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Preface

The following lecture notes were originally issued
in mimeographed form in Copenhagen in January 1954 (CERN-T/AREI),

I have tried throughout these notes to make clear where
arbitrary choices of phase of matrix components have been made,
and to follow these choices consistently, I would refer the reader
to p.xiii of Condon and Shortley's Theory of Atomiec Spectra (1935)
for a comment of the importance of these questions of phase. The
experinent made in the first edition of these notes,in which un-
orthodcx, but perhaps more logical, choices of phase for the
vector-coupling coefficients were made, has been abandoned in
favour of orthodoxy. The conservatism of what would appear to be
the majority of physicists working in this field has, in this re-
gard at least, been respected. The reader will nevertheless find
a few definitions which may be unfamiliar,

This edition contains an outline of the subject of
Euler angles and matrix elements of finite rotations, with de-~
finitions adhering closely to the common practice of physiecisis.
However this has involved deviating from the familiar formulae
of Wigner (1931), since his results were based on a left-handed
frame of reference, (cf, Rose (1955) for a different solution of
this difficulty),

A number of errors in the first edition have been
corrected, I hope that only a few new errors have crept into

this one.

A.R. Edmonds
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Angular momentum in quantum mechanics

by

AR, Edmonds

1,1 Definition of angular momentum

In classical mechanies the angular

momentum of a particle about a point 0 is
g -
(1.1.1) L=Pxp

where T is the position vector and P the linear
momentum of the partiecle with respect to 0,

In quantum mechsnics we take the well-
known commtation relations for the components of
position % momentum and obtain the commitation

relations for the components of -I: HEE

(1.1.2)
[Lx: Ly] = ihkL, ; [Ly: Lz] = 1AL, ; [Lzs Lx] = ih Ly

In the Schrédinger representation we have

. 7] -
Py = - in 5= ete,, giving

Yy

. e} a
y -1h<zé-£ xé?)

s 9 _ . O
Lz_-15<x5-§ yax>

. 9 a
(10103) LX = = iA (y -a—z -7 -a-—->

e
t



and in spherical polar coordinates

. . 0 )
(1.1.4) L =ih(sin¢ 5 + cot 6 cos ¢ 53)
L =ih (- co8 ¢ 9 + cot 6 sin ¢ 2
y 36 59
e -in 2
LE = - ik 59

The square of the total angular momentum
->
2 _, 2 .
(1.1.5) L? = L& + Lyz;, + L2

commtes with Hi’ Ly and Li’ as may be shown by
use of (1.,1.,2), It is given in terms of the
spherical differential operators by

D

’ 1 1 ) 7] 1 Ch
2 - - 2 —— 1 ——
(1.1.6) L2 = -HhK 5ind 3 <§1n 6 38 > + T 532

1,2 The Euler angles

Before we consider the angular momentum
of a system of n (n > 1) particles we need to define
the Euler Angles, which represent parametrically the
displacement of a rigid body due to a rotation about
a fixed point,

We suppose a right-handed frame of axes S fixed in
the body. A positive rotation about an axis is a rota-
tion undergone by a right-handed screw moving in the
positive direction along that axis,

Any displacement about a fixed point may
be obtained by performing three rotations success-

ively : -



(1) a rotation a ( 0 ¢ a < 27) about the z-axis,

bringing the frame S into the position S

(2) a rotation 5 ( 0 ¢ B < w ) about the y-axis
of the frame 8’, bringing the frame into the
position 8%,

(J3).a rotation y ( 0 < y < 27) about the
z-axis of the frame S¥, bringing the body into

the final position, The set of three Euler angles
a By may frequently be symbolised by w. This
convention for the definition of the Euler angles

is the same as that normally used in the theories

of molecular spectra (Herzberg 1939) and the collec-
tive model of the nucleus (Bohr 1952), It differs,
for example, from the conventiomsof Whittaker(1917),
Casimir (1931), and Wigner (1931).

We shall not always adhere to the limits on the
values of ¢ # and y imposed above; we shall how-
ever assume that similar limits are imposed such
that a 1:1 correspondence between the parameters

a B y and the actual rotatiomsis preserved,

1.3. Angular momentum of a system of particles

This is given classically by

n

-
(1.3.1) L = Z i’i x i)’i
1

-> -> - .
where r, and p; are the position vector and

momentum of the ith particle, Since the

operators belonging to different particles commute,
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we have in quantum mechanics the same eommutation
relations for the components of L as those
in (1,1.2).

We may choose in some way a frame of
axes which moves about its origin and follows
the motion of the particles; for example, this
frame might be defined by the position vectors
of the first and second particles, The system
is then deseribed by the (3n - 3) coordinates of
the particles with respect to the moving frame
and by the three Euler angles which give the
displacement of the frame from some fixed frame
with the same origin,

It may be shown (ef Kemble 1937) that the
components of L in the Schrédinger represent-
ation are given in terms of the Euler angles by
9 o068 q O :}

: 2 _ 8
sz-lﬁ{—cOSaOOtﬁé-a-Slnaaﬁ-l-may

(1.3.2)
- ] 3 ) sin a 0
Ly= - iR {- sin ¢ cot 8 3 T 08 a F * §in B da ]
. 5]
Lz' - ih 3a

There remains of course the angular momentum of
the partieles with respect to the moving frame,
which is given by expressions containing the pre-
viougly mentioned Jn ~ J eoordinates,

The expression in the scheme (1.3.2)
which corresponds to (1.1.6) is

(1.3.3)

-> 2 2
9? 0 1 0 3] 2e088
2.—_ - - m— ——
L® = - 7= ~ ®0t B 55 = oinvp (aa2 + 57=> * Sin?B

82
oady
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1.4 Representations of the angular momentum operators

As is well known, if we start from the
commutation relations (1.1.2) as a definition of the
angular momentum operators rather than from the
classical definition (1.1.1), we obtain the spin
représentations as well as those corresponding to
the classical or orbital angular momentum, The
components of this generalized angular momentum

are designated by Jx’ J._ and J_; we may where

y z’
necessary use the notation

-

(1.4.1) 3, =3, +1i3,353_ =3, -iJg.

The representations may be derived by
the method given by, for example, Dirac (1947) and
Sehiff (1949).

The angular momentum eigenvectors are

2 andJ s -

-
defined as simultaneous eigenvectors of J 2

(1.4.2)
-
32 w(gm) = 8§ (G + 1) v (Gm) 5 I, v(gm) = Am y(jn)

The quantity j takes the values %, 1, %3 25 eee}

m takes the values =~j, ~j + 1, ..e. j=1, Jo Jjandm

are referred to loosely as the eigenvalues of y(jm).
In such a representation the mairices of J+,

J_3 Jx’ d_ are not diagonal., They are given by

Y

(1.4.3) . 1
I,vm = e R [GTm) (Gtm+ DI y(int)

(1.4.4) The phase e1§ is arbitrary; we shall follow
Condon and Shortley* (1935) and take it to be + 1;

* This work will be referred to henceforth as TAS,
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the positive value of the square root is assumed
throughout,

We have therefore for the non-zero matrix elements
of Jx and J

y .

(yim] 3 yim) = 5 [(G-m) (jome1)]

ot jbr

[(Gm) (j-me1)]Z

(yjm-1|3,|yjm)
(1.4.5)

i 1
(viwd| 3 lygm) =- F [(G-m) (j+me1)]2

. 1
. R i . .
(vim-1|3 lyjm) = F [(jem)\(j-me1)]?
where y symbolises the eigenvalues of a set of
operatgrs T whiech forms a complete commuting set
with J% and J,.

In the representation j = 7 we have

the Pauli spin matrices : -

(1.4.6)
Iy~ -%|0 nn Iy ~ -z | 0 +in/2| J~
+3 | B/ 0 +3 |-ik/2 0

1,5. The angular momentum eigenvectors

In the integer representations
(jat=0, 1, 2, ....) the eigenvectors y(em) are
the solutions of the eigenvalue equations

1 9 . 0 1 92
- E}n 5 55-(%1n e, 55'> + STR75 55%] v=¢(e +1) ¢

-1 y=my

el
slo

W

+/2 0
0 h/2




135

They are therefore,apart from normalisation,
the spherical harmonics. We write the eigenfunction
y(em) as

(1.5.1)  w(em) = Y, _(69) = © (¢m) 3(m)

where 6 and & are functions of 6 and ¢ respec-

tively. The normalisation is sueh that

(1.5.2) f"[e(cm)]z ginode = 1 fm 3*(m) & (m) d ¢ =
[+]

o
We have
(1.5.3)
De+m)! ] & ¢ .
8(em) = (-1) 26; )¢ ::;. z 1 lm d - sin%‘e6
g 2¢,! sin © (d cos 6)¢

i.e, in terms of the associated Legendre funetion
(Ferrers' definition)

2¢ + 1(e-m)! n

(1.5.4)  8(em) = (-1)" -«.T—(C_m)] P" (coso)

Also
(10505) @(m) = [21;—]—-;— eim¢

The definition of the angular momentum
elgenfunctlon Y em involves, in addition to a choice
of normallsatlon, a choice of an arbitrary phase, Ve
have followed above the convention of Condon and Shortley

(1935); this implies the symmetry property

(1.5.6) o(em) = (-1)" © (¢-m) or ch = (-1)" e o

It is sometimes useful to use another convention
(ef. Biedenharn and Rose (1953), namely

(1.5.7) 3

11}
(™)
d

en em’
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The symmetry property is then

A ¢4m A
(1.5.8) Y, = (-1) Y:_

12 m

The eigenfunctions corresponding to the
representation (1.3.2), (1.3.3) (the spherical top
eigenfunetions) are disecussed in the chapter onr the
matrix elements of finite rotations,

2.1 The eombin;tion of angular momenta,

Suppose we have a system composed of
two parts 1 and 2, It is easily shown that, as
in elassical mechanics, the angular momentum of
the whole system is given in terms of the angular
momenta of the Pparts by J = J3 + oy Jx = Jy + Jag
where k = x, y, z. '

3% =32 + J; + J2 commtes with J_, Jy
and J_, also with 3% and 3% .

Now a state of the system may be given
by a linear combination of simultaneous eigenvectors
of the complete get of commiing operators
Ty 33, 31,0 I3, J,, where T includes all other
operators of the system needed to give a complete
set, However, if there is interaction between the
parts 1 and 2, the individual angular momenta will
not be constants of the motion; but the total angular
momentum may be., In this case it is advantageous to
go over to the complete set

P’ i%’ ..J_.g, iZ’ Jz°
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Suppose we are given the eigenvectors
of the set T, J%, Jq,» 33, 3,z each of which is
dabelled by the eigenvalues y jy my jo m, (we
shall write always j, m as abbreviations for the
eigenvalues h%j (j + 1), h m), It is of interest
to find the unitary transformation which expresses
the eigenvectors of T, J3, 33, 4%, J, in terms of

these given eigenvectors,

(2.1.1)

¥(y Jr d2 3m) = 2y (e Je dmlds Jo mamz)g(y J1 3o mi W2)

It may be shown (see TAS p. 58) that any
eigenvector ¢ (y jy jz my m,) may be split into a
sum of the type

(2.1.2)

¢ (y ji Jamymp) =3 ¢y (ajs my) g2 (8 Jo m)
aff
where J, operates only on ¢,, J. only on ¢,,

We may look at the problem in hand in a
different way; namely from the point of view of the
transformations of the eigenvectors under rotation
of the coordinate system, Let us consider in the
original representation all eigenvectors with a given
ys J1 and j,. These will span a (2j,+1)(2j,+1)-dimen~
sional space, and will form a basis of a product re-
presentation of the group- S0(3) of proper rotations
in 3 dimensions, that is they will be transformed
among themselves by rotation of the coordinate system,
This representation is however reducible, and may be
shown to be the direct sum of a number of irreducible
(J): where | ji-j2|< J £ J1 + Ja.

That is, the representation space splits up into a

representations D

number of invariant irreducible subspaces, each

corresponding to one of the above values of j and
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of dimension 2 j + 1,

The problem is thus to find a transformation
to a new representation basis so that each basis element
(eigenvector) belongs to a definite irreducible represent-
ation of 30(3).

This process is known as the finding of the
Clebsch-Gordan series (Weyl 1931 p. 123) and the trans-

formation coefficients are called Clebsch-Gordan or

vector-coupling coefficients,

There exist many notations for these coefficients;
several of these notations are displayed and compared in
table I(see p,61).

2.2 The vector-coupling coefficients

The rules of angular momentum combination
in quantum mechanics (cf TAS, Dirac (1935) ete.) tell

o

us that the possible values of j and m arising from

the combination of two systems with eigenvalues j,, m,, jz,

mz &Pe*
0= my -+ Wy
(2.2.1)
J=lde=dz s | 31 =32 |+ 1, eees ds + Ja= 1, or j; + jau

It follows that the vector coupling coefficients
will be zero unless these conditions are satisfied.
The unitary nature of the transformation under

consideration is expressed by

(2.2.2)
:{}31 J2 mqy My lj1jz Jm)(31dz ﬁaﬂrlj1§2?‘mé)= 5$4m1 &mémé'
am

* The second equation of (2,2,1) will be referred to frequently
as the triangular condition on j,, j, and j.
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(2.2,3)
}E}jmjzjmlj1jz“ﬁﬂh)(j1jzm1mz|jtjzj'm') = §jj' Smm’ 8'(J4 jzJ)

m.m,

where ¢&(jsj2j) =1 if j takes one of the values
in (2.2.1)

0 otherwise,

The values of the vector-coupling coefficients
may be determined by use of the unitary condition and of
two recursion relations, These recursion relations are
derived from the identities J+ = J,+ + Jg+ and
J_=J,._+ J,_ and from the expression (1.4.3). They

are : -
(2.2.4)

[(j-mikj+m+1)]% (mym, | jm +1) =

= [Cia+my) (Gaome+1)]% (my-lmg| gum) + [(Game) (do-me+1)1E(momg -1 jm)
(2.2.5)

[(§+m) (§=m+1)]% (myme| jm-1) =
= [(51'm1)(jq+m1+1)]%(m,+1m2ljm)+[(jz-mz)(j2+m2+1)1%(m1mh+1[jm)

The quantum numbers j,, j. in the V-C coefficients have
been omitted for simplicity,

The above relations enable us to compute all
the V-C coefficients; we must however make two arbitrary

choices of phase in the calculation : -

(2.2.6) All matrix elements of J,, in the scheme

(y js j» jm) which are non-diagonal are

real and non-negative

(2.,2.7) The identical states y(y j, j. jm) and
_¢(y js j2 my m,) have the same phase; i.e.

vly 34 j2 m) = ¢(y jy j2 my my)

These choices are the same as made in TAS, We obtain

the result : - '
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(2.2.8)  (§1 jz my M|y j2 Jm) =

= §(m,+m,, m) [: (

XZ}NW“*mmmnumﬂwn
S se(ji=my=8). (j-m-s).(jz=j+m,+s8).

Note that the coefficient is always real.

We may follow the method of Racah (1942) to get

a more symmetric expression : -

(2.2.9)  (jyi.mm]|jej2jm)

= §(m,+m,,m

X [(j1+m1):(31“m1):(.jz"'mz):(jz"'mz):(j'i'm):(j"ﬂl):]-z_ X

- i
L * - M »

% 1
-1 - - — e
x E P LGP e 3 e ygarey L =g § (I ATy | Y G e
Z

2.3, The symmetry properties of the vector-coupling coefficients.

The following properties may be demonstrated by
reference to the recursion relations (2.2.4), (2.2.5) or by
consideration of the effects of the appropriate replace~

ments on the formula (2.2.9).

(2.3.1) (jjm-mljjoo)s= (-1)3™® (2j+1)'%

il
-

(2.3.2) (jOmo0|joO jm)

(-1)91%9279 (5, 5,mom, ] 32 o jm)

(2.3.3)  (Frdzmymz]jsiaim)
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(2.3.4)

. . . e Ja+da=d ;. = Co. .
(J1Jz"mfmz|J1JzJ"m) = (-1)'}1 J27J (J1sz1mzlJ1Jsz)

(2.3.5)

.. .. j 245 +1\% ,. . .. s
(J1sz1mzlJ1Jstm3) =(’1)Jz+m2<2_3%n>2 (J2is-mom, lJstJtl‘h)

(2.3.6)

- C .. jo-my/255+1\E , . . .. .
(J1sz1m2|JiJzJ3ms) =(’1)J1 1(2%§51>2 (J:Jama"m1lJ:J1Jz m;)

2,4. The Wigner J-j symbol*

This quantity is defined in terms of the
veetor-coupling coefficient with the chosen phases by

(2.4.1)

. - - . - - .1.
(:1 ia g3> = ([T (25547 (J1demymz| 3y 32 js-ms)
g My W

Its properties are easily deduced from those of the V-C
coefficient; its main virtue is the high degree of

symme try exhibited, It is clearly zero unless

(2'402) My +Hol,; + M3 = 0

do = ldp=dgls ldy = dgl + 15 wees Gy + 35 =15 or Gy + .o

where a, b, ¢ are any permutation of 1, 2, 3,

* Wigner (1951)
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We get the result that an even permutation of the
order of j;, j» and Jjs leaves the value of the
symbol unaltered, while an odd permutation has the

effect of multiplying the original value by
(_1)j1+jz+j3.

-That is, we have the relations

(2.4,3)

Jy J2 33\ _ (J2 J3 s Js Ja Jz
By W, Wy n, m; m, hs Wy W

(2.4.4)

Ji 32 Js\ . ( 1)31"’32"’33 Jz 3¢ 33\ . ( 1)31+Jz+33 1 Js J2
my B By me Wy Wy ﬂa ny m

= ( 1)31'*.’)2"’33 Js J2 Js
Iz W, m,

Following from the orthogonality of the V-C coefficients
(2.2,2 and 2.,2.3) the 3-j symbols satisfy the equa-
tions

(2.445)

Jv Jz Js de 32 Js\ _
z (255 + 1) (ni n, n:) (m.{ m; mz) - 6’“1“‘ d‘mznzl

Jams

(2.4.6)

J1 J2 33\ (34 32 38\ _ c s
Z (m: m: m:> (m: mz m{,) (235 + 1) 53 54 Smsmy §(J1d2ds)

nem,

where &(jyj2js) = 0 unless jy, j. and js satisfy the
triangular econdition, when it is unity.

The expression corresponding to (2.3.4) is

J1 J2 35 = Ja+dat+is Jr J2 3s
(2.4.7) <m m, m3> (-1) -4 ~m; -m3>
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2,0, Computation of vector-coupling coefficients

It is usually easier to obtain numerjcal
values from tables of the type given in TAS, where
j2 takes a value %, 1,% or 2, The general formula
(2.2,9) is too clumsy for most purposes, The greater
symetry of the 3-j symbol is often helpful; formulae
for this quantity, similar to those of TAS for the
V-C coefficient, are given in Table II.(see p, 63 )

A table for the V-C coefficient with j, = 3 has
been published by Falkoff et al, (1952). Numerieal
tables have been given by Alder (1952).and Simen (1954).

Two recursion relations may be useful; the

first is due to Wigner (1951),

(2.5.1)

Jedadsz) o _ J;iz))_gj;ﬂh,g % (4323 %
(‘anlz‘)': EJ + 1 3-231-] II1"2“-:?2‘ ‘3"2‘
+ jz+mo) (js-ms3) % 5152’% j:'%

@ + 1)(3-23,) Wb, > W34

(2,5,2)

@:::iz) = - [2(341)(3-25,)(3-24.) (3-245+1)]" % x
x e J2 Js-1 [2(jo~ma+1) ( )(3 1) )%

ny mo-l my+l 2 Ja+mz ) (§3-ms=1) (3s-ms)]
* <i:i:£:-l> [8(js+ms ) (55 -ms )mZ ]2

) (:;; h =) (2028 (e +1) (i s (i oms=1) 12 }

In both expression:s J = Jy+ja+is |
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The general formula simplifies in certain

cases . -

(253)

Jy W2 'Ji"mz

(.11 J2 > (_I)Jz'z.lc"n(

(2.5.4)

Jv dz2 Ji+de =(_1)j1"jz+m1+ i i j9+jo+my + '. i z
m, M, -m-m, (2j442J2+41) 8 (J1"’m1 ’ Ja-m.). Ja+mz ) o (Ja-mz).

2,6, Complex conjﬁgate of eigenvectors resulting

from vector-coupling

We vector-couplo two angular momentum eigen-
vectors of the type Y (ef (1.5.7)) to form an allowed
e1genvector Y(em) :

(2.6.1)

A A
¥(em) = Z(e’ €2 Cm|&1 tz my W) Ynm Yszz

nym,

It is easy to show from the properties of the V-C
coefficients that ¥(¢m) also has the symmetry (1.5.8),

¥(em) = (-1)¢*

U*(¢-m)
On the other hand, a ¥(em) built up from the Yom
does not have the symmetry (1,5.6)

These facts will be of importance when we come to
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discuss Hermitian tensor operators and the tensor

product of tensor operators (see § 5.4)

2,7, Yector-coupling coefficient with two large and one

small j-values,

Consider the coefficient (x y ¢=r m-u|x ¢-r¢m)
where ¢, m >>1 and &k, p, T are small with respect
1
6 e + |z

to ¢ . Write cos6 = m/c, 80 that coss = - »

¢ ~m| 2

sing = [‘ﬁ' .
Substitution of these into (2,2.,9) gives an approximate
expression for the V-C coefficient as a matrix elememt

of the finite rotation 6 : -

(2.7.1)

(kpe - 7mple e=r ¢ m) ® (-l)K—T;D ‘(1:)(9)

(ef. (30107))

N.E. This relation is sat}sfied more accurately if

ve take cosg = m/[c(6+1)]§

3,1 The matrices of finite rotations,

We shall consider the transformations induced
on angular momentum eigenvectors due to rotations about
the origin of the frame of axes to which these eigen-
vectors are referred,

The coordinates of a fixed point P in the
rotated frame of axes may be expressed in terms of the
coordinates of that point in the original frame; in the
same way ¢ function of the coordinates of P in the

rotated frame may be expressed in terms of functions of



the coordinates of P in the original frame, It is
well known that angular momentum eigenvectors with a
given j are transformed into eigenvectors with the

same j under such transf ormations, We write in

ia

general

(3.1.1)  ¥4,(0'¢) = Z im (69) D () (apy)

where ¥ (e¢) is a function of the coordinates

6¢ of & flxed point P in the original frame, and
Jm,(e $!) is a function of the coordinates 67 ¢’
of the P 1in the frame obtained by a rotation about

the origin described by the Fuler angles afy (cfele2.).

The coefficient 3 (J)(aﬂga are the matrix elements in
the- j-representation of the finite rotation afy. '

The effect of a finite rotation may be

considered to be equivalent to the effect of the
jteration of an infinitesimal rotation; if we re-
present by D(w) the operator corresponding to a
finite rota.‘tlon of o of the frame of axes about

a given mﬂ., a.nd by J the angular momentum_ oper-
ator correspondlng to this axis, it may be shown that

™

(3.1.2) D(w) =

- -

The negative.sign follows from the fact that D(w)
- repr‘esents a rotation of the frame of coordinates,
(Note that our deflnlt;lon differs from those of

Wigner (1931), Rose (1955)).
We obtain further for a general rotation .

aBY s

' 1 i
D(aﬂy) = exp-%YJ; . exp-%é J;r s exp—l-ﬁﬂ—‘.]z

(3.1.3)

where J_, J}', and J7 are defined in the frames
S, 8* and 87 (ef 1.2). It is convenient to write




22

D(q8y) in terms of operators defined in the original

frame S, Similarity transformations on the J;r ~and
J; give

By . exp-J
,h_;ij . exp o

1ot
(3.1.4) D(apPy) = exp - &= J, * €xp =" 95

Now the matrices of Jz are assumed diagonal; we obtaln
therefore for the matrix elements of D(a@y).
_im!y

(B) e

1 :

0 15 .
= (Jmli exp - T Jyl ;jlm’)

remains to be computed.
— Now it is a straightforward matter to find

)
o@ 2(B) from the Pauli matrix for Jy(1.4¢6); we have

The angular momentum eigenvectors for general j may
be expressed as symmetrie functlons of spinors (see
Weyl(1931) etc.) We may obtaln tﬁe general matrix

elements by consideration of the transformatlons of

such functions when the spinors underge (3 1.6)

(3.1.7) ) (3)(5)

-rIll"ﬂ‘[
cos

IEHEEHETRHE )]z Zc—l)

! (j-m-o) orvmim? ) ! fJ+m’ -cr) :
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(3.1.7) gives us, for example, in the case j =1,
the matrix D' (8) : -

-1 0 +1

-1 %(1+e0sp) Asing  F(1l-cosp)

0]~ ﬁ—sinﬁ cosp V%sinﬁ

+1| Z(l-e0sp) =-sing  Z(1l+cosp)

These matrix elements may be expressed in
terms of Jaecobi polynomials (cf. Szegt (1939),Erdélyi(1953))

(3.1.8)
ﬁ&?(ﬁ) [( Lgm):(jom)e .]2 [coaﬁ] _smg]m-m'l,(m-m', e )(cose)
(j+m’)2(j+m’)

if mim’» 0 ; a similar expression exists for m+m’/< O,

J3e2.

The symmeiries of the matrix elements of finite rotations.

G2 D Dew = Do
This follows from the faets (i) D(-p) = D' ) ; (ii) the
matrices are unitary; (iii) the ct()m‘;, (B) are real,

(3.2.2)

DD = 3 sy s DBm = (137

m -/ } m, ~m’

- special cases of (3.1.7)*

* Note that D(#) « D(#) # D(0) for the spin (Zodd integer)
representations.



27

.2.3) QWi m = (3D L

Guagy DD -p = I D

following from the application of (3.2.2) to the
relations D(B + %) = D(B) - D(#) ete,
In a similar way we may obtain

(3) (3)
.2.5) O 3e = ("™ DL (p)
(3.2.6) ..a,gg?m; 9 s)

It is easy to extend the symmetry relations
to include the eomplete matrix elements-D(J)(qﬁy) by
use of (3.1.5). For example, we have

DO(J)((X.BV) = ( 1)]°8(J) (a - Ty 7~ B Y)

m-m/

3.3, Connection of theJD(J) with the associated
Legendre functlons. -

The matrix elements are simplified when one
or both of m, m’ is zero, We may use the properties
of the Jacobi polynomials (cf, Szegdé loc. cit.,) to
show that

(3.3.1)

D@ - [Hmt]* "o Ccomd
i.e,

(3.3.2)

( ;o
DL (apy) = (%g—;f1> G SR
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In particular,

(3.3.3) D & asy) = B (cosm)

(o]

3.4, The phases of tll_q_oalgiz(aﬂy)

The phases depend on (i) the convention adopted
in defining the Buler angles; (ii) the nature of the trans-
formation which the J)'s are supposed to represent, i.e.
whether one supposes a_rotation of the frame of axes or of
the field; (iii) the choice of phases of the non-diagonal
matrix elements of Jy.

Our matrix elements differ from those of, for
example, Wigner (1931), since he adopted a left~handed
frame of axes; however our matrices o@(j)(ﬂ) are numeric-
ally equal to the transpose of the corresponding matrices
of Wigner,

3,2 Integrals and other expressions involving the-@lg?(aﬁy)

The orthogonality and normelisation of the e@lfn‘l]l?
is easily checked by reference to the properties of the
Jacobi polynomials (Szegé 1939), We obtain

(3.5.1)
T =TT . .
g:? f: f: [oﬂz‘g?l}lz*(“ﬂw 21513:12(0@)’) singdg © dady

1
S C . 0 e
‘qum_z m{m, 8.11.12 2j, +1

Products of the matrix elements may be reduced
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by use of the vector-coupling coefficients; it is
easily shown by consideration of the angular momen tum

eigenvectors implicitly involved that

.5.2) D )y 9 Uadeyy -

mymi mym$

=Z (3omq jzmzl j1jajm)$g? (0)(§qj2jm’ l Jymiims)
Jum/

where (w) symbolises (aBy).
This may be usefully expressed in terms of 3-j

symbols (2,4.1) : -

(3.5.3) DL,y 902,

m,m{ m;mi
LT o () 220 ()

Jmm’

Then (3.5'.1) and (3.,5.3) give the value of the
integral over a product of 3 o)'s : -

(3.5.4)
ar ) . .
&= ]j f o"%i';Z(aﬁv) %j;;(aﬁy) D33} (asy) sinpasdady

. <j1jzjz> <.]'1.iz.]‘s
M, M,y nimimé

This integral may be specialised by means of (3,3.2) and
(3.3.3), giving the useful results : -

aa
(3.5.5) /jj::Yc‘m(egs) Yezmz(eqs) Ye3m3(6¢)3meded¢

(e 41)(2e,41)(2e541) | 5 [fe €283\ [eqitats
e bar 0 0 o/ \mymym;
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(3.5.6)

1 [T (cos6) P. (cos8) P. (cose) simods = (°1 62 ¢3)°
2 | P, c e eos ¢, (0080) sim (o o o,

The 3-j symbols with my=m,=my;=0 may be evaluated by
the formula in table 1I,

A similar modification of (3.5.2) gives an ex-
pression for the product of two spherical harmonies of

the same angles : -

(3.5.7) Y, , (69) Y, , (69)

- Z[@cwl)(zz;u)(anl)] % (:‘:;:@ Y (o) (mu)

¢m

If the rotation « is the result of performing success-
ively the rotations wy and w, (in that order), we

Lave

m’m”

ZD‘J’ () B wy) = Bw)

ml

We set j = ¢ = integer and m = w¥ = 0 and obtain the
spherical harmonic addition theorem : -

(3.5.8) S z n (09) Y,(0797) = P, (cosp)

where cosf = c0s6 cos8’ + sin® sin6’ cos (¢-¢’)

3.6. Recursion relation for the &) (‘])(ﬁ)

The relation is obtained from an expression
similar to (3,5.2); the 3-j symbals arising are evaluated
by use of table II,(see p. 63).
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(3.6.1) 33 -
= G’Jﬁ") ‘81511—512#(&).0083/2 - <g+$l> ‘0(3_2) 1([5’)- sing/o

The relation is of course useless when m/ = j; in this case
we evaluate @Egzj(ﬁ), using (3.2.5).

3,1, Computation* of the QD(J)(ﬁ)

A similarity transformation may be employed to
express a D(0 B 0) in terms of a rotation about the z-axis,

i.e. a D(B 0 0), which is diagonal in our representations : -

(3.7.1)

D(0 B 0) = D(- g'o 0) D(0 - §0) p(5 0 0) D(0 g'o) D(g'o 0).

Thus the problem of computing any matrix e@(‘j)(ﬁ) is reduced
to the problem of computing the one matrix 2)(3)(§,, which we
symbolise by A(J). These matrices (J) are easily built
up by use of (3.6.1), and a number of them are exhibited in
table IV (see p. 69 ).

We now have from (3.7.1) that

ﬁ(.])(ﬁ) = z eim'n'/z Aé{;]zl e-im",@ ;,9;, -im’7/,
m
R R e

n” >0

* based on metiod of Wigner (1951)
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3.7 where k(x) = eosx if m-m’ = 0 (mod 4)
= sin x =1 (mod 4)
= = cO08 X = 2 (mod 4)
= - gin x = 3 (mod 4).

3.8. The symmetrie top in quantum mechanics.

Consider a rigid body with an axis of symmetry,
which is free to rotate about a point on this axis, which
may be supposed to coinecide with the z-axis of the frame
of axes fixed in the body, The moment of inertia about
the z-axis is represented by I,, and that about any axis
perpendicular to it by I,.

The kinetic energy T is given in terms of the
Euler angles deseribing the orientation of the body by*: -

(3.8.1)

P=3{1,(8 + 4 sin B) + L(§ + & cos §)?]

The Schrédinger equation obtained by replacing the general-

ised momenta py = a7 etc, in the Hamiltonian by - ihga
o

ete, is ¢ -

(3.8.2)

n? ( 82 ) 1, 2.\ 92 1, &
..211 {5§2+cotﬁsﬁ+<-f3+cotﬁ 5?%+'.—zﬁ —a—z

[o)]

2
-5 sy | W) = B W)

If we set I, =:I5, this equation reduces to the form

%
cef. Klein and Sommerfeld (1914), Reiche and Rademacher
(1926), Casimir (1931).
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3.8 L2 (afy) = 2 ¥ (aBy)

where ;2 is given by (1.3.3).

It may be shown that the eigenfunctions of this equation

are in fact the a@mci?(aﬂy). We may effect a separation of
(3.8.2) even when I,#Is; we write ¥(aBy) = B(B)exp i(ma+ky),
The equation in B still gives us 31512)(@ ; however the
energies corregponding to the triads ¢, m, ¥ are now

different from the case of I, = Is,

4,1, The compounding of vector-coupling coefficients.

We find frequently in quantum mechanical problems
that we have to deal with the addition of a number of angular
momenta; this involves the summation of products of vector-
coupling coefficients, the summation being over the magnetie
quantum numbers m, Now the vector-coupling coefficients
are not invariant under rotations of the physical system
(we shall see shortly exactly how they transform); but the
quantities which we wish to compute -~ such as energies and
transition probabilities -- are usually sealars, It follows
that the vector-~coupling coefficients are associated in such
a way that they form scalars, and it will be our purpose to
deseribe how this happens. The most important result of
this study is that in practice the tedious computation of
masses of veetor-coupling coefficients is replaced by the
evaluation of relatively few invariant quantities,

It is easy to show from the definition of the

3~j symbol (2,4.1) that the expression

. C . J1J23s
Z v(Jim) v(3ame) v(js ms) <m1mzm3>

is invariant under 21l rotations of the frame of coordinates,
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It follows that the set of (2j,+1)(2j.+1)(2js+1) 3-j
symbols with given values of j,,Jj. and j; and all
possible values of m,,m, and m; consistent with them
may be regarded a§ a tensor which transforms under

rotationscontragrediently to the set of products

w(Gemy)vw(jomz)v(jsms). In analogy with the convention-
al tensor theory, we may define a metric tensor and a

corresponding contraction process, The metiric tensor

is obtained by considering the coupling of two equal
angular momenta to give resultant zero : -

ZW(.im)n(j-m)(-l)j"m = (23+1)% ¥(00)
m
(ef. (2.3.1)), Hence if we define

(4'1 1) m m'> = (_1)j+m Jma-m:

we have j
Z ve(im) va2(jm’) (m ‘,> = invariant,

ml
This quantity (m ‘L,) thus behaves as a metric tensor
(but only in the
eigenvectors y(jm), - j ¢ m g j).. We may use the contra-
gredient tensor (whigch is identical with g oS, ) to carry

(2j + 1)~dimensional gpace of the

out contractions of the indices -~ the magnetic quantum
numbers -- in products of 3-j symbols, We must remember
that the contractions may only oceur between 3-j symbols
which eontain the same j values, The simplest process of
this kind is the contraction of a 3-j symbol with another
identical symbol : -~

J1Jst J1d2ds =
m, mzm;; A M4l

Now we ask, what is the next combination of produets of
3-) symbols in which contractions may be carried out to
give a resultant scalar? We represent a 3:j symbol by
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a point which is the vertex of 3 lines, each of which
represents a j-value., Each of these j-values must

be contracted with a similar j from another J3-j
symbol; i.e. each line must terminate at another ver-
tex, It is clear tha@,apart from the trivial case
mentioned above, the simplest diagram satisfying the
conditions is a tetrahedron., That is, we may make a

sum of products of 4 3-j symbols, which—contain among
them 6 different j-values, and the summation may be
earried out over the possible m-values in such a way

that a scalar quantity is the result,

Let us then draw a tetrahedron,
and associate with each verlex
a }-j symbol, and with each
edge a j-value (Fig. 1). The
3 j-values of each 3-j symbol
are the j~values of the edges
meeting at the vertex in

question.

We may construct. an alternat-
ive diagram, in which the
j-values associated with each
3-j symbol occupy the edges

of a face (Fig.2). Since the
3-j symbols are only non-zero
when the corresponding j-values

form triangles, fig, 2 has a

metrical significance; the
quantity we are constructing

is only non-zero when the 6

j=values chosen correspond to
the lengthsof the sides of a
tetrahedron, This type of
diagram is, however, of no
use when we come to consider
the 9-j symbol.

The contraction process is
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carried out by a definite convention; a different con-
vention would give a similar quantity which might differ
by a sign from the one which we construct, The result
of this contraction process, which is a scalar quantity,
is called a 6-j symbol*, and is defined by

(41.2) {J.Jgjs} -

ity

J1d2ds\ [Jit2ts) 1283 [Cat2ds
it Ksh2 U3 HeK2As Nil2K3
all lower

indices

NERYE!

To\tkq ) \TaK2 4'3K3 7\1#1 zl-lz 3#3

= (313235 (3125 [ 13285 ) (%4 C2 s
o \egtats ) \eqhAs [\ =hg=T2 A3 [ \ A q=ha=23

eA
< (_1)j1+52+js+61 tea+tes Ay Fha*As3

Note the convention by which the contraction is carried
out; for half odd integer j the metric tensor is skew-
symmetric and the indices may not be permuted without a
change of sign.

Use of (2.4.2) and the fact that one of the
indices of summation is free makes it possible to replace
the summation over 6 indices in (4.1.2) by a summation
over 2, The 6-j symbol isthen given in terms of the V-C
coefficients by means of (2.4.1)

(4.1.3) {:j132j3} =

€41€2¢3

1)J1+Jz+ﬂ1+€z ! . . L .
“[(23:+1) (26541012 Z (Jamy Jame| 3o 3o J3m1+m2)(33m,+mzc1m—m1—m2]61ezm) X

m,m,

X (Jampt g m-my 'mzl Jot 1€ 31—y )(j1m1€3m’m1IJ1C3C 2m)

* Wigner (1951); with a different phase it is known as
a Racah, or W-coefficient (cf.§4.5) (Racah 1942)
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where -¢,

4,2 Symmetries of the 6-j symbol.

It follows from the symmetry properties of the
3-j symbols that

Jad2ds | _ (J2d3d4 | _ (353432
(4.2.1) {F1Czes} - {52‘351} - {‘3‘1‘2}

_ (d2dids | _ [3133d2 ] _ [ 333234
€,6,8, e e58, t5¢,¢,

I.e., the 6-j symbol is left invariant by any interchange

of the eolumns, We have also that the 6 j symbol is in-
variant against interchange of the upper and lower arguments
in each of any two columns,

E.g.

4.2.2 j1j2j3} - j1{2€3
( ) {‘16233 43233

In fact there are 24 operations generated by
interchanges of type (4.2.1) or (4.2.2) which leave a 6-j
symbol invariant, and these form a group isomorphie with
the symmetry group of a regular tetrahedron, Any of these
operations corresponds to a rotation and{or reflection of

the tetrahedron whose sides correspond to the 6 values of

Je

4,3 Transformations between different coupling schemes of

_ three angular momenta.

The states of a system built up from two parts
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whose states are labelled by quantum numbers y, j, m,
and ¥ j, m; are completely specified by y, v2 Jji Jj= J m,
where j and m are obtained by the usual vector addition
process, However if we put together three parts, several
states may occur with the.samé eigenvalues of the operators
associated with the total angular momentum of the system,
and a complete characterisation of the states requires the
specification of the type of eoupling earried out, and of
the eigenvalues of the intermediate states,

We may for instance couple first Jj, and j, giving
a resultant j’ and couple js; to this, The eigenvectors
of j, m are then

(4.3.1)
¥(j1d2(3") isjm) = Z‘l’(.'hjzj'm' )¢ (Jams ) (§ 3sm'ms] §* 35 jm)
mnym’

= jg: ¢(Q1m1)¢(jzmz)¢(jzms)(j1jzm1mzlj1jzj'm’)(5'j:m'mslj'jsjm)

mym,mxm’

On the other hand we may add j, to the resultant j” of coupl-

ing j; and js, giving g
(4.3.2)

q’(jixiajs(Tj'f) jm) = Z $(Gamq )p(jamz )$(jams)

m, mgmsm”

*(Jz smems| Jods #w) (3o Jmemr | o 3 jm)
These two schemes of eigenvectors are connected by a
unitary transformation which is independent of the z-

component m of the total angular momentum j :
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(4:3.3),  (31326')3sd] 31d2ds(37) 3) =

= ZE: (j'jsjmlj'jzm'ma)(j1jzj'm'ljijzm1mz )

m,m,m.m’ m”
(Gzdsmams| 32333 m*) (G437 mem’ | 5, 5 jm)

Use of (2.4.1) and (4.1,2) gives us the transformation

coefficients in terms of 6-j symbols,

(4.3.4)
‘ s e el _ 1 2 s
(3432(3')333] didada(3) 3) = (-1)“‘*32+J*J’[(2;'+1)(2j~+1)]§{g;§2§,}
If the order of the angular momenta is changed
instead we get in the same way
%§4.3.5)

PR Y BT 1rs & s
(34328370 333] 3433(57)323) = (1) [(2j'+1)(2j"+1>]§{3331§”}

Similar formulae are given by Racah (1943) p. 368,

4.4 Algebraic relations between 6-j symbols and betwgen

6-ij and 3-i symbols,

We may make use of the defining equation (4.1.2)
for the 6-j symbol and the symmetry and orthogonality rela-
tions of the 3-j symbols (2.4.3), (2.4.4), (2.4.5) and
(2.4.,6) to obtain relations between 6-j symbols,

Using the orthogonality of the 3-~j symbols, we
may write (4.1.2) as
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1323 Jzdad’ '\ L
(6ot Z (m,w) (i) () =
2j4 J1d23’ 3323 J1dad J
2
z( -1) (2j+1) {J Jad }<m3m2m> <m1m4u> (m u>

Jmy

If we interchange the indices 1 and 3 in (4.4.1), we
may- show by comparison of the origifial equation and
the new one, that

(4.4.2)

2j41)(2j041) | 91323" {1 33023 4 _ o
Z (25+1)(2§"+1) {J Ja }{Jf.ua” S5 50
J

It follows from (4.2.2) that

! J JZJ
(4.6.3)  [(2541)(2541)]2 {J*J J }

forms a real orthogonal matrix, rows and columns be-
ing labelled by j and j’.

In a similar way we get the relation
(4.4.4)

\ ¢ J+jr+j" 31.]23 J23sJ J2d1 3!

o] 2j+1 FePy V= ety
E =1 (23+1) {J Jad }{Jiau"} {J;Jw’}
J

Another useful relation is (ef. Elliott 1953) :
(4.4.5)

{j1ja§3} {:513233} - Z (-1)Jr+iztisHerteatesredaeb + € bk o 0y

EaCats | (4L 4t Y
K ’ ’ ’
% £ 4kt €2KC 2 Eskls
ehjaes | |eqdseq || oIt
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Wigner (1951) gives another expression for the

produet of two 6-j symbols : =~
J1d2ds) (Grdads ) -
(444.6) {}1c2£3} {cﬁeécs}ﬁ_

_ _1y23q42¢ Jitaes ) [eqdaea}feddaes | {eiet]
- Z( 1)231 (2“1)(2‘*1){“%252} &2; e’—} {K’a; }{c;h;}

Kt

The relation (4.4.1) may be written more con-~

veniently as
Jsdad’ \ _
s 1, ~m

JszJ J1Jad
msmam m, M, =m

ml

- Z (-1)2datiim <z.1-+1){gi

Jjm

N e (&)

We conelude this seetion with an expression

for a certain sum of products of three 3-j symbols :

(4.4.8)

(~1)¢2*ea testatlatls Jitats €1J2ts €ie2js | _
Mypa=ts / \~H4lzHs / \ K4 —H203

Halals
_ [ drdeis) (G1deds
m, M, M £1€2653
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4.3 Relations between the 6-j symbol and other notations.

(a5a1) - fiudade] o ()3t tta wggace sises) (Baceh 1902)

Ja+jart e U(J1Jzﬂz¢1:33¢3
(-1)

(4.5.2) [(2J,+1)(2€3+1)]2

1]

(Jahn 1951)

Wigner's choiece of phase of the 6-j symbol has the

advantage that the resulting quantity has a much greater
symmetry than those defined otherwise (ef. Raecah, Jahn loe.
eit.). A related coefficient, used in angular distribution
problems, is defined by Biedenharn, Blatt aqd Rose (1952), It is

(4.5.3)

Z (abed; ef) = if-a+°[(2a+1)(2b+1)(2c+1)(2d+1)]%W(abcd;ef)(aoOO[aefO)
a .

4,6 Computation of numerical values of 6-j symbols

6-j symbols occur freéquently in the final
form of physical calculations, It is therefore important
to have methods for numerical computation of these quantities,
Thg general formula may be obtained by substituting the ex-
pression (2,2,9) for the V-C coefficients into the defining
equation (4.1,2).

A ;edious calculation (ef. Racah (1942)) gives
us
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(4.6)
(4.6o]—) {j1j?j3} =

€42t

= A(j1jzj:)A(j16263)A(c1j2c3)A(e1;zjs) W [212223}
16283

prore o) < [(mfiaoigiCeme: 8

j1j233 - %
and w {;,czc;}" ,

_ (-D)? (z+1)}
(z‘ji‘ja“js):(z'j1‘cz'£3):(z'¢1'jz'cz):gz'ﬁ+’€z'jz X
z

*~(j1+jz+¢1+fz-z):(j2+jz+¢z+¢3'z):(j3+31*£3+£1“?):

where the sum is over positive integer values of z such
that no factorial in the denominator has a negative argument,
A reeursion relation may-be obtained from (4.4.5) by which

we may build up 6-j symbols from ones with smaller
arguments : -

(4.6.2)

1
{? % z} = [(p+q+r+l)(qir-p) (r+s+ttl) (r+s-t)]~ 2 x

X {—Qr[(qﬁs+u+1)(qﬁs-u)]%{z;gi%n;%} + [(p+q-r+1)(p+r-q)(s+t-r+1)(r+t-s)]%
Fe)]
stu ‘

Other similar recursion relations may be obtained from the
same formula (4.4.5)



{4,6.) If one argument vanishes, we have

. s = . - . . |
(4.6.3) {g«g;g;} (-1)3 M2 (25,41) (255,41)] 77

If one argument is 5, there are two possibilities : -

(4.6.4)
TR 33 o (opyde+de+dd (Jatds=da) (Jy+da=js+1) %
{% 3st jz""l‘} (-1) E(jza*;'iiﬂ‘l‘hrk"li—_?zjﬁz 235 2a°.~,+1]
(4.6.5)

J1 1j$ . j; = (_1)51*j2+j £j1+13+ji+1)(%§+j:‘?1) v
% Js=z Jo—z 2j2(2j2+1)235(2js+1 ‘

When one of the triangles becomes a line, e.g. ja=es+t,
the sum in (4.6.1) reduces to 1 term., We have therefore

(4..6.6) {513251*52} -

€y ta t3

=(-1)J 1z +eete

(jotes—ta)e(Jotes—t,): :I%

(eq+ia~ts)el(tetts=Ja)e(tq+jates+l)e

Formulae are exhibited in Table V (see p. 71 ) which make possible
through the symmetry relations (4.2.1), (4.2.2,) the ecomputation
of all 6-j symbols with one argument equal to 1, % or 2,

Similar expressions are given for the W-coeffieients with omne
argument taking values 3, 1, 3 , and 2 by Jahn (1951),Biedenharn
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et al, (1952), Biedenharn (1952, and Simon et al.(1954).
The case of 5/2 is given by Edmonds and Flowers (1952),
Extensive numerieal tabulations of the W-coeffieients
have been made by Biedenbarn (1952) and Simon et al,
(1954)., In the first-mentioned reference the values
are given as square roots of fraetions (i.e, exactly);
in the second they are givento 10 places of deeimals,
The Z-coeffiecient (4.5.3) has been tabulated by
Biedenharn (1953).

For the ease where we have two repeated
arguments, Biedenharn (1952) gives a speecial formula.
We put

(4.6.7)

3 J2ds L g dtetda+id (230-K) i (2]o-) 0 % .
{x j1jz}=( 1) 1{23,+¢+15512j2+x;f72 Y (343 J2)

where the Yx are given by the recursion relation :

(4‘0608)
(343 32) = (255) Y (3 3) Y (303 3)~(2e+D) Y, (Ged %)
K+ 1d J2) = {70 14J1d J27 1,113 J2 k+2) X A0 &

- =5 (231 4146) (234 +1k) (2524146 (25241=¢) Y, _ (G4 3z)

We have, for example,

Y, (31 d2) =1
Yy (G4 J2) = =24

6 A(A+l) - 8j1(j1+1)jz(jz+1)

Yo (Gad d2)

where
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(4.6,10) A = j(j+) - j1(j1+1) - J2(j2+1)

4.7 The 9-j symbol

Let us consider the next most eomplicated
diagram of the type diseussed in seetiom 4,1. This
would appear to be

However this diagram may be shewn to be squivalent
to the produet of two 6-j symbols eneountered in

(4+4.5); the next really new invariant eorresponds
to the diagram

It ecorresponds to the eontraetion of produets of 6 3-j
symbols, There are nine different values of j involved
and Wigner has ealled the invariant formed in this way

a 9-j symbol,
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The 9-j symbol is defined by the equation

(4.7.1)

411412@13
{321322323} =

J31d32J33

J11d12d43)\ [J21d22323 331532533
My Ayl [/ \M, M0 M5 / \ M3 4MsoMs3
all m's

J11d24dse J12Jd22J32 Ji3d23dss
My 4 M, 4 My IR T P Wy 3Mp 3Bz 5

It will be seen that the triads of the 3~j symbols
eorrespond to the j-valueé'lying in the same row or
the same eolumn of the array,

The 9-j symbol is elearly zero unless all these triads
satisfy the triangular conditiom (2.2.1).

The 9-~j symbol has 72 symmetry relations
which have been diseussed by Jahn and Hope (1954). The
operations are generated by (i) an odd permutation of
the rows or eolumms, whieh multiplies the value of the

symbol by (-1) where I = Z J.. s (ii) a reflection
of the symbol in either of the twg diagonals, which
leaves it invariant,

The expression (4.7.1) for the 9-j
symbol in terms of 3-j symbols may be shown to be
equivalent to the sum of produets of three 6-j symbols :

(4.7.2)

411412113
{J21J22323} =

j31 j32j33

-1)2%(2,41 J11J21334 '412522432 j13@23j33
ZE: (-1)%"(2e+1) {J 2Jss K J21 K Jas3 K Jasdr2
3
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If one of the arguments is zero the 9-j
symbol reduces essentially to a 6-j symbol; the follow-

ing relations cover all cases,

(4.7.3)

Ge-Gi-GiD-Gro-Br-Ged

1

bae de ceod b+e+e+f
={§f0}=§ba}={aob}=('1) — {:b;}
ce £t £O0¢f ¢

[(2a+1)(2f+1)]%

]

In the same way as the 6-j symbol is related to

the transformation between different schemes of eoupling
three angular momenta, so the 9-j symbol is related to
the coupling of four angular momenta,

The transformation coeffiecient between the two schemes

I and II is given in an obvious notation by

(4" 7.4’)

(Ci1d2)dr2(dds) dsadm| (G1433)G13(d2da) Joadm) =

1 j1jzj1z
= [(231z+1)(2jz4+1)(2j13+1)(2324+1)]2 [j:jﬁjzﬁ}
J13Jd24J
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The 9-j symbol calculus is thus useful
in the computation, for instance, of transformation
coefficients between schemes of LS and jj-coupling
(see Edmonds and Flowers 1952).

A function similar to the 9-j symbol was
defined by Hope and Jahn (see Hope 1951, Jahn and Hope
1954)., Other functions of this type have been eonsider-
ed by Schwinger (1952), Fano (1952) etc. These fune-
tions are related to the 9~j symbol by the relations :

1 be
1 _ (Hope 1952
(4.7.5)  [(2e+1)(2£+1)(2g+1)(2k+1)] {E g i} = Jahn and Hope 1953)

=x (abecd; ef; gh; k)

s - s Ji J2 jaz
(4.7.6)  (-1)Ir*de=drades {ajs Ja qu} = 8(jiJajsde; (Sohwinger 1952)
Ji3JdzaJ L. .
J1233431332433)

rJ1d2d
(4.7.7) {jshg'} = X (J1Jadsdsded’ sk x’'3) (Fano 1952)
K k!

A number of relations involving the 6-j and
9-j symbols may be obtained by eonsidering the various
eoupling schemes of four angular momenta, We may obtain
in this way*

* I am grateful to Dr, J.P., Elliott for showing me
these results.
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bed

wro Y e e (3] 3]
~
bd
= (-1)¥ }Z:(—l)x (241) {a J Kz} {d g {1}
5 J, 3¢ J (K2

(4.7.9)

A € K
2K2 J1d Kz ad Kqg - 1 Aec K4
(-1) {J [ Jz K2 b J1 B (n*.l) b g;: bi J

(4.7.99)
J4b & da a d
z (-1)M(2n+1) (2p41) {e'x u} {z'x u} = (-1)%2tKa+2d {b J Zl}
sz J bi J J1J20
Au

When we go to coupling schemes of 5 angular momenta we
encounter more complex invariants; a 12-j symbol has
been defined by Jahn and Hope (1954) and by Ord-Smith
(1954). 1t has been shown however by J.P, ETliott and
by the present author that two distinet 12-j symbols

exist; they correspond to diagrams
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Numerical values of the 9-~j symbol are
usually obtained most easily by use of (4.7.2) and
evaluation of the 6~j symbols by the methods dis-
cussed in 4.6, However, formulae have been given
for some assignments of numerical values to the argu-
ments by Rose and Osborn (1954).

J,1 Tensor operators,.

Quantum mechanical operators are frequently
funetions of the angular coordinates of the system in
whieh they work, Let us consider such an operator 0,
and the effect on it of a rotation w (see § 1,2) of
the frame of coordinates, We have formally, where we
econsider the transformation D(w) as operators on the

state vectors,
(5.1.1) 0= D(w) 0D ' (w)

An irreducible tensor operator of rank «{(k = 0, 3,1, ...)
is a set of 2 k + 1 operators T(kq) which are trans-

formed under a rotation w in the following way :

(5.1.2)  D(w) T(ka) D™ (u) = Z T (ea) D)
q/==K

where JD( )(w) is a matrix element of the 2k+l-di-

men81ona1 1rredue1ble representation D(K) of the

rotation group*; i.e. T(xq) transform like the an-

gular momentum eigenvectors y(xg).

* ef, § 3.1
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Thus, a vector operator (see TAS e¢h, III) is
a tensor operator of rank 1 for example, a magnetic
moment, A quadrupole-—moment, on the other hand, is a
tensor operator of rank 2,

The coneept of tensor operator may be de-
fined in terms of commutation relations with respect
to the angular momentum operators (see Racah 1942);

the two definitions are equivalent,t

J.2, Factorisation of the matrix elements of temsor

operators (Wigner-Eckart theorem)

Consider a tensor operator acting on an
eigenvector y(jm) of some angular momentum oper-

ators JZ2, J, 3 under a rotation « we have

(5.2.1)

D(w)[T(@)v(im)] = [D(w)T(k@)D™ ()] D(w)¥(jm)

From the definition (4.1.2) we see that this is
equal to

(5.2.2)
) @) D Ew D
qlml

Thus the veetor T(xq)y(jm) is transformed by the
product representation D(K)C)I#J) of the rota-
tion group, and hence (ef.(3.5.2))

(5.2.3)

T(ka)y(im) = Z (kagm| kijrmt)e(j m’)

jlml

t however see A; Simon and T,A., Welton (1953)
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where the &(j’m’) are eigenvectors of the angular
momentum operators J2, J .
The matrix element (where y, y’ denote

all other quantum numbers)

(y' o | P(e@)|ydm) = (v (§'m’), T(kq) v(jm))

is, by orthogonality, equal to
(5.2.4) (v (§'m’), 8(3'w’)) (xajm|kjj’'m')

and thus we have factorised the matrix element
into a part independent of rotations and a Clebseh-~
Gordan eoefficient,

It is convenient to define the reduced
matrix elements, or double-bar matrix elements, by

(5.2.5)
(v grmt |2 lygmd = 03 (D00 a1 1y
(Jmueq] i my? 5| [ T (k) | | y3)
(2j1+1)2

This de¢finition is the same as that given by
Racah (1942) and Wigner (1951). Other workers, for
example Landau and Lifsehitz (1948), Schwinger (1952),
Alder (1952) and Biedenharn and Rose (1953) have de-
fined reduced matrix elements with different conven-
tions, and care should be taken because of this (see
Table III), p. 66.

The double-bar matrix elements are computed
in practice in the obvious way; we choose the easiest to compute
of the components (y’j’m’|T(kq)|yjm) and divide it
by the appropriate quantity. Is is usually best to
take m'=m=q=0 or m =m=%, g =0, so that

the simpler formulae of table II may be employed.



54

The integrals evaluated in § 3.5 may also be relevant
to the computation - namely in the ease of matrix elements
of solid or spherical harmonies, (Cf, remarks on matrix
elements of two-body interaetion in § 5.5.)

A simple example of a tensor operator of
rank 1 is the radius veetor ¥; this has the eomponents
(ef Table VI p. 69 ).

(5.2.6) r,=2z ; r,= :J%-(x *iy)

Similarly in the spherical scheme the angular momentum
->
¢ has components

1 .
(5.2.7) e, =¢, &, =35 (¢, rie);

Zz +

we have eorresponding expressions for the components of 3

Reference to (5.2.5) and table II shows that

(5.2.8)  (Cel[Z|len) = ns,, [(241)(e+1)e]%  and
@13 = n B

(we consider (em|e,|e/m’) = d‘cc,é'm,hm and the corresponding
3-j symbol). We use (3.5.6) to obtain in the same way the
double-bar matrix elements for the spherical harmonics,

¥Kq(e¢) > wherer,6, ¢ are the particle coordinates,

(5.2.9) (c| IYKI le?) = ;_—ﬂz___l-)‘ [(2c+1)(2x+1)(2c'+1)]% (f) g :;)

(ef. Racah (1942))
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5.3 Tensor produet of tensor operators.

We define the tensor product of two tensor opera-
tors T (k495) and U(k.q,) by

(5.3.1) X(kq) = EE: T(k4q4) U (KZQz)(K1Q1K2Qle1K2Kq)

492

It is easy to show that this produet is also a tensor opera-
tor, being transformed under rotations as a basis element of the
representation D(K) . Use of the orthogonality of the C-G
ecoefficients gives the deeomposition of a simple product of

two tensor operator eompomnents :

(5.3.2) T(k4a:) U(x2q2) = Zx(xq)(mzquxthqz)

Kq

The sealar produet of two tensor operators of the same
rank is, however defined not as X(00) but as

(5.3.3)  (T(x)+U(k)) = Z (-1)% T(xq) U(k-)

q

D34 Definition of Hermitian tensor operators,

We have to alter our conception of a Hermitian
operator, sinee evidently the eigenvalues of the components
T(kq) of a tensor operator will not all be real, We re-
quired in § 1.5 that the eomplex econjugate of the spheric-
al harmonie Y? should be given by Y* = (-1)"y Y _ ihovever
we remember from §2.6 that this property is not preserved
under veetor-coupling, The alternative convention gives a

spherieal harmonic Qem (1.5.7) in whieh the corresponding



56

property is preserved under vector-coupling : -
A
= (-1}t ¢
(5.4.1) Y a08) = (-1) Y _.(69)

Now in the ordinary quantum theory a Hermitian operator

0 (satisfying 01. = 0 ) has real eigenvalues (satisfy-

ing a* = a ), It is easy to see that we have a econsistent
system when we extend the concopt of a Hermitian operator
and require that a Hermitian tensor operator should satisfy*

(5.4.2) Tf(xq) = (-1)¥*% p(k-q)

It is clear from (5.1,2) that this property is preserved
under rotations, Tensor operators of half odd integer
rank eannot be Hermitian in this sense, and are therefore
not of physieal significanee, This is diseussed by Wigner
(1951) p. 48 and Sehwinger (1952) p. 57.

If T(xq) is a Hermitian tensor operator, then
the double-bar matrix elements must satisfy the condition

(5.4.3)  GlTGD] 3 = (DI (Gl 1G] La)*

It may be shown (cf. §2.6) that if two tensor operators
T(x1q,) and T(k.q.,) are Hermitian, then, provided that

they commute, their tensor produet (5.3.1) is also Hepmitian,
Tensor produets of certain tensor operators whieh do not
commute have been diseussed by Rose and Osborn (1954).

Js0 Matrix elements of produets of tensor operators.

Suppose that two tensor operators T(x,qs) and

U (kpq,) operate upon parts 1 and 2 respectively of a

* This definition differs fron that of Racsh (1942), who
takes (-1)+ ., \ith Dacah's definition temsor procucts
of Hermitian tensor operators are not Hermitian,
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quantum mechanical system (i.e, they commute), The
angular momentum quantum numbers of parts 1 and 2
and of the whole system are denoted by jym;, jom,
and jm respeetively,

Then by use of (2.4.1), (2.4.6), (4.7.1),
(5.2,5) and (5.3.1) we may compute the double-bar
matrix element of the temsor produet X(xq), in the
seheme (yj,j,jm),

We first express the matrix element
(y3ds 3z jm| X(xq)|y’ §§ j4i'm’) by a Clebseh-Gordan trans-
formation in terms of matrix elements in the seheme

(yds Jamemy) : -

(5.5.1)

(y3jsdzim| X(kq) ]y’ 4 3s3°m!) =

Z (3432 J“I Ja jzm1me)(Yj1 jzmqmzl X(“Q)ly’.’h ! j2'mims)

m,mi
m,m} (§43smime] 34 32 3'm’)

In the scheme (yjsj.mym,) the matrix element of
X(kq) may be written in terms of products of the

nmatrix elements of T(x4q,) and U(k.q,) : -

(5.5.2)

(Yj 1J2mym, lX(K‘]‘ y' 34 jimimg) =

Z (yjim, IT(Ki Q1)lylj4m§ )(ijmle(Kz%)IY' jims)

q1Q2
(K1Q-1K2‘12| K1K2KQ)

Now we combine (5.5.1) and (5.5.2), substituting the

double-bar matrix elements of X(xq), T(x.q,) and
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U(k2q,) by use of (5.2.5).

Referenee to the orthogonal property of the
3-j symbols (2.4.5.) and the definition of the 9-j
symbols (4.7.1) shows that the double-bar matrix ele-
ment of X(xq) in the scheme (yj,j.jm) may be ex-
pressed in terms of the double-bar matrix elements of
T(k4qy) and U(k,q,) and a 9-j symbol, Thus we
have removed all quantities whieh depend on the part-

icular coordinate systenm,

(5.5.3)
(vii =3l 12 My 3 =
xlj jl

= [(2j+l)(2j’+1)(2x+1)]% { K4 31 34 } z (ydsl [TCe)] 1y* 54)
Yl

K2J2 j4

x (y* 32| |UCk2)] |y’ 38)

where vy,y’,y?, denote all quantum numbers not assogiated
with angular momentum, This formula is applied, for ex-
ample, to the eomputation of the matrix elements of tensor
and spin-orbit forees in nuelei by Elliott(1953) and to
f~-deeay problems by Rose and Osborn (1954).

The formula for the matrix element of the sealar
produet of two ecommuting tensor operators (5.3.3) in the
scheme (yj,j,jm) is obtained by setting =0 and apply-
ing (4.7.3). We get

(5.5.4)

(y3s 3z m] (k) « Uk))]y’ 343s5'm’)

= (3t B Gl 10011y 306 3 1000 Ly 36065 5,6
yll

If we have only an operator T(xq) operating on
part 1 and we want the matrix element in the seheme
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(yj1j2jm) we get it by putting «,=0 in (5.5.3)(sub-
stituting U(k.q.) = 1) and applying (4.7.3). The re-

sult is

(5.5.5)

(yiid=dl 1G] y! 35523) =

=) [o5) (25041012 {§:§4£=} CEAILIONED

If k=1 (in (5.5.4) we have a familiar case -
the eomputation of the matrix element of the sealar pro-
duet of two veetor quantities. An application of(5.5.5)is found in the
use of the spherical harmonie addition theorem (3.5.8) in
the ealeulation of the matrix elements of a two-body inter-
action (electrostatie interaction or Wigner foree). Cf.
Racah (1942), When jy=j{, Jja=ji the matrix elements
may be obtained by the well-known method (see, for example,
Kopfermann (1940)). A quantity enters into the ealculation
whieh in the limit of large j, and j, becomes the eosine
of the angle (j,, J.) between the two angular momentum vee-
tors jy, j-. This quantity is

(5.5.6)  dGi*1) = §1(Je+1) - Ja(Je+1)
ot 2313z -

The corresponding 6-j symbol has the value

(5.5.7)
J J2ds - (_1)j1+jz+j _1_ i) =4 (Ga+1)=do (o 41) 1
1 jid2 2 [j1(j1+1)(231+1)jz(jz+1)(2jz+1)]2

Hence in the limit of large j, and ja, {g §231}
1Jd2

- - . - l
approaches the value (-1)91%92%3[(23,+1)(2j,+1)]" Zeos(iy, o)



For «, = 2 the Legendre funetion
. 1,3 272 s 1
Pz(eos(_.h ,_.]2)) = Z ( 5 €o0s (_.]_1 a..]z) - 'E)

takes the place of e¢os(js,j.) (see again Kopfermann

loe.cit,) and we may write a similar asymptotiec value

for j ']:2']:1 .

2 jid2
In general, for «x, = k¢ we have, as has been remarked
by Racah (1951),

(5.5.8)

o .
{,‘: ‘J’ig;} o (=131 43243 (25,41)(25,41)]7 2P (008 siiz))

for large j, and Jj., and small g,
(see §4,6 for recursion relation for this type of 6-j

symbol),
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Table 1

(i) Unsymmetrised C-G ecoefficients.

These are all numerically equal (insofar

asg the authors have stated their assumptions about
phases) to the C-G coeffieient defined by Condon
and Shortley, The symbols used for the angular
momenium quantum numbers are the same throughout

for ease of eomparison, and in some plaeces are

different from those used by the authors mentioned.

a) Biedemharn (1952)

b) Blatt and Weisskopf (1952)

e) Condon and Shortley (1935)

d) Eekart (1930)

e) Fano (1952)

£) Jahn (1951), Alder (1952)
g) Rose (1953)

h) v.d., Waerden (1931)
Landau and Lifsehitz(1948)

i) Wigner (1931)

j) Boys (1951)

J1d23
cm,mzn

Cj‘jz(jasmqma)

j1J23m) §4 jom4m; )
(.]1f2.]m Jimy Jomz)
(jm|mym,)

[ (J1d2m

Ajji jz
mm 4,

<jim,, jzmzl (3132 ) jm>

cIm
Jimg jom,

C(Jj1d=3; mymy)

J
m,m,

P P
S
Jm,m;

X(jom,jaaammy)
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(ii) Symmetrised C-G coeffieients.

These are given relative to Wigner's 3-j
symbol, whieh is given in terms of the C-G
coeffieient by (2.4.1).

a) Fano (1952) : <jym,,j-m.,jsms|0 > (-1)7179=% 5, (i:g:::> *

b) Landau and Lifschitz (1948) : _
) (_1)31 ~Jja+Jjs =

H

S. . . :
Jamy; joMa s jam

e¢) Raeah (1942) V(3132333 ll‘ll‘lz"‘:s)("‘1)']"'-l.‘.i2-".’é -" -

d) Sebwinger (1952) X(jij2js; m.mpms) = =" -
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Table 11

i
(i) - 0¥ [ sl ilerhoia)ianacd)i 17

(23!
% (%J F1)e(3I-jz2) (%J-j,f!

if J 1is even

(.‘h.‘iz.‘i:) =0 if J is odad where J = j,+j.+3js

1
I J 3 J-M-% J-M+2 2 1 a1
( M M-t i) (-1) (Z592) (33+T) I+2,952

1
J+1J 1 (_I)J-H-l (J-M)(I-M+1) 2
M -Mel 1 2J+3)(23+2)(2J+1
4 J+1,3.1
J41J 1 (-1)FH-1 [ (Jal+1) (I-44l)e2 | 2
M -M O (2343)(23+2)(23+1)

,
J-M (I-M)(I+M+1)-2 712
(-1) [(

o
ko
1
i
ot

N

2J+2) (23+41)(23)

J,J,1
J 3 1) (-1)7H M 1
M M O [(2341)(3+1)T]2
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<i+§ 3 3 ( I)J_M+%-—(J—M-%)(J-M+%)(J—M+g)
33 B (23+4) (23+3)(23+2) (23+1)
M-3 - 3.3
303 3 3 Cak
453 3 1) Ik [ 3(J—M+—12—)(J-M-tﬂJ+M+z)
(u yll - (23+4)(2343) (23+2) (23+1)
“M-3 L
FECRE — 3(IM=L) (T-M+L) (40 %) z
2 J-M-% AT
(u 4—%; (-1) | (23+3)(23+2) (23+1)23 :\
1 3 1 J%:J:g
I+t I 5 JuL [ J-M+3 2 N
( . -l!-% 1 (-1) | (2J+3)(2J+2)(2J+1)2J:| x
B 3
x(J+3H+§)
(.m J 2) ()3 H [ (330 (IHs1) (J-Me2) 7] 2
¥ 42 2 T L(2345) (2344) (2343) (2342) (2341) |
N
32 32\, U [TAR) (I H2) G )30 |7 gi2,5,0
M -N-11 | (23+5) (23+4) (23+3) (23+2) (23 +1)_

J+2 3 2\ ) IN [ 6(IM42) (J4M41) (I-H42) (JH+1) z
M M 0 | (2345) (23+4) (23+3) (23+2) (23+1)

(J+l J 2) 2(~1)9 A1 [ (I-M-1) (3 (I-M+1) (I+)42) z

M -M-2 2 (2J+4) (23+3) (2342) (23+1)23
,
J+l1 J 2 J-M+1 (IM+1) (J-H) 2
<M -N-1 1> (-1)7 77", 2(3+an2 (2J+4)(2J+3;(2J+2)(2J+1)2J:’ 3+1,3,2

<J+1 J 2> (_I)J-—M+12M[ 6(J+M+1) (J-M+1) ]%
M MO (23+4) (23+43) (23+2) (23+1)23
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J 32\ )TN 6(I-M-1)(I-M) (J4M+1) (J4M+2) z
<M -2 2) (23+3) (23+2) (23+1) (23) (23-1)

J 3 2 J-M 6(J+M+1) (J-H) 2
(u -1 1> (=1)7 7(1+2M) [(2J+3)(2J+2)(2J+1)(2J)(2J-.vl):] J,9,2

J J 2 (_I)J-M 2[3M2-3(J+1)] 4
M -M O [(23+3)(23+2)(23+1)(23)(23-1)]2
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Table III

Notations relating to tensor operators and reduced

matrix elements,

N.B. We assume throughout the usual convention, that
]
(a0|b) = | v, Oy, dr

The q component of a tensor operator of rank x is

written in these notes as T(xq), and the matrix ele-

ments between the states ¢ jm and a’ J m’ as

(a j m |T(xg)|a’j'm’). This is identieal with the

notation of Sehwinger (1952), Other notations, whieh

are equivalent to those already mentioned, are given

below,

Racah (1942) : q component of tensor operator of
rank x :— 'rfl"). Matrix element of
this operator :— (aijTgf)la'j'm')

Wigner (1951) : 1 eomponent of temsor operator of
rank t: — tT . Matrix element of

this operator between states with
’ /

angular momenta ¢ Kk, e’A :— (w;: t w;)-

Landay and Lifschitz (1948): m component of tensor

operator of rank j t— fKJm).

Matrix element of this operator bet-
ween states with angular momenta

Jamg, Joma:— (f(']m))g-1:2

Biedenharn and Rose (1953): u eomponant of tensor

operator of rank L, with parity

(= *1) :— T(L y,w). Matrix

element of this operator between
states with angular momenta

Jimy, jm i— <j1m,‘T(L u,ﬂ)ljm>.
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Fano (1951) : q component of tensor operator of rank
K i - qu . Matrix element of this opera-
tor between states with angular momenta

1! m? 1 . o 1t wm? 3
j'm’ and jm : <j'm ITKq!Jm >e

The double~bar matrix element, or reduced matrix element,

is defined in these notes as follows :

(ajm|T(kq)|a’ j’'m’) = (-l)j-m (adl | TG |’ 37) (ém g i:>

This is identical with the definition of Racah (1942) ;
however in his notation the relation is :
Racah (1942)

(a 5 8l7$arjtn) = (13 31119 [ar ) x V(5 3es-mrQ)

The definition of Wigner (1951) is also equivalent to ours :
¢ el _ (_1\t7kK e te’
(vs t wa = (-1) <_K . )\> t,,

Other notations, which are not equivalent to ours, are
given below; reference should be made to Table I for the
notations for Clebsch-Gordan coeffiecients,

Schwinger (1952) :
(v 5 n|TGea)|ydm) = (<13 [y 51|y 501 % (G 35 mqm)

Biedenharn and Rose (1953) :

<jamg| 2L pym)| gm> = C(34L Jsmemmy ) (§a| [ TA)]| | §) (arymemy)

Landau_and Lifschitz (1948)

(jm)yjqm, (3)+34 m, z .
f A = (f (=1 v2 1S, = P gee A
( Yjamy = (£7)5, (-1 927 Pamy gmp s S
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Fano (1951) :

2{;< (3’3 Ealj’m', j-m > (—1)‘]-m <j'm'lTKq|j m>= <j'j|TK> X
' - -
m'm x 6KK Jqq

Condon and Shortley (1935) : We relate the analogous notation
of TAS for veetor operators to our own by quoting equations
(30) of Racah (1942) :

..
-3

(e 3117 e’ 5) [3(5+1)(25+41)]% (a j !
1
(a 3117 e d-1) = [3(25-1) (254112 (a § ¢

(@ T8 [argo1) = - [(+1)(23541) 23+9)]% (a §

a’j)

i a! j=-1)

=3
-

Y 13

T i gl j+l)
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Table IV

o> = (3? (ef. § 3.7)

T
2

D ) <0
ml

° |

~ =~ Iy

~t I

~i Iy l_ﬁ

-t kKN l_ﬁ

B e

i I

~ Iy

+

- Eg &
1 N i |
Q) N
il B SR S R
1 [al} I 1
& [aY (o] et 1O\ i IO\ LiaY [aY]
1 1 + +
LAY o)
[t
]




70

+

-+
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-t kg ~- N ﬁ_ﬂ - KN -k
N
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] L
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e |
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Table V

Formulae for the 6-i symbol

{a b e }_ (_l)s[ s(s+1)(s-2a-1)(s-2a) z
1 e-1b-1¢" (2b-1)2b(2b+1)(2c-1)2¢(2c+1)

.y - - z
{a b e} - (-1)® 2(s+1) (s-2a)(s-2b) (s~2¢+1)

-

1 e-l1 b{", 2b(2b+1) (2b+2) (2e~1)2¢(2e+1)

i
a b e |_ (-1)8 gs-2b-1!§s—2b!§s—2c+lzgs-2e+2! 2
1 e-1 b+l { ™~ 2b+1) (2b+2) (2b+3) (2e-1)2¢(2e+1)

abe)_ (_1)8-!-1 2{b(b+1) + e(e+l) --a,(a.+1)}_l
leb(" [2b(2b+1) (2b+2)2e(2¢+1) (2¢42)]%

s=a+ b+ e
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1
a b e - ( l)s (s-1)s(s+1)(s-2a-2)(s-2a-1)(s~2a) 2
3 bd § - (2b-2) (2b-1)2b(2b+1).(2¢-2) (2¢-1)2¢(2¢+1)
3 73 =%
1
a b el ;y8[_3s(s+l)(s-2a-1)(s-2a)(s=2b)(s~2bsl 2
g c_g b-é TN (2b-1)2b(2b+1) (2b+2) »(2c-2) (2¢-1)2¢(2¢+1)

1
(‘l)s 3(s+1) (s~2a) (s~2b-1) (8~2b) (s-2¢+1)(s=2e+2) | 2
2b(2b+1)(2b+2) (2b+3).(2e~2)(2¢-1)2¢c(2e+1

Y
ST

b e}
3 1
e-5 b+2

{a b c} _ (_1)8 (8=2b-2)(8~2b-1) (s~2b) (8=-2¢c+1) (8=2¢+2) (8~2e+3) z

(2b+1) (2b+2) (2b+3) (2b+4) * (2e+2) (2¢-1)2¢(2e+1)

3 o

[a b c} - (_1)8{2(8-213)(s-2e)--(s+2)(s-2a.—1)}[(s+1)(s-2a)]%1

% e.% b_% [(2b-1)2b(2b+1)(2b+2) - (2e-1)2¢(2c+1) (26+2))2

{a b c} - (_l)si(s-zb-l)(s-2e) - 2(s+2)(s-2a)}[(s-2b)(s-2c+1)]%
g e_% b+% [2b(2b+1) (2b+2) (2b+3) *2¢(2e+1) (2e+2) (2e+3) 1%

sza+b+e
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a b ¢ s [ (8-2)(s-1)s(s+1)*(s-2a-3)(s-2a-2)(8-2a~-1)(s~2a) z
{2 e-2 b-2} = (-1) [k2b-3)(2b-2)(2b-1)2b(2b+1)-(20-3)(20-2)(20-1)2c(2c+1)

a b e ( 1)§2 (s-1)s(s+l)*(8-2a~2)(8-2a-1)(8-2a)(s-2b)(s-2e+l) z

2 e=2 b=1 (= '\~ (ﬁb;2)(2b-1)2b(2b+1)(2b+2)'(20-3)(2e-2)(2c-1)2c(2c+15

a b c\ = (-1)® 68(s+1)*(8~2a~1)(s-2a)(s-2b) (s-2e+l) (s-2¢+2) 2

2e2b{~'" (2b-1)2b(2b+1) (2b+2) (2b+3) * (2e=3) (2¢-2)(2e-1)2¢(2e+1)

2 e-2 b+l

2b(2b+1) (2b+2) (2b+3) (2b+4) * (2e~3) (2¢-2) (26-1) 2¢ (2¢+1

A
{a b e } - (_1)?2 (8+1)(8-2a) (8=2b=2) (s=2b-1) (8-2b) (s~2¢+1) (8~20+2)(8~2¢+: :]2

I

b
{; 02 bzz} = (-1)° l:(

a b e ) _ (_l)s.4f(a+b)(a-b+1)-(c-l)(c-b+1)}[s(s+l)(s-2a-1)(s-2&)]% .
- [(3b-2)(2b-1)2b(2b+1) (2b+2) * (2¢-2) (2e-1)2e(2¢+1) (2¢+2)]%

a b e ‘_ (_l)fzf(a+b+l)(a-b)-oz+1}[6(s+1)(s-2a)(s-2b)(s—2e+1)]% )
2 e-1 b} B [(2b-1) 2b(2b+1)(2b+2) (2b+3) *(2¢-2) (2e-1)2e(2¢+1) (2e+2)]?

1
2

a b e )_ §‘4{(a+b+2)(a-b-l)-(c-l)(b+c+2)}[(s-2b-1)‘(s—2b)(s-2e+1)(§-2c+2)]
2 e-l b+1} = (-1 [2b(2b+1) (2b+2) (2b+3) (2b+4) * (2e~2) (2¢~1)2¢(2e+1) (2¢+2) ]z

abe)_ (1), 2{3X(X-1)~4b(b+1)e(e+1)} )
¢ b} - [(2b+1)2b(2b+1)(2b+2)(2b+3)‘?(ée-l)20(2c+1)(20+2)(2e+3)1§

where s = a+b+c, X = b(b+l) + c(e+}) - al(a+l)
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Table VI

Spherieal and solid harmonics

Youl® = 2P Y, (6 9)

¢, m ycm(?) Y, 0(6:9)

00 B — Pz

10 é\l; p % %,cos 6

11 ¥ ; -23—1_ (xtiy) ry }é\/_é—g-sin pe~ 19

20 i ;,(2zqu2-y2) i ;,(Zcosze—sinze)

2+1 -T-% i% z (x*iy) ;-12- \/1—52 cos6sinbe” *ig

2+2 i %g (x+iy)2 \[———81n26 e~

30 %E (2z2-3x2-3y%)z %‘:\/-:Zr'(2cos-"6-3cosesin26)
3+1 :;é \l—%- (4z%-x2-y?)(x%iy) % J—z-;(lrcoszesine-sinze)eﬂsiS
3%2 % J%z (x*iy)? 71; %O_S cososin?0e 2 1P

313 73 4| 2 (x2iy)® 75 A Zsin’ee™1

Irreducible tensors eontaining in addition the components of some other

veetor B/ may be constructed by polarization of the solid harmonics with

» . = - a l-g.
the operator T/« V = x'ax + yl= 5y * 255 - Cf. Rose (1954)
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