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Angular momentum-induced circular dichroism
in non-chiral nanostructures
Xavier Zambrana-Puyalto1,2, Xavier Vidal1 & Gabriel Molina-Terriza1,2

Circular dichroism, that is, the differential absorption of a system to left and right circularly

polarized light, is one of the only techniques capable of providing morphological information

of certain samples. In biology, for instance, circular dichroism spectroscopy is widely used to

study the structure of proteins. More recently, it has also been used to characterize

metamaterials and plasmonic structures. Typically, circular dichorism can only be observed in

chiral objects. Here we present experimental results showing that a non-chiral sample such as

a subwavelength circular nanoaperture can produce giant circular dichroism when a vortex

beam is used to excite it. These measurements can be understood by studying the

symmetries of the sample and the total angular momentum that vortex beams carry. Our

results show that circular dichroism can provide a wealth of information about the sample

when combined with the control of the total angular momentum of the input field.
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S
ince its discovery in the nineteenthth century, circular
dichroism (CD) has been widely used in science. Defined as
the differential absorption of left and right circular polariza-

tion (LCP or RCP)1, its uses are as diverse as protein spectroscopy,
DNA studies and characterization of the electronic structure of
samples2. In some cases, when the CD signal is too weak, a
variation of CD is used in exciting the sample with a strong
magnetic field oriented parallel to the direction of light
propagation3,4. This variation, known as magnetic CD, can
detect some transitions and paramagnetic phenomena that are
too weak to be seen with conventional CD. In the advent of
nanophotonic circuitry, a lot of work has been put recently into
characterizing plasmonic components in terms of both techniques,
but especially CD5–8. Typically, it was thought that samples that
produced CD had to be chiral, that is, they could not be
superimposed with its mirror image9. However, recent
experiments with planar mirror-symmetric plasmonic structures
have shown that a non-zero CD can be obtained if the sample is
illuminated at oblique angles10–13. Other attempts to create CD
with a non-chiral sample have been carried out surrounding the
sample with a chiral medium14–16.

In this article, we show for the first time how to induce CD in a
non-chiral sample, under normal incidence. In contrast to the
previous approaches, the mirror symmetry of the system is
broken with an internal degree of freedom of the input beam: its
angular momentum (AM). The AM of light has gained a lot of
interest since the seminal work of Allen et al.17 One of the
interesting properties of the AM of light is that photons carry AM
in packets ofm‘ units. Furthermore, it was shown that the AM of
a beam is linearly related to the rotation speed that absorbing
particles can achieve when they interact with the beam18. Our
experiments show that CD can be induced in a non-chiral sample

if the two (left and right) circularly polarized modes are vortex
beams. The reason behind this interesting phenomenon is that
the input beams are not mirror images of each other.

Results
Experimental set-up. A sketch of the experimental set-up we
used is depicted in Fig. 1. It can be divided into three parts:
preparation of states, non-paraxial interaction with the sample
and measurement. For the state preparation we use a CW laser
working at wavelength l0¼ 633 nm, producing a collimated,
linearly polarized Gaussian beam. From this Gaussian beam, we
create a vortex beam (see Fig. 1c) with a spatial light modulator
(SLM) by displaying an optimized pitchfork hologram19 (see
Fig. 1b). Proper control of the pitchfork hologram allows us to
create a phase singularity of order q in the centre of the beam,
that is, the phase of the beam twists around its centre from 0 to
2pq radians in one revolution. Note that when q¼ 0, the SLM
behaves simply as a mirror. We finish the preparation of the input
beam by setting its polarization to either LCP or RCP. This
change of polarization does not appreciably affect the spatial
shape of the input beam.

After this initial preparation, the light is focused down to
interact with a plasmonic sample using a high numerical aperture
(NA¼ 1.1) microscope objective. The samples are circular nano-
apertures drilled in a 200-nm gold film deposited on a 1-mm glass
substrate (see Fig. 1d). The diameters of the nano-apertures range
from 200 to 450 nm (see Methods). They are centred with respect
to the incident beam with a nano-positioning stage. The
interaction of the light and the centred nano-aperture occurs in
the non-paraxial regime. Typically, the nano-aperture only
allows a small part of the incoming beam to be transmitted.
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Figure 1 | Schematic view of the optical set-up in consideration. (a) Both a left and a right circularly polarized vortex beam goes through a subwavelength

circular aperture and their transmissivities are measured. First, we prepare an input Gaussian beam from a laser source in order to optimize the

diffraction from the SLM. We expand it to match the size of the SLM chip with a telescope (lenses L1–L2) and then we control its polarization with a

polarizer (P1) and a half wave plate (HW). A pitchfork-like hologram (b) is used to prepare a vortex beam (c) and the non-desired orders of diffraction are

filtered with a lens (L3) and an iris (I). Lens L4 is used to match the size of the back aperture of the microscope objective. Then, we control its

circular polarization with a second polarizer P2 and a quarter wave plate QW. After that, we focus the beam to the plasmonic structure (S) (d) with a

microscope objective (MO1) of NA¼ 1.1. The scale bar in d is 1-mm long. Finally, we collimate the scattered light from the sample with another microscope

objective (MO2) with NA¼0.9 and measure the transmission with a charged-couple device (CCD) camera.
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The transmitted light is scattered in all directions. This facilitates
the coupling of light to superficial modes of light, as it has been
described theoretically and experimentally by many authors20–22.
The transmitted light is then collected by another microscope
objective. Finally, a camera is used to capture the transmitted
intensity.

The CD of our samples is measured using the following
procedure: first, we create a vortex beam of optical charge q with
the SLM. Second, we rotate QW to polarize the beam with LCP.
Then, we centre the sample with respect to the beam, at the focal
plane of MO1. We measure the transmitted intensity ILq , where L
stands for the polarization of the beam (LCP) and q for its optical
charge. Then, we rotate QW again to change the polarization
state to RCP and re-centre the sample. At last, we measure the
transmitted intensity IRq . From there, the CD associated to the
vortex beam with charge q can be obtained in the usual manner:
the transmitted intensity with LCP and RCP modes are
subtracted and the result is normalized by their addition:

CDqð% Þ ¼
ILq � IRq
ILq þ IRq

�100 ð1Þ

Experimental results. Our results are presented in Table 1 and
Fig. 2. The first column of Table 1 shows the size of the nano-
aperture under consideration. The rest of the columns show the
measured CD using beams with different phase singularities of
order q¼ � 1, 0, 1, respectively. As expected, because of the fact
that the circular nano-aperture is mirror-symmetric and the
incidence is normal, the CD is very close to zero when the inci-
dent beam is Gaussian (q¼ 0). The residual CD can be attributed
to small asymmetries on the sample or the incoming beam. When
vortex beams with q¼ � 1, 1 are used, the situation is very dif-
ferent. We obtain a very large value for the CD, of the order of
90% for some nano-apertures, even though the incidence
is normal and the nano-aperture is still mirror-symmetric.
Furthermore, it can be observed that there is an underlying
symmetry relating the value of CD1 and CD� 1. Indeed,
CD1CCD� 1.

Discussion
Let us now discuss the results presented in Table 1 and Fig. 2. In
order to understand the appearance of CD in a circular sample
under normal incidence, we have to take a careful look at the
symmetries of the system and the light probing the samples. We
can start considering the symmetries of the target T comprising
the two microscope objectives MO1, MO2 and the sample S
(see Fig. 1a). This will simplify the discussion, as we will just
consider the interaction of a paraxial beam with T, as well as the

output beams that will also be paraxial. Then, as both the circular
nano-aperture and the microscope objectives have cylindrical
symmetry along an axis normal to them, T is cylindrically
symmetric. Without loss of generality we will label the symmetry
axis as z and we will denote the rotations around this axis by Rz.
Furthermore, T is also symmetric under any mirror transforma-
tion that contains the z axis, for example, a transformation
flipping the x axis and leaving the other axes invariant. We will
refer to such transformations as M ẑf g.

Now we will turn our attention to the symmetries of the light
beams. The electric field of the light beam incident on T can be
described within the paraxial approximation with the complex
vector:

Ein
p;q ¼ Arqe iqfþ i j k0 j zð Þeð� r2=w0Þêp ð2Þ

where êp ¼ ðx̂þ ipŷÞ=
ffiffiffi
2

p
, x̂ and ŷ being the horizontal and

vertical polarization vectors, respectively, A is a normalization
constant, |k0|¼ 2p/l0 with l0 the wavelength in consideration
and r, f, z are the cylindrical coordinates. An implicit harmonic
exp(� i2pct/l0) dependence is assumed, where c is the speed of
light. Note that p¼ 1 refers to LCP and p¼ � 1 to RCP. Now, if
we apply a rotation around the z axis by an angle y to this beam,
the resulting beam acquires a constant phase:
RzðyÞEin

p;q ¼ expð� iðpþ qÞyÞEin
p;q. These kinds of beams are then

eigenstates of the generator of rotations around the z axis, that is,
the z component of the total AM Jz: JzEin

p;q ¼ ðpþ qÞEin
p;q. The Jz

eigenvalue is m¼ pþ q. In addition, note that a beam with p¼ 0
would be linearly polarized and will be no longer an eigenstate of
Jz, since a rotation of the field would not leave it invariant.

Within the paraxial approximation, the beams Ein
p;q with p¼±1

are also eigenstates of the helicity operator L (refs 23–25). That is,
LEin

p;q � pEin
p;q, where L¼ J �P/|P| and P is the linear momentum

operator. Hence, with our notation, a beam Ein
p;q with p¼ 1 is both

LCP and also an eigenvector of L with value 1, whereas a beam
Ein
p;q with p¼ � 1 is RCP and its helicity equals to � 1. We would

Table 1 | Measurements of circular dichroism CD (%) for
three different phase singularities q as a function of the
diameter of the nano-aperture.

q¼ � 1 q¼0 q¼ 1

d1¼ 237 nm � 78±6 �0.130±0.003 68±6
d2¼ 212 nm �91±6 � 1.843±0.004 84±6
d3¼ 325 nm � 10±4 0.596±0.004 9.8±1.1
d4¼ 317 nm � 7±5 1.258±0.005 12±4
d5¼ 333 nm �9±4 0.841±0.005 13±2
d6¼432 nm � 22.3±0.8 0.596±0.003 27.1±0.8
d7¼429nm � 34±2 � 1.055±0.007 37.5±1.3
d8¼433 nm �46.8±1.3 0.629±0.004 45.9±0.8

CD is computed using equation (1).
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Figure 2 | Measurements of CD (%) for three different phase

singularities q as a function of the diameter of the nano-aperture. CD is

computed using equation (1). Black diamonds are used to represent the CD

obtained with q¼ 1; green circles for q¼0 and magenta hexagon stars for

q¼ � 1. Error bars are computed as the standard deviation of a set of 20

measurements with the same sample. The most probable source of this

error are vibrations of the mechanical system, which misalign the sample

with respect to the incident beam. In contrast, the larger differences

between samples of roughly the same size are probably due to

discrepancies in their geometry (eccentricity and ellipticity).
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like to emphasize that this simple relation between helicity and
polarization is only valid because, as mentioned previously, we are
describing the system in the paraxial regime26. When the paraxial
approximation does not hold, the polarization of the field and
helicity can no longer be so simply related24. Now, if we apply a
mirror transformation to the incident beam we obtain:

M ẑf gE
in
p;q ¼ expðiaÞEin

� p;� q: ð3Þ
where a is a phase given by the specific mirror transformation
chosen. That is, we obtain a beam with the AM and the helicity
eigenvalues flipped. This is a consequence of the fact that both Jz
and L anticommute with the mirror symmetry transformations

M ẑf g (ref. 27): My
ẑf gJzM ẑf g ¼ � Jz and My

ẑf gLM ẑf g ¼ �L.
We will now explain our experimental results. We will start by

classifying the transmitted electric field Et
p;q with the parameters p

and q from the incident field: p¼ � 1, 1 and q¼ � 1, 0, 1.
Remember that for the incident field Ein

p;q, p is modified with QW
and q with the SLM (see Fig. 1). Mathematically, the field Et

p;q can
be obtained through the use of a linear operator, S, which can be
found using the Green dyadic formalism and contains all the
relevant information about target T (refs 21,28). That is,
Et
p;q ¼ SfEin

p;qg, where the action of S on the incident field will
in general be in the form of a convolution. As S is simply the
mathematical description of T, S inherits the symmetries of T.
Thus, because of the cylindrical and mirror symmetries of the
target and given an incident field Ein

p;q, the following statements
hold: first, the transmitted field Et

p;q will also be an eigenstate of Jz
with the same eigenvalue of m¼ pþ q (see Methods). Second,
two incident beams that are mirror images of each other will
produce two transmitted fields that will be mirror images (see
Methods). That is, given two mirror-symmetric beams such as
Ein
p;q and Ein

� p;� q (see equation (3)), their transmitted beams
Et
p;q ¼ SfEin

p;qg and Et
� p;� q ¼ SfEin

� p;� qg will be connected via a
mirror symmetry: Et

p;q ¼ expðiaÞM ẑf gE
t
� p;� q. The proof can be

found in Methods, but the physical idea is the following one: the
invariance of the system under mirror transformations links the
output of mirror-inverted inputs. This last result is the key point
to understand our CD measurements with vortex beams
presented in Table 1 and Fig. 2. In equation (1), the intensities
can be obtained from the transmitted electric field:

IL=Rq ¼
Z1

�1

Z1

�1

j Et
þ 1=� 1;q j2 dxdy; ð4Þ

where the integral is taken on the plane of the detector (in our
case CCD chip of the camera). Then, for a mirror-symmetric
sample, it can be proven (see Methods) that

IL=Rq ¼ IR=L� q : ð5Þ
Let us apply it to prove that CD0¼ 0 and that CDq¼
�CD� q. When q¼ 0, we obtain that IL0 ¼ IR0 . Substituting
this in the definition of CD, equation (1) gives us CD0¼ 0.
However, when qa0, equation (5) leads us to
ILq � IRq ¼ IR� q � IL� q ¼ �ðIL� q � IR� qÞ, which implies that
CDq¼ �CD� q, in very good agreement with our measurements.

Powerful as these symmetry considerations are, they still
cannot explain the quantitative results of CD we obtained, nor
their variation with the diameter of the nano-aperture. Note that,
in our experiments, the vortex-induced CD1 varies greatly for
different aperture sizes. Thus, holes B220 nm have a CD close to
90%, while those with sizes B320 nm present a much lower CD
B10%. Interestingly, the trend is not monotonous and CD1

increases again to 22% for nano-apertures of 430 nm. The
symmetry arguments only indicate that when qa0 the two
opposite circular polarizations are not the mirror images of each

other and then the associated CDq does not have to be zero. Here
the AM of light plays a crucial role again. In general, it can be
observed that CD measurements compare the differential ratio of
electromagnetic fields with opposite circular polarization and a
difference of AM of 2 units. For example, CDq¼ 1 relates j Et

1;1 j 2
and j Et

� 1;1 j 2, whose respective AM values are mp¼ 1¼ 1þ 1¼ 2
and mp¼ � 1¼ 1� 1¼ 0. It is then interesting to observe that CD
can also be sensitive to differential absorption of AM states. In the
case of the nano-aperture, this is the most probable cause of the
giant value of CD obtained in the experiments. Even though the
sample is cylindrically symmetric, thus preserving the AM of
field, input beams with different values of AM have very different
scattering amplitudes.

This is very similar to what happens in the scattering from
spherical objects, where different spherical modes (the so-called
multipolar modes) are scattered with different amplitudes (the
Mie coefficients). This problem can be analytically studied using
the Generalized Lorenz-Mie Theory29,30. Using the model of the
aplanatic lens31,32 one can check that the fields at the focal plane
of MO1 produced by Ein

� 1;q and Ein
1;q are very different (see

Fig. 3b). Consequently, their multipolar decompositions33,34 are
different as well. These two dissimilar focused fields couple very
differently to the multipolar moments of the structure. In the case
of a spherical object, the coupling of multipolar modes depends
drastically on its diameter. Furthermore, the relation between the
coupling coefficient and the sphere radius is non-linear and
rather complex34, giving rise to the so-called Mie resonances in
the scattering of the sphere. Then, given two spheres of different
sizes, different coupling scenarios can occur not only depending
on the geometry of the particles but also on the beams used to
excite these particles. In fact, similar effects have been
experimentally observed for other plasmonic structures35–37.

Now, the fact that CD1 increases from 10 to 25% clearly
indicates that the nano-apertures are in this multipolar regime34,38.
If the experiment was conducted with larger apertures (non-
subwavelength), the result of the CD measurement would
monotonously tend towards 0. Indeed, as the size of the scatterer
is increased with respect to the wavelength, the problem can be
described with diffraction theory, where the polarization of light
does not play any role. In addition, the beams would have to be less
focused to interact with the aperture, otherwise they would just go
through it. That would make their intensity and phase profiles
much more alike, as shown in Fig. 3b.

Last but not the least, notice that the sign of CD is positive for
q¼ 1, and negative for q¼ � 1. That is, it appears that the
transmission of modes with |Jz|¼ 2 is larger than the transmission
of modes with |Jz|¼ 0, regardless of their helicity content. Now,
looking at the intensity distribution of these modes at the focal
plane, this result seems counter-intuitive. Figure 3b shows the
intensity distribution of a mode with |Jz|¼ 2 (left) and a mode
with |Jz|¼ 0 (right). One could argue that the mode with |Jz|¼ 2
should transmit more intensity through the nano-aperture as the
intensity of its z component is non-null in the centre. Certainly,
this effect has been largely studied in STED microscopy. It is
known that a non-null z intensity component in the centre has a
detrimental effect for the resolution of the technique39,40.
Nevertheless, when using core–shell nanoparticles to enhance
the resolution of STED the same conclusion cannot be
drawn41,42. More importantly, Kindler et al.43 showed that
radial and azimuthally polarized beams have different
transmissions through a nanohole. In particular, in this work it
is shown that an azimuthally polarized beam (which has null
intensity in the centre) can have a higher transmission than the
radially polarized beam (which has a strong z component with a
non-null intensity in the centre) for nanoholes in the range that
we probed.
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In conclusion, we have observed a giant CD on a subwave-
length circular aperture induced by vortex beams. We studied the
transmission of beams with three different phase singularities of
order q¼ � 1, 0, 1. Higher |q| have not been used as the
cylindrical symmetry of the beam is experimentally broken when
they are focused44,45. We have seen that the results can be
elucidated from a symmetry perspective. In particular, we have
proved that, even for mirror-symmetric systems, CD can be
induced if the LCP and RCP beams are not connected via a
mirror symmetry. Similar results could have been obtained for
our samples had we measured an ‘orbital’ dichroism, defined as
ODL=R

q ð% Þ ¼ ðIL=Rq � IL=R� q Þ=ðIL=Rq þ IL=R� q Þ � 100, that is inverting
the azimuthal phase of the paraxial mode, instead of its
polarization. Indeed, using equation (5), it can be proven that
ODL

qð% Þ ¼ CDqð% Þ and ODR
q ð% Þ ¼ �CDqð% Þ for mirror-

symmetric samples. This fact reinforces the point that CD
measurements are sensitive to the differential absorption of AM
states. That is, we show that the information carried by CD
measurements has two different contributions: the differential
scattering of different circular polarization states but also the
differential scattering of different AM states. Notice that
equation (5) and the relations between ODL=R

q and CDq above
will no longer be valid if the sample in use is chiral. A chiral
sample interacts differently with the two orthogonal circular
polarizations; therefore, the absorption of Ein

p;q and Ein
� p;� q will

yield different results. A work along these lines was presented by
Löffler et al.46 Thus, we expect that vortex beam-induced CD will
be able to unveil properties of non-chiral samples that are hidden
to the standard CD measurements. Finally, it is interesting to see
that in other related phenomena, such as molecular optical

activity, the interplay between the two symmetries associated to
helicity and AM (electromagnetic duality and rotational
symmetry) are also essential to fully understand the problem
from first principles47.

Methods
Preservation of JZ for the transmitted field. We consider the rotation trans-
formations (Rz), mirror transformations (M ẑf g) and AM (Jz) operators, as well as
the scattering operator (S) as linear integrodifferential operators acting on the
electric vector of the complex electromagnetic field. Owing to the invariance of T
under rotations around the z axis, the linear operator S, which contains all the
information about the system, commutes with the rotations Rz: R

y
z SRz ¼ S. Owing

to the bijective properties of the exponential function, the same commutation
relation holds for the generator of rotations, Jz: J

y
z SJz ¼ S. Then, given that Ein

p;q is
an eigenvector of Jz, Et

p;q must also be an eigenvector of Jz with the same eigenvalue:

JzE
t
p;q ¼ JzSfEin

p;qg ¼ SJzfEin
p;qg ¼ ðpþ qÞSfEin

p;qg ¼ ðpþ qÞEt
p;q ð6Þ

Scattering of mirror-symmetric beams. Owing to the invariance of T under
mirror symmetries, the linear operator S, which contains all the information about

the system, commutes with M ẑf g : M
y
fẑgSM ẑf g ¼ S. Now, given two mirror-sym-

metric beams such as Ein
p;q and Ein

� p;� q (see equation (3)), it can be checked that
their respective transmitted fields (Et

p;q and Et
� p;� q) are related with a mirror

symmetry:

Et
p;q ¼ SfEin

p;qg ¼ SfexpðiaÞM ẑf gE
in
� p;� qg ¼ M ẑf gSfexpðiaÞEin

� p;� qg

¼ expðiaÞM ẑf gE
t
� p;� q ð7Þ

Proof of IL=Rq ¼ IR=L- q . As mentioned in the body of the manuscript, the target is
cylindrically symmetric scatterer. Hence, if the incident field Ein

p;q is an eigenstate of
Jz with eigenvalue (pþ q), then the transmitted field Et

p;q needs to remain an
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Figure 3 | Intensity, polarization and phase of a paraxial versus focused beam. (a) Measurement part of the set-up. A paraxial beam Einp;1 is focused by

MO1 on the sample. Then, MO2 collimates the transmitted light and Etp;1 is measured with a CCD camera. (b) Intensity and phase plots of the two beams

used to carry out the measurement of CDq¼ 1, that is, E
in
1;1 and Ein� 1;1. In the upper row, the intensity and phase of the beams are shown on the back aperture

plane of the MO1. Both the intensity and the phase can be described with equation 2. In contrast, the three rows below show the intensity and the phase of

the same beams (Ein1;1 and Ein� 1;1) at the focal plane of MO1. As it can be observed, even though their paraxial intensities and phases are analogous, their

structure is completely different at the focal plane. This is a direct consequence of the fact that the AM of both beams differ in two units.
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eigenstate of Jz with the same eigenvalue (pþ q). Nevertheless, the helicity is, in
general, not preserved in the interaction. This phenomenon is a consequence of the
duality symmetry being highly broken by the nano-aperture and the multilayer
system24,25,48,49. Because duality symmetry is highly broken by the sample, the
helicity of the incident beam Ein

p;q is not preserved. Thus, the field Et
p;q comprises

two helicity components, one of polarization êp and another one of polarization
ê� p :

Et
p;q ¼ At

p;qðx; yÞêp þBt
p;qðx; yÞ̂e� p ð8Þ

where At
p;qðx; yÞ and Bt

p;qðx; yÞ are the complex amplitudes of the two polarizations
at the plane of the camera. We call At

p;qðx; yÞ the direct component, as it maintains
the polarization state êp . The other orthogonal component is Bt

p;qðx; yÞ, and we call
it crossed component. The crossed component has a polarization state ê� p when
the incident state is êp . Now, we can use the definition of IL=Rq on equation (4), the
decomposition of Et

p;q in its two orthogonal components given by equation (8), and
the fact that ê�p � ê� p ¼ 0 to obtain that IL=Rq can be expressed as:

IL=Rq ¼
Z1

�1

Z1

�1

j At
þ 1=� 1;qðx; yÞ j 2 þ j Bt

þ 1=� 1;qðx; yÞ j 2 dxdy ð9Þ

Following an identical procedure, the following equation yields for IR=L� q :

IR=L� q ¼
Z1

�1

Z1

�1

j At
� 1=þ 1;� qðx; yÞ j 2 þ j Bt

� 1=þ 1;� qðx; yÞ j 2 dxdy ð10Þ

Choosing the mirror-symmetric operator to be M ẑf g ¼ Mfx!� xg , we can use
equation (3) to get a relation between the coefficients in equations (9 and 10):

Et
p;q ¼ At

p;q x; yð Þ̂ep þBt
p;q x; yð Þê� p

¼ M ẑf gE
t
� p;� q

¼ M ẑf g At
� p;� qðx; yÞê� p þBt

� p;� qðx; yÞêp
� �

¼ �At
� p;� q � x; yð Þêp �Bt

� p;� q � x; yð Þê� p

ð11Þ

which implies that At
p;qðx; yÞ ¼ �At

� p;� qð� x; yÞ and Bt
p;qðx; yÞ ¼

�Bt
� p;� qð� x; yÞ because of the orthogonality of êp and ê� p . Consequently,

it follows that:

IL=Rq ¼
Z1

�1

Z1

�1

j At
þ 1=� 1;q x; yð Þ j 2 þ j Bt

þ 1=� 1;q x; yð Þ j 2 dxdy

¼
Z1

�1

Z1

�1

j �At
� 1=þ 1;q x; yð Þ j 2 þ j �Bt

� 1=þ 1;q x; yð Þ j 2 dxdy

¼
Z1

�1

Z1

�1

j At
� 1=þ 1;� q x0; yð Þ j 2 þ j Bt

� 1=þ 1;� q x0; yð Þ j 2 dx0dy ¼ IR=L� q

ð12Þ
as the integrations limits remain the same under the change x ! � x0.

Fabrication of samples. The tested nanoholes were fabricated by milling with a
focused ion beam (FIB) on a gold layer of 200 nm, deposited on top of a 1-mm-
thick glass substrate. The distance between them is 50 mm, thus avoiding the
coupling of surface plasmons launched from one nanohole to the closest
neighbour.

Imaging of the samples. The images were taken with a secondary electron
scanning electron microscope (JEOL JSM-6480) operated at 10 keV. The images
were analysed with Matlab where the boundaries of the nanoholes were determined
by selecting the pixels whose intensity was below the 10% of the maximum. The
presented images on Fig. 1 were not post-processed. The obtained diameters are
listed in Table 1 on the manuscript.

Nano-positioning system. The sample is mounted on a piezo electric transducer
on closed-loop with resolution below 0.5 nm (translation range 300 mm with 20-bit
USB interface and noise floor of tens of picometers).
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