antiparallel to the target momentum I).'t: this is the u-channel (UC) frame;



— z parallel to the bisector of B, and —B,: this frame (CS) was proposed by Collins and Soper
b t

[15].

As we shall see, the theoretical predictions are especially simple when expressed in the CS frame. We
choose y parallel to ffbxirt and x (parallel to -P’T in the CS frame) completes a right-handed frame.
The polar angle # is the angle between z and the momentum of the positive muon ﬁp, and the azimu-
thal angle ¢ is the angle between ¥ and zx Fp.‘

The three frames defined above are related by a single rotation of angle  around their commeon y
axis, where B is half the angle between P'b and —ift. The relation between the CS and the GJ frames,

or between the UC and the CS frames 1s thus simply:

X = xcosf + zsinf,
y =1y (2)
z’ = —xsinf + zcosP;

the tangent of the angle 8 is a function of Pr and the mass M of the dilepton [15] [see Appendix, Eq.
(A12)]:

tan = p, 3)
where p = PT/M.

Averaging over the initial hadron polarizations, summing over the lepton spins, and applying
invariance principles (permutation symmetry, gauge invariance, parity conservation, and unitarity), the
most general form of the angular differential cross section reads [16, 17]:

(1/6)(do/dQ) = [3/4r(A+3)] [1 + Acos?8 + usin2fcos¢ + (v/2)sin?fcos2¢], 4)
where the coefficients A, g, and » may in general be functions of the kinematical variables /s (cen-
ter-of-mass energy), M, PT' Xp (relative longitudinal momentum of the dilepton), and x I

The angular differential cross section is often written using the notation proposed by Collins and
Soper [15]:

(1/0)do/dR = (3/16a)[1 + cos?6 + (A,/2)(1— 3cos?8)

+ A,sin2fcos¢ + (A,/2)sin?fcos2¢]; (5)
the relation between A, u, and » and A, A, and A, is: A=(2—3A,)/(2+ Ayp), p=2A,/(2+ Ay), and
v=2A,/(2+ A;). While the latter parametrization is more convenient for theoretical calculations, the

one defined by Eq. (4) is more suited for data analysis.



Using Eqs (2) and (3), one can write the coefficients in one frame as functions of the coefficients
in an other frame [4, 18]:
A= [(1=p?/2 + 3pp + 3p%/4]/A,
= [=ph + (1=p*) + pv/2/A, (6)
v = [p?A — 2op + (1+p%/2p]/A,
with:
A =1+ p%+ p?A\j2 — pp — p*v/4,
where A, p, and v are the coefficients in the CS (UC) frames, and A", p’, and »* are the coefficients in
the GJ (CS) frames. The inverse transformations (i.c., from the GJ to the CS frame or from the CS to
the UC frame) are obtained by replacing p by —p in Eqs (6).
It should be stressed that with Egs (6) the choice of a reference frame looses most of its relevance
when the angular distributions in both cosf and ¢ are measured, as one can easily compute the coeffi-
cients in any one frame, once they are known in another one; this choice becomes only a matter of

convenience. This is not the case when only the cosf distribution is measured.

3. Experimental details

3.1 Set-up

The data used for this analysis were recorded in the NA10 experiment at the CERN SPS facility. The
apparatus has been extensively described elsewhere [19], and we shall briefly recall its main features
here. An unseparated beam of 194 GeV/c (95% = ~, 4.4% K, and 0.6% P), with a 10% momentum
bite and an average intensity of 1 to 2:10% particles per burst, was focussed on a high-purity tungsten
target. To allow an estimation of the reinteraction effects, two different targets were used, with lengths
5.6 and 12 cm. The target was followed by a beam dump/hadron absorber, consisting of a uranium/
tungsten core surrounded by a carbon/iron absorber. The distance between the target and the core of
the dump (120 cm) was sufficiently large to avoid any contamination of our sample by pairs created in
the dump. The dump/absorber was followed by a muon spectrometer. The analysis magnet had a
hexagonal symmetry and produced a toroidal field. Only events whith both muons traversing the air
sectors of the magnet were retained. For triggering purposes, two sets of two hodoscopes divided into

sextants were installed in front and behind the magnet; the last hodoscope was located behind an iron



muon filter. The trajectories of the particles were delineated by two sets of four multiwire proportional
chambers, one upstream and one downstream of the magnet; each chamber had three gaps with wire
planes rotated by 60° with respect to each other.

A first-level trgger required at least one muon with transverse momentum larger than 0.8 GeV/c
pointing to the target, in at least two different sextants. This first-level trigger suppressed the low-mass
events. To further reduce the number of ftriggers, a second-level trigger, based on an
event-buffer/microprocessor system [20], rejected events with high multiplicities or low masses.

The muon trajectories were reconstructed off-line using the information from the wire chambers
and from the hodoscopes. An iterative algorithm detenﬁined the momentum of the muons to better
than 2% accuracy. Corrections were made to account for the energy loss in the absorber and in the
target. Additional off-line cuts [21], based on geometrical criteria, reduced the number of randomly
associated tracks to a negligible level. As the size of the target was small compared to the vertex reso-
lution, we constrained the vertex to the center of the target.

To climinate the J/y- and T-family resonances, events with M<4.07 GeV/c? and 8.5
GeV/c? <M <11 GeV/c? were rejected. Events with Xp <0 were also rejected, in order to minimize
reinteraction effects. After all cuts, our final sample consisted of some 145 000 opposite-sign dimuons.

As the like-sign events represent only 0.3% of the opposite-sign events, no subtraction was made.

3.2 Monte-Carlo
The events simulated by the Monte-Carlo program were generated with a realistic P distribution {13,
an (M, xg) distribution essentially following the Buras-Gaemers [22] parametrization of the structure
functions, a uniform ¢ distribution and a 1+ cos*§ distnbution. The Fermi motion was taken into
account following Ref. 23, with the high-momentum tail cut off at 0.4 GeV/c. The measured spatial
and momentum distributions of the pion beam were folded in; the energy loss and multiple scattering
in all parts of the apparatus were taken into account.

The Monte-Carlo events were processed through the same reconstruction program as the real
data, and the same trigger requirements and selection criteria were imposed. The final Monte-Carlo

sample consisted of over one million events.



3.3 Acceptance and resolution

The NA10Q apparatus was not specifically designed for the study of the angular distributions, but rather
for the determination of the parton distributions. The acceptance in cosé (Fig. 3a) is therefore not
optimal, being peaked at cosf =0, and the range covered (|cosf| < 0.6) is rather limited; on the other
hand, the acceptance in ¢ (Fig. 3b) is more uniform, extending over the full range ~= to #. The coef-
ficient A of cos?@ in Eq. (4) is primarily determined by large values of |cos8|, where we have few events;
hence, our A is rather inaccurately determined, and may suffer from biases. The coefficient u of
sin2fcos¢ is determined mostly by the ¢ distribution at intermediate values of |cos8}, and hence 1s also
prone to biases. On the other hand, the coefficient » of sin?fcos2¢ is sensitive to cosf values around
zero, where our events are concentrated, and is quite well determined and little biased. In the compari-
son with the theory, we shall take advantage of the small uncertainty of ».

The acceptances in M and Py are slowly increasing with these variables [19], but the physical
distributions drop rapidly, and there are few events above My or at high Py. The acceptance in Xy,
relevant for the study of the higher-twist effect, is ~9% at xlw0.4 and falls below 1% at x)®1, where
the parton density also falls rapidly, thus making the investigation of the higher-twist effect with our
data rather difficult.

The mass resolution was found, by a fit to the width of the T resonance [24], to be 3.3% at
M=My, in agreement with the Monte-Carlo prediction. The rms resolutions in cosf and ¢, deter-
mined by Monte-Carlo, are Acos®=0.06 (GI), 0.03 (CS), and 0.04 (UC), and A¢=0.4 for all three

frames.

3.4 Analysis procedure
We determined the coefficients A, p, and » in several intervals of the variables M, PT, p: Xp, and Xy
For each interval, the (cosf, ¢) plane was divided in 20x 20 bins; since the apparatus accepts only a
limited range in cosf, only between 200 and 250 of these bins were populated. For the interval
M> MT, where we have comparatively few events, we used only 10x 10 bins.

The coefficients were estimated by a standard least-squares method: we adjusted the Monte-Carlo
generated angular distributions to the observed ones by a fit with seven parameters, viz.:

AN/AR = Ny(1 + Acos?f + psin20cos¢ + (v/2)sin’fcos2¢

+ acosf + Bsinfcose + ysindsing). (N



N, is an arbitrary normalization factor (we did not seck to determine here absolute cross sections);
replacing N, by Ny’/(3+A) to take the denominator of the r.h.s. of Eq. (4) explicitly into account does
not change the results of the fits.

The three parameters «, B, and y multiply terms which are odd under inversion, ie., under the
transformation cosf-+ —cos@, ¢+ —¢. By comparing data taken with opposite field polarities, we
found that most of this asymmetry can be ascribed to experimental effects not contained in the
Monte-Carlo. The residual, ie., field-independent, average asymmetry is parametrized by
a=—0.06£0.03, f=—0.012£0.01, and v=0.01£0.01, giving a global asymmetry of (—3+1)%. Note
that the physical asymmetry expected from electromagnetic corrections is predicted {25] to be +1% to
+1.5% and that from electroweak interference [26, 27, 28] ranges from +0.2% at 4 GeV/c? to
+0.8% at 8 GeV/c? [29].

We verified that the geometrical acceptance is insensitive to the fitted parameters. Neither the
acceptance nor the smearing due to the finite resolution, which were taken into account in the
Monte-Carlo, were iterated during the fitting procedure.

We checked that our results were neither affected by the choice of the binning, nor by the partic-
ular distributions chosen to generate the Monte-Carlo events. We obtained acceptable x*s in all inter-
vals: the ratio x?* per degrees of freedom ranged from 0.8 to 1.2

The coefficients were computed in the GJ, CS, and UC frames. As an illustration, we show in
Fig. 4a the values of A, g, and » for the five intervals (shown in Table 2) in P-.. As expected, the values
for the three frames lie close to each other at low PT, where p is small, but their differences increase
with PT. As the next step, we computed the values in the CS frame from the values in the GJ and UC
frames, by means of the transformation Eqs (6), using the p appropriate to each specific interval. In
Fig. 4b we display for each coefficient the three values in the CS frame, i.e., the one obtained directly
and the other two computed as just indicated. The coefficient values lie now closer to ¢ach other, but
still do not coincide: the remaining difference allows us to estimate the systematic uncertaintics; we see
that these uncertainties are comparable to the statistical errors, i.e., large for A, and relatively small for
= and ». In an attempt to reduce the systematic uncertainties, we computed a weighted mean of the
three values; this procedure does of course not reduce the statistical errors: we assigned as the statistical

error on the mean value the average of the statistical errors in each frame.



4. Results

We recall that our dimuon events were produced by a 194 GeV/c =~ beam impinging on a tungsten
target; events with X < 0 or M<4.07 GeV/c? were rejected, as well as events with
8.5 GeV/c? <M < 11 GeV/c?, where the contribution of dimuons from T-family resonances a:nou;xts
to about 25% [24]. We present below the values of the coefficients as functions of selected kinematical

variables.

4.1 M dependence

The M dependence in the CS frame is given in Table 1 and in Fig. 5 (the values corresponding to the
T region, i.c., the shaded interval on the figure, are shown for comparison). The coefficient A increases
slightly with M, while . and » decrease, although all points are compatible, within errors, with constant
values, viz., {A)=0.69+0.05, (u)=0.007+0.012, and {») = 0.096+0.009. Fitting only the cosf distribution,

we find a slightly larger value for A, viz., (A) = 0.83+0.06.

4.2 P T dependence

The variation of the coefficients with PT in the CS frame is given in Table 2 and in Fig. 6. The coeffi-
cient A is compatible with a constant value; x is constant and compatible with zero, while » starts from
zero and increases with PT‘ In the limit PT= 0, one expects indeed =0 and » =0, i.e., the "naive”
Drell-Yan prediction; on the other hand, our data do not agree with the corresponding value A =1: we

observe a significantly smaller value of A in the first interval.

4.3 p dependence
The dependence on p, in the CS frame, given in Table 3 and in Fig. 7, is similar to the dependence on
Pr. We give it here because this dimensionless variable plays an important role in the phenomenolo-

gical discussion of our results.

44 x F dependence
The X dependence of the coefficients in the CS frame is given given in Table 4 and in Fig. 8. While A

and p are constant ((A)=10.76+0.05 and ()= 0.005+0.011), » increases slightly over the observed range.



A straight-line fit gives » = (0.05£0.02) + (0.20£0.07)x, with x*/d.o.£.= 0.9/3. We are not aware of any

QCD prediction for the variation of the angular distributions with Xg-

4.5x 1 dependence

We give the %) dependence (Table 5 and Fig. 9) in the GJ frame, as the higher-twist predictions have
been made for that frame. One sees that A drops for X, above (.6, as expected for this effect. On the
other hand, the probability that the highest two points of A, s, and » (i.e., for x; > 0.6) agree with their
averages for X < 0.6, is ~30%. Thus our data, although consistent with the higher-twist hypothesis, are

not sufficient to prove it.
5. Comparison with theoretical predictions

5.1 Intrinsic transverse momentum
Motivated by the copious yield of dimuons observed at large P (P>0.5 GeV/c), several early
attempts were made to improve the “naive” Drell-Yan model by including the parton intrinsic tran-
sverse momenta, but these did howeve;: neither suffice [30] to explain this yield, nor the observed
dependence of {P) on «/s- The high-Pr. yield is by now well understood in the framework of QCD.
Nevertheless, the parton intrinsic transverse momenta still play a role in the behaviour of the angular
distributions [3, 15, 31, 32].

In the limit P—+0, one expects the “naive” Drell-Yan model to apply, and therefore the QCD
. corrections to be small in the low-PT region. Neglecting these corrections, one obtains [3] for the first
coefficient of the angular distribution, after smearing over the quark transverse momenta:
Ag=4K1*)/M? in the GJ frame, and A, =4(Kp*)/M? in the UC frame, where {Kyp? (Kyp?)) are
the mean square transverse momenta of the quarks in the pion (nucleon).

With the parametrization of Eq. (4), we get:

Ky p? = M¥(1=2)20+3) (8)

in the GJ frame, and the same relation for {KZTZ) in the UC frame. In the first PT bin (PT< 0.5
GeV/c) we have (Fig. 4a): A=0.73+0.14 (GJ frame), and A =0.63+0.14 (UC frame). From Eq. (8},
with (M*)=25.6 (GeV/c?)® in the first Pp bin, we obtain {Kyp*=(0.9£0.5) (GeV/c)?, and

(Kyp?=(1.320.5) (GeV/o)2.



A better estimate of the difference between the square transverse momenta of the partons in the
pion and in the nucleon can be obtained by investigating the p dependence of the coefficient u. In the
CS frame, this coefficient is proportional to the difference between the mean square transverse
momenta of the annihilating partons [15]. Assuming that QCD contributions from both partons to the
transverse momentum of the dimuon are the same, a departure of p from zero in this frame can be
ascribed to the difference between the intrinsic transverse momenta [15, 32]:

#lp) = =p(K 1) — Ky WK 172 + (Koyp?D. 9)
Fitting the u(p) distribution (Table 3), we obtain (Fig. 7):

((KITZ)"{KZTZ))/((KITZ)+(K2Tz)) = 0.1410.06, (10)
with x?/d.o.f.=4.1/4; the intrinsic square momentum of a parton is thus (284 12)% larger in a pion
than in a nucleon; note that Eq. (9) is directly sensitive to the sign of the difference between the
intrinsic transverse momenta in both hadrons, contrary to the estimates of {K %) and (K, yielded
by Eq. (8), which give an opposite sign for this difference.

The contribution »; of the intrinsic transverse momenta to v is given by [15, 32]:

vi(p) = pPL(K 72—~ Ky /(K 1 p2 + Ky 2D (11)
for our highest point (p=0.5) it amounts to only 0.005, compared to the measured value
v = (0.290+0.038 (Table 3); it can therefore be neglected compared to the QCD contribution. This is
not the case for the coefficient A, which is more sensitive to the intrinsic transverse momenta; a com-
parison of » and A will allow us to determine again the parton intrinsic transverse momenta. A general
prediction of the parton model, analogous to the Callan-Gross relation [33] in deep-inelastic scattering,
is [2, 17, 34, 35]:

1=-A = 2. (12)
This relation, valid for spin-1/2 quarks, is insensitive to first-order QCD corrections [36]. It is however
modified by the quark transverse momenta, which affect the two sides of Eq. (12) differently: one
obtains, as a function of M in the CS frame [32]:

1=AM) = 2(M) + (8/M*) (K pHKop?) | (K2 + Ky (13)
A fit of A(M) to the data (Table 1), with »(M) given by QCD (see section 5.2 below), yields (Fig. 5):

(K2 UKy P2 UK )+ (Kpp2)) = (0.28£0.16) (GeV/ey? (14)

(we rejected the events at x,>0610 eliminate possible higher-twist effects, see section 5.3 below; the



fit shown in Fig. 5 was made without this cut). Combining Eqs (14) and (10), we obtain
{K 7% =(0.6610.38) (GeV/e)? and (Kop?)=(0.5010.29) (GeV/c)?, in agreement, within the large
errors, with the estimates given by Eq. (8).

These values of {K?) arc considerably larger than those currently envisaged in theoretical papers
(see e.g. Ref. 37 and 38). However, recent theoretical improvements, like soft-gluon resummation, are
not included in the present analysis; it has been shown [38] that these improvements reduce the
amount of intrinsic transverse momentum needed to reproduce the observed P distributions.

For the distributions integrated over M, we shall use Eq. (13) averaged over 1/M?, viz. numeri-
cally

1-A = 2+0.12. (15)

5.2 First-order QCD corrections

We now turn to the first-order QCD corrections to the Drell-Yan picture. In the leading-twist approx-
imation, the lepton-pair production is described, in addition to the zeroth-order Drell-Yan process
(qa—=7y", Fig. 1a), by quark-antiquark annihilation with hard-gluon emission (qq~7y G, Fig. 1b and
1c), and by quark-gluon scattering (hard-gluon Compton scattering, qG—+71 q, Fig. 1d and le). Vertex
corrections of order « 82 give also first-order contributions through interference with the zeroth-order
diagram; however, soft-gluon resummation, which takes these vertex corrections into account, modifies
the first-order contributions to the angular distribution coefficients only slightly [28, 39]. Together,
these corrections largely account for the dimuon production at high P, for the dependence of P on
/s, and for the factor of about two to three (K-factor) between the measured cross sections and those
predicted by the “naive” Drell-Yan model.

Knowing the parton distributions both in the pion and in the nucleon, one can compute the ratio
of the hard-gluon annihilation contribution to the sum of the hard-gluon annihilation and Compton
scattering contributions. In the next-to-leading approximation to order ag [40] and subtracting the
soft-gluon resummation term [41], and taking the same structure functions as in Ref. 42, we obtain for
this ratio a value between 70% and 85% for M above 4 GeV/c? (this computation also indicates that
these two diagrams contrbute for some 10% only to the total cross section). This result is little sensi-

tive to the particular choice of structure functions and varies slowly with Pr [(43]. On the other hand,



we can measure this ratio almost independently of the structure functions by using the kinematical
dependence of the angular distribution coefficients.

For the annihilation as well as for the Compton scattering, the partial angular cross section at the
parton level reads [34]:

(1/o)do/dR2 = (3/167)[1 + (E]lzcoszli1 + I:“-,zzcoszﬁiz)/(El2 + E)9), (16)
where E,= I_P'il is the energy of parton i (i=1,2), and 9. the angle between frl and _P'p. Neglecting the
intrinsic transverse momenta, the partons lie in the plane of the hadrons, and one has: f’i=(Pix, 0,
P.); with i"ﬂ =(M)/2)(sinfcosp, sinfsing, cosfd), one obtains: Eizcoszﬂi= (P, sinfcos¢ + Pizcosﬂ)z.
Substituting in Eq. (16) and comparing with Eq. (5), one gets:

Ay = Ay = (P2 +P, D(E{2+E,D), (17)
and

Ay = (PP, +Py Py )i(E*+E5?). (18)

For the annihilation, P, =x,P and P,=x,P,; with the expressions for By, f”b, E,, and i;t given
in the Appendix [Egs (A9), (A15), and (A16)], one obtains, in the CS frame [2— 5]:

Ay = A, = p*/(1+pY), (19)
which is independent of the parton densities, and:

Ay = [=p/(1+p)I(x1e ™Y = xY)/(x1e 7Y + 1000, (20)
where y={(1/2)In[(E + P{)/(E—Pp )] is the rapidity of the dimuon in the center-of-mass system of the
hadrons, and Py its longitudinal momentum. A, can not be made independent of the parton densities;
it is however expected {3] to be small: at zero rapidity, it is proportional to the relative difference
between the quark densities in the beam and target hadrons. Moreover, averaging over the dimuon
longitudinal momenta, it has been shown [5, 7] that, in the GJ frame: Ap=A,;=2%/(14p%?, and
Ay = —p(1—p?)/(1+p?)?, which, transformed to the CS frame, give Eq. (19) and A, =0.

For the Compton scattering, the situation is more involved, as one has to distinguish between the
case where the gluon comes from the pion: P;=x,P,, P,=x;P, +x,P,, and the case where it comes
from the nucleon: P, =x;Py, P2=x1Pb+x2Pt. This leads to expressions for A=A, and A, which
are not symmetric in X and X, [3-7, 44)], and therefore are not functions of p only. However, aver-
aging over the dimuon longitudinal momentum, one finds [5, 7} in the GJ frame:
Ap=A;=6p%/(1+p*)(1+ 5p*); assuming A, =0 in the CS frame, ie., that the average contributions

from both partons to P are equal, one obtains:



Ay = A, = 5p%/(1+50%), (21)

in this frame, also independently of the parton densities.
As we have seen in section 5.1, A is affected by intrinsic transverse momentum contributions,
which are negligible for », and, in addition, v is expected to be less biased than A (see section 3.3); we

shall therefore apply the relations above to ». For the latter, Eq. (19) and (21) give respectively, in the

CS frame:

vqa(p) = 202(2+ 3p?), (22)
and:

vqGlP) = 10p%/(2+ 15p%). (23)

Combining linearly these two terms, and assuming that there is no other contribution to v, we can
write:
W) = argele) + (1= a Glo). (24)

Fitting v(p) to our data (Table 3), we find a = 0.58+0.08, with x*/d.o.f.=1.9/4 (Fig. 7). We also
fitted »(Prp) to the data (Table 2), replacing p? by {1/M*P1? in Eqs (22) and (23), with {1/M*=10.043
(GeV/c?)~2. This fit yields «=0.64+0.07, with x*/d.of.=3.5/4 (Fig. 6). Similarly, we fitted »(M) to
the data (Table 1), replacing p? by (Pp*)/M* in Eqs (22) and (23), with (P =1.60 (GeV/c)*; we find
a=0.75+0.06, with x2/d.o.f=23.0/4. The ratio of first-order annihilation to first-order annihilation and
Compton scattering lies thus in the range 58% to 75%, a value slightly smaller, but still in agreement
with our calculated value. Strictly speaking, Eqs (22) and (23) are not valid over the full PT range, as
the first-order QCD corrections diverge in the limit P-p—+0; nevertheless, Eq. (24) reproduces well our
data, down to the smallest values of PT‘

We have seen that the relation A(M)=1-2»(M), Eq. (12), with »(M) given by QCD, fits nicely
the data, provided one allows for an additional intrinsic transverse momentum contribution. Averaging
over 1/M?, we can also compare Eq. {15) to the variation of A with p (Fig. 7), or with Py (Fig. 6);
whereas the points at p<0.3, or PTs 2, agree with this relation, the points at higher values arc larger
than expected. The innaccuracy in the determination of A (sce section 3.3} does not suffice to explain

this discrepancy.



5.3 Spin of the gluon
The QCD predictions given in the preceding section for vector gluons can be adapted to the case of
scalar gluons [7, 34, 45]. The vector-like character of the gluon has been established by the ete-
experiments at Petra [29]. Nevertheless, we verified this result by fitting our data to the first-order
QCD predictions for scalar ghions [7]. For a scalar gluon and in the GJ frame (to avoid using the for-
mula given for p, which diverges at p=0, when transforming the predictions to the CS frame), one
finds for hard-gluon annihilation:

rqq®) = (2% +3), (25)
and for Compton scattering:

qu(p) = 2p2/(1+3p% +p%). (26)
As these predictions are valid only for relatively large values of p [7], we fitted the last three points in p
(e p>02) to v(p)=avq(—l(p) + (l—a)qu(p); we find «=0.17+0.03, but with x2/d.of = 15.4/2,

giving a probability smaller than 5-10~* for a scalar gluon.

5.4 Higher twist

Higher-twist effects in QCD (i.e. non-scaling terms characterized by a @~ 2n behaviour) arise, among
other cases, when more than the minimum number of partons are involved in the initial state. This
happens in #N-»ppX when the annihilating antiquark carries a large fraction of the pion momentum,
ie. when Xy~ 1 [8]. This antiquark is then far off-shell, and has to be considered bound. This bound
state can be represented by a single gluon exchange between the annihilating quark or antiquark and
the pion spectator quark (Fig. If and 1g). The dimuon production process can no longer be described
by the annihilation of two free quarks; the zero spin of the pion influences the angular distributions,
which now acquire a sin®8 term specific of a longitudinal photon polarization [8]:

(1/o)do/dft = {3/8nl(3+N)op/2+ 0y ]} [o(1+Nc0s%6) + o sin0 + (o} /2)sin2coss], (27)
where o, oy , as well as the interference term GLTZ‘\/(OLUT) are functions of x;- The factor A" pro-
vides for the fact that A is not necessarily 1 at low Xy the term in sin®8cos2¢, which is not enhanced
by the higher-twist effect, is not given here. Comparing Eq. (27) with Eq. (4), one obtains:

ARy = (op—op)(op+op), (28)
and

#x() = oppl2loptop). (29)



The pion structure function is also modified by the higher-twist effect, and becomes [8, 13):

F(x)) ~ %1~ x))P +27], (30)
with:

7t = (49 /ME, (31)
where x? is a scale parameter; note that n? has the M~? dependence specific of a twist — 4 effect.

Integrating Eq. (27) and comparing with Eq. (30), one obtains:

o~ 11“(1 —xl)B, (32)
and

o, ~ n*x%; (33)
substituting o and oy in Eqs (28) and (29), one obtains:

Mxp) = V(L= B =21 —x)P +77], (34)
and

px)) = —(1=xP22A(1~x B +77]. (35)

We determined A’ and 5? by fitting Eqs (34) and (35) simultaneously to the A and p distributions,
with 8= 1.0 determined by our experiment [42]; we found A’=0.72+0.05 and #* =0.033+0.007, with
x2/d.of=8.0/8 (Fig. 9). With (M? =263 (GeV/c?)?, we get k2= (2.0£0.4) (GeV/c)?. Although Eq.
{27) is not supposed to be valid at low Xy it reproduces our data over the full X, range well. We nev-
ertheless checked our result by performing the same fit to the last three points only (i.c. xi >0.5): we
obtained A’=0.70+0.14 and n?=0.02210.012, with x?/d.o.f.=6.4/4. With (M?}=39.7 (GeV/c?)? for
this interval, we obtain again «?=(2.0%1.1) (GeVjc)*. The value of «? is close to our value
(Pp?=1.60 (GeV/c)?; this is in agreement with the interpretation of ¥ as the mean square transverse
momentum of the dimuon, as proposed by the authors of Ref. 8. Note that Fermilab experiment 615
[13], working at a pion momentum of 80 GeV/c, found x?=(0.62+0.16) (GeV/c)?, also in agreement
with their value (P%)= 0.56 (GeV/c)?.

As mentionned above, there is no higher-twist prediction for »; although the relation 1-A=2» is
not supposed to hold in this case, it nevertheless agrees well with the observed v distribution, with
x?/d.of.=4.8/5 (Fig. 9).

In the leading-twist approximation, the coefficients A, p, and » are not expected to vary strongly

with x; [39]. Fixing the coefficients at constant values in the CS frame (A =0.76, x=0, and »=0.10),



and transforming to the GJ frame with Eqs (6), we obtain the dot-dashed curves shown in Fig. 9. A
x*-test gives a 16% probability for A to agree with this assumption, but only a 2% probability for u
and a 0.1% probability for »; the combined probability is only 3-10~*, compared to a 46% probability

for the higher-twist fit combined with Eq. (15).
6. Conclusions

We have presented the angular distributions of some 145 000 dimuons, the highest statistics used in
such an analysis sofar. The cocfficient p was found to be small in the CS frame, indicating that the
annihilating quarks contribute about equally to the dimuon transverse momentum. Using Eq. (12),
analogous to the Callan-Gross relation, and the small departure of g from zero (CS frame), we com-
puted the squared parton intrinsic transverse momenta to be (0.66+0.38) (GeV/c)}? in the pion and
{0.5040.29) (GeV/c)? in the nucleon, with a relative difference of (28+ 12)%. The good accuracy of the
coefficient » allowed us to measure the ratio of first-order hard-gluon annihilation over hard-gluon
annihilation and Compton scattering, which was found to amount to 58%-75%, slightly smaller but
consistent with the value of 70%-85% calculated using currently known structure functions. The rela-
tion 1—A =2, with an additional term due to intrinsic transverse momenta, agrees with our data at
moderate values of p, or P, but fails at larger values.

Qur data at large x; are consistent with the higher-twist prediction, although not sufficient to
prove it, and we found support for the interpretation of the relevant scale parameter «? as the dimuon
- mean sguare transverse momentum.

In summary, first-order perturbative QCD, taking into account the parton intrinsic transverse
momenta and the higher-twist effect at large X1, provides a coherent description of the dimuon angular

distributions.
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Appendix

We recall here some useful kinernatical relations. In the hadronic center-of-mass system, and neglecting
the masses, one has:

B =-BS, E =g, (A)
where Bb*, -P,b* are the energy and momentum of the beam hadron, and Et*, P’t* those of the target
hadron. The total energy squared is s= (Pb*+ Pt*)z, where Pb"e and Pt* are the four-momenta of the

badrons. With Eq. (Al):

s = (B +E? B, = E = B = 1B = a2 (A2)
and

P," = (J5/2)(1,0,0, 1), P = (J/s2)(1,0,0, 1) (A3)
hence:

PP, = s/2. (Ad)

The four-momentum of the dilepton is, in the hadronic center-of-mass system:
Q" = (E", Py, 0, P ") (AS)
The dilepton center-of-mass system, defined by Q=(M, 0, 0, 0), is obtained through a Lorentz
transformation along 6*, with E = Q'*/E, and y=F/M (as no confusion is possible we drop the stars

on the dilepton variables E, P, Py and y):

Ept = Y(Eb,t*_g: _P.b,t*); (A6)
with Eq. (A3):
Ey = (/s/2M)E-P[), E, = (Js/ZM)E+Pp). (AT

Introducing the rapidity y of the dilepton in the hadronic center-of-mass system:

y = (DIa{(B+ P (E—Pp)] = Ini(B+Pp )//(M? + Pp2)], (A8)
one obtains finally, with p= PT/M:
By = Ws2y(1+pDe Y, E, = (J5/2)/(1+p2)eY. (A9)

The angle 28 between the beam direction and the opposite to the target direction is given by:
cos2B = — (P, P/(EE,); (A10)
with E, B, = (s/4)(1+p?) and P, B, =E E,— P P,= — (s/4(1—p?), using the invariant relation, Eq.

(A4), one gets:



cos2B = (1—p2)/(1+p?);
as cos28 = (1 ~-tan?B)/(1 + tan?B), one has finally:

tanf = p.

In the GJ frame, the hadron momenta are:

B, = By (0,0, 1),

B, = E,(~sin28, 0, —cos2B) = E[—2p/(1+p?), 0, ~ (1 —p2)/(1+pD)};
in the CS frame:

Py, = Bp(—sinB, 0, cosB) = By(—p//(1+5%), 0, 1//(1+p?),

B, = E,(—sinB, 0, —cosB) = E(—p//(1+p2), 0, = 1//(1+p2)];
and in the UC frame:

Py, = Ey(—sin2, 0, cos28) = Byl —20/(1+p%), 0, (1=p2)/(1+p?)],

P, = E(0,0, - 1).

(A11)

(A12)

(A13)

(Al4)

(A15)
(A16)

(A17)
(A18)
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Table 1: Coefficients A, p, and v in the CS frame as a function of M

Interval Events (M) P A B v
(x 10%)
4.07— 4.5 398 426 0.253 0.61x0.09 0.039+0.025 0.115+0.017
45— 55 544 494 0.222 0.68+0.08 0.027+0.021 0.095+0.015
55— 65 280 594 0.186 0.76x0.12 (0.003+0.028 0.082+0.021
6.5 — 8.5 222 7.29 0.153 0.82+0.14 —0.062£0.028 0.087+0.023
8.5 —11.0 7.8 9.4 0.118 0.70+0.23 —0.028+0.045 0.085+0.039
11.0 —16.0 0.7 11.83 0.096 0.49%+0.70 —0.038+0.147 0.002+0.125
Table 2: Coefficients A, p, and v in the CS frame as a function of Py
Interval  Events (P p A N v
{(x10%)
0.0—0.5 269 032 0.063 0.68x0.14 0.0374£0.024 —0.005+0.020
0.5—1.0 48.5 0.75 0.146 0.61+0.10 —0.034+0.020 0.035%0.015
1.0—1.5 358 123 0.238  0.90+0.09 —0.040%€.023 0.114+0.018
1.5—-2.0 194 172 0.333  0.75+0.13 —0.040+£0.042 0.220+0.028
20-6.0 145 2.52 0.491 0.90x0.12 —0.029+0.051 0.271+0.035
Table 3: Coefficients X, p, and v in the CS frame as a function of p
Interval  Events {o] p A & v
(% 10%)
0.0-0.1 30.2  0.064 0.064 0.74+0.13 0.013+£0.023 —0.015+0.019
0.1—-0.2 498 0.149 0.149  0.64+0.10 —0.032+0.021 0.051£0.015
0.2-90.3 336 0245  0.245 0.66+0.11 -0.01740.030 0.120+0.020
0.3-04 17.1 0344 0.344 1.00+£0.13 —0.118+0.048 0.197+0.031
04-1.2 143 0514 0.514 091£0.13 —0.037+£0.055 0.290+0.038




Table 4: Coefficients X, p, and v in the CS frame as a function of x 55
Interval ~ Events  (xp) p A i v
(x 10%)
0.0-0.1 257 0.06 0.222 0.61+0.18 0.023+0.041 0.057+0.022
0.1-0.2 408 0.15 0.214 0.61+0.09 —0.002+0.022 0.090+0.017
0.2-03 387 0.25 0.212  0.85+0.08 0.003+0.018 0.696+0.017
03-04 245 034 0.211 0.94+0.12 0.031+£0.025 0.108+0.021
04-1.0 154 048 0.197 0.47+0.21 —0.041+0.042 0.157+0.027
Table 5: Coefficients A, p, and v in the GJ frame as a function of x ]
Interval ~ Events  (x) p A n v
(x 10%)
0.0 —035 483 0.30 0.233  0.66+0.08 —0.095£0.020 0.093x0.016
0.35-0.50 657 042 0.213  0.61+0.06 —0.125+£0.016 0.112+0.013
0.50—0.60 199 0.54 0.193 0.78+0.15 —0.085+0.033 0.163+0.024
0.60—0.70 78 064 0.172  0.23+0.26 —0.181+0.056 0.139+0.038
0.70—1.10 35 077 0.142 0.04+0.49 —0.075+0.097 0.171£0.057

Figure Captions

Figure 1 Diagrams contributing to the Drell-Yan cross section; a: lowest order; b, ¢: first-order
annihilation with gluon emission; d, e: first-order gluon Compton scattering; f, g
higher-twist contributions to the photon polarization.

Figure 2 Definition of the angles # and ¢ in the center-of-mass system of the dimuon. The refer-
ence frame shown here is the Collins-Soper frame.

Figure 3 Spectrometer acceptance as a function of the two angular variables cos8 (a), and ¢ (b), as

computed by Monte-Carlo.



Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Coefficients A, g, and v as functions of Prp. (2) In the three different frames. Full circles:
CS frame; open squares: GJ frame; open triangles: UC frame. (b) In the CS frame. Full
circles: obtained in the CS frame; open squares: values from the GJ frame transformed to
the CS frame; open triangles: values from the UC frame transformed to the CS frame.

The squares and triangles are slightly displaced for clarity.

Cocfficients A, g, and » as a function of M in the CS frame. The horizontal bars give the
size of each interval. For », the solid line corresponds to the fit to Eq. (24), and for A to
the fit to Eq. (13). The shaded interval corresponds to the T region and is omitted in the

fit.

Coefficients A, i, and » as a function of Py in the CS frame. The horizontal bars give the
size of each interval. For », the solid line is the result of the fit to Eq. (24), for A it is

given by Eq. (15).

Coefficients A, g, and » as a function of p in the CS frame. The horizontal bars give the
size of each interval. For p, the dot-dashed line is the result of the fit to Eq. (9); for », the

solid line is the result of the fit to Eq. (24), and for A it is given by Eq. (15).

Coefficients A, u, and » as a function of Xp in the CS frame. The horizontal bars give the

size of each interval. The solid lines represent the simple fits described in Section 4.4.

Coefficients A, p, and v as a function of X in the GJ frame. The horizontal bars give the
size of each interval. For A and p the solid lines are the results of the simultaneous fit to
Eqs (34) and (35) (higher-twist effect), and for » it is given by Eq. (15). The dot-dashed
lines correspond to the leading-twist approximation, assuming A and » constant and p=0

in the CS frame.
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