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Abstract

A circularly polarized paraxial Gaussian laser beam carries ±h̄ angular momentum per photon

as spin, with zero orbital angular momentum. Focusing the beam with a rotationally symmetric

lens cannot change this angular momentum flux, yet the focused beam must have spin |Sz | < h̄

per photon. The remainder of the original spin is converted to orbital angular momentum,

manifesting itself as a longitudinal optical vortex at the focus. We investigate the nature of this

orbital angular momentum.
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1. Introduction

Although there has been an ongoing controversy about

the angular momentum density of circularly polarized

electromagnetic waves for nearly a century (Henriot 1934,

Atkinson 1935, Humblet 1943, Crichton and Marston 2000,

Stewart 2005, Zambrini and Barnett 2005, Nieminen et al

2007), it is generally accepted that there is no doubt about the

total angular momentum flux of a beam of finite power. In

particular, it is well known that the angular momentum flux of

a circularly polarized paraxial Gaussian beam of power P and

optical angular frequency ω is ±P/ω, with the sign given by

the handedness of the circular polarization. This corresponds

to the equally well-known quantum result of photons having h̄

spin.

A more problematic controversy is the separation of

the angular momentum flux or density into spin and orbital

components. This controversy is not unrelated to the older

one referred to above. Essentially, one can choose either

of two expressions for the angular momentum density of an

electromagnetic wave. Since the linear momentum density is

equal to p = E × H/c, where E and H are the instantaneous

electric and magnetic fields respectively, it is natural to assume

that the angular momentum density j is the moment of this,

j = r × p, (1)

where r is the position vector of the point of interest. However,

in this case, the angular momentum of a circularly polarized

plane wave would be zero. Notably, the assumption that the

angular momentum density is r × p is implicitly a statement

that the spin—the part of the angular momentum density that

is independent of the choice of origin—of the electromagnetic

field is zero, as readily seen if we choose an origin such that

r = 0.

However, if we instead begin with the conservation laws

resulting from invariance under spatial rotations (Noether

1918, Tavel 1971, Soper 1976, Jauch and Rohrlich 1976), we

can write the angular momentum density as a sum of spin and

orbital terms

j = l + s =
ǫ0

c

y,z∑
i=x

Ei r × ∇ Ai +
ǫ0

c
E × A, (2)

where A is the vector potential. Since the term ǫ0E ×

A/c is manifestly coordinate system independent, it can be

unambiguously identified as the spin density. This expression

for the total angular momentum density was shown by Humblet

(1943) to be equivalent to (1), integrating the density (1)

by parts and dropping terms that vanish if the fields vanish

sufficiently quickly as r → ∞. Conversely, (1) can be

obtained from (2) by symmetrizing the canonical energy

momentum tensor (Jackson 1999). That this is only valid,
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again, if the fields vanish sufficiently quickly as r → ∞ is

often left unstated or understated; Jauch and Rohrlich (1976)

carefully point out this requirement. Bromberg (2006) gives a

lucid discussion of the equivalence of the two approaches.

More problematic, and rightly so, is the apparent lack

of gauge invariance of the spin density. Consequently, it

is typically concluded that the separation of the angular

momentum of a general electromagnetic wave into spin and

orbital components cannot be made in a physically meaningful

way—the result is either gauge dependent or not Lorentz

invariant. However, if we consider the fact that the (quasi-)

monochromaticity of an electromagnetic wave, at least for a

physically achievable wave (i.e., not an infinite plane wave) is

also not Lorentz invariant, it does not come as a great surprise

to find that the spin density of a monochromatic wave is both

gauge independent and physically meaningful (van Enk and

Nienhuis 1994, Crichton and Marston 2000). Since this is in

accord with both the correspondence principle—the quantum

theory must yield the classical theory in an appropriate limit—

and Noether’s theorem, there is every reason to accept (2) as the

correct expression for the angular momentum density, rather

than the naı̈ve (1).

This leads to an interesting problem. A rotationally

symmetric system cannot alter the angular momentum state of

an electromagnetic wave, and thus focusing by a rotationally

symmetric optical system cannot alter the angular momentum

state of a laser beam. If we consider a focused circularly

polarized beam, following Crichton and Marston (2000) we

can measure the spin angular momentum in the far field. In the

far field, the beam is a spherical wave, and, locally, we measure

the radial component of the spin angular momentum. However,

only the component along the beam axis can contribute to the

total angular momentum of the beam. Since the maximum

magnitude of the spin density is h̄ per photon, the total

spin angular momentum must be less than this amount (see

figure 1). On the other hand, the total angular momentum flux

cannot have been changed by the act of focusing the beam.

Therefore, an orbital angular momentum flux must have been

introduced into the beam.

We investigate the nature of this orbital angular

momentum flux, and show that it is associated with the optical

vortex nature of the axial electromagnetic field. We also clearly

demonstrate an orbital motion of energy within the beam.

2. Angular momentum of a focused beam

The simple result of spin angular momentum flux equal to P/ω

is only valid in the paraxial approximation, as it depends on Ez

being zero. If we consider a beam of finite width in its focal

plane, then the beam will spread through diffraction, and will,

at a sufficiently large distance, be propagating in a purely radial

direction. That is, for large r , we must have Er = 0. In this

case, the electric field is purely tangential, and the spin angular

momentum density in polar spherical coordinates is

sr = ǫ0Im(Eθ E⋆
φ)/ω, (3)

with the other vector components being zero. For a rotationally

symmetric beam of the type we consider here, sr will be

independent of the azimuthal angle φ.

Figure 1. Reduction of spin about the beam axis by a lens. If a
circular polarized paraxial beam is incident on a lens, the initial spin
flux density vector, s0, is parallel to the beam axis. After focusing, it
will no longer be parallel. At the location shown in the figure, the
final spin density vector s1 is at an angle of θ (this angle will vary
across the focused beam), and only the component sz parallel to the
beam axis will contribute to the total spin flux of the beam. Thus, the
total spin angular momentum flux is reduced by focusing.

Therefore, the maximum possible contribution to the total

spin angular momentum, of which, by symmetry, only the

z component is non-zero, is sr cos θ , where θ is the angle

measured from the z axis. Integrating this over the beam must

result in |Sz | < h̄ per photon. If we consider a non-paraxial

beam with a Gaussian profile, we can write the amplitude in

the far field as

U = U0 exp(− tan2 θ/ tan2 θ0), (4)

where θ0 is the angle at which the amplitude of the field

drops to 1/e of the value at θ = 0. This angle is the beam

convergence angle (Nieminen et al 2003). For maximum

possible spin, we have sr = ǫ0U 2/ω, and the total spin angular

momentum of the beam, in units of h̄ per photon, can be found

by integrating over a hemisphere:

Sz = A/P (5)

where

A =

∫ π/2

0

exp(−2 tan2 θ/ tan2 θ0) sin θ cos θ dθ (6)

and

P =

∫ π/2

0

exp(−2 tan2 θ/ tan2 θ0) sin θ dθ. (7)
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Figure 2. Spin angular momentum in h̄ per photon for a non-paraxial
TEM00 Gaussian beam. The solid line shows the exact result, the
dotted line shows the small angle approximation.

This can be readily integrated numerically, and the result for

all practically realizable Gaussian beams is shown in figure 2.

The qualitative behaviour seen here is expected since Sz =

0.5P/ω for a dipole radiation field (Humblet 1943, Crichton

and Marston 2000).

For θ0 ≪ 1, small angle approximations can be made,

giving

Sz = 1 − θ2
0 /4. (8)

The relative error in the change in spin (1−Sz) is less than 0.01

for beam convergence angles θ0 < 6.25◦, and less than 0.1 for

θ0 < 21◦. In the paraxial limit (θ → ∞), we recover the usual

result for paraxial beams, namely Sz = 1. A quadratic fit to the

ratio of the exact result to the small angle approximate result

yields a simple correction factor giving an improved simple

formula,

Sz = (1 − θ2
0 /4) × (0.3106 cos2 θ0 − 0.6818 cos θ0 + 1.3696),

(9)

which is accurate to better than 0.006h̄ per photon.

Although the spin angular momentum flux of the beam

is reduced by the beam being focused, a lossless rotationally

symmetric optical system cannot change the total angular

momentum flux of an electromagnetic field (Waterman 1971,

Nieminen 2004). Therefore, there must be a corresponding

increase in the orbital angular momentum. This is in

remarkable contrast to the usual methods of generating optical

vortices which employ astigmatic or cylindrical lenses or

holograms designed to break the rotational symmetry. The

key difference is that orbital angular momentum generation

by focusing depends on the initial presence of spin angular

momentum, whereas astigmatic systems do not.

An interesting question that remains to be answered is

in what way the focused beam carries the orbital angular

momentum. This is best addressed by considering a

rigorous electromagnetic model of the beam. Orbital angular

momentum about a beam axis is typically associated with

an optical vortex, and accompanied by an azimuthal flow of

energy.

2.1. Multipole expansion

A time-harmonic electromagnetic beam can be represented as

a sum of of electric and magnetic multipoles:

E(r) =

∞∑
n

n∑
m=−n

anmMnm + bnmNnm (10)

where Mnm and Mnm are the TE and TM regular multipole

fields, or vector spherical wavefunctions (Nieminen et al

2003). Not only are these wavefunctions a complete

orthogonal set of divergence-free solutions of the vector

Helmholtz equation (and hence solutions to the Maxwell

equations), they are also eigenfunctions of the angular

momentum operator J 2, with eigenvalues [n(n + 1)]1/2, and

Jz , with eigenvalues m. The spin and orbital contributions

to the angular momentum can be calculated from the

expansion coefficients anm and bnm (Crichton and Marston

2000, Nieminen et al 2007). The reader interested in the

mathematical details and derivation should refer to Crichton

and Marston (2000).

The only non-zero multipole coefficients for a left-

circularly polarized rotationally symmetric beam are those

with m = 1. Thus, the total angular momentum about the

z axis is h̄ per photon. The multipole expansion coefficients

for the beam can be determined by an overdetermined point-

matching method (Nieminen et al 2003). For a beam of finite

width, it is found that the total spin is less than h̄ per photon

(spin calculated in this way exactly reproduces the curve in

figure 2). The remainder of the angular momentum is orbital.

Since the multipole expansion of the beam is known,

the fields can be calculated at any point in space. The

components of the electric field in the focal plane are shown

in figure 3. For a strongly focused beam such as is shown

in figure 3, the longitudinal (i.e. z) component of the field

is significant, with a magnitude of ≈0.3 times the transverse

components. All components of the electric field show

secondary diffraction rings (the radial dependence of multipole

fields includes a spherical Bessel function). The phases of the

x and y components are uniform, except for an increment of

π between successive diffraction rings, and, due to the circular

polarization, differ by π/2 from each other. The phase of the

z component, however, shows a clear azimuthal dependence

identical to that seen in l = 1 paraxial vortex modes. Since

this vortex behaviour is only possessed by the longitudinal

component of the field, this can be called a longitudinal optical

vortex.

Calculation of the time-averaged Poynting vector (see

figure 4) shows that there is indeed a transverse component,

which, since its handedness is uniform, is responsible for the

transport of the orbital angular momentum.

So far, we have only considered the vector components

of the complex amplitude of the electric field. Calculation

of the instantaneous energy density of the beam yields

a striking demonstration of the azimuthal energy flow;

this is shown in figure 5 and movie 1 (available at

stacks.iop.org/JOptA/10/115005). Instantaneously, the beam

has the same fields in the focal plane as a plane polarized beam,

and therefore, if tightly focused, shows the expected elongation
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Figure 3. Electric field components of a strongly focused circularly polarized Gaussian beam, with a convergence angle of 45◦. The x , y, and
z components of the electric field in the focal plane are shown in (a), (b), and (c), while (d) shows phase contours (with a spacing of 2π/20)
for the z component, showing azimuthal variation of phase as seen in vortex beams.
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Figure 4. Poynting vector of a strongly focused circularly polarized
Gaussian beam, with a convergence angle of 45◦. The transverse part
(x and y components) of the Poynting vector in the focal plane are
shown.

of the focal spot along the direction of the electric field. As

this elongated focal spot rotates at the optical frequency, this

shows that there is an unambiguous azimuthal flow of energy.

This movement of field energy is accompanied by a momentum

flux (Umov 1950, Nieminen et al 2007), which in this case is

azimuthal about the beam axis, and therefore results in orbital

angular momentum about the beam axis.

As the beam is more strongly focused, the magnitude of

the longitudinal (z) component of the field increases, and the

orbital angular momentum increases as a result. The same

increase can also be considered to result from the decrease of

spin angular momentum, along with the conservation of total

angular momentum. The change in the angular momentum

and the growth of the longitudinal optical vortex is smooth

and well behaved as the convergence angle of the beam is

increased, with no sudden qualitative or quantitative changes.

As the beam is more strongly focused, the diffraction rings also

become more prominent, but this does not affect the angular

momentum of the beam.

3. Discussion

3.1. Coupling between spin and orbital angular momenta

Due to the dependence of orbital angular momentum density

on the choice of origin about which moments are taken, and

the independence of spin density on this choice, the conversion

of spin to orbital angular momentum must be accompanied

by a torque. Therefore, conversion from one type of angular

momentum to the other cannot occur in free space, or in media

which can be electromagnetically represented by a uniform

scalar permittivity. At the interface between two media, such

as, for example, the surface of a lens, coupling between spin

and orbital angular momenta can occur.

Bomzon et al (2006) claimed that the angular momentum

per photon actually increases when a circularly polarized beam

is focused. However, this apparently paradoxical result simply

further demonstrates the incorrectness of the expression used

for the angular momentum flux.

4
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Figure 5. Instantaneous energy density of a strongly focused circularly polarized Gaussian beam, with a convergence angle of 45◦.
The energy density in the focal plane is shown, and clearly demonstrates the rotation of the beam. See movie 1 (available at
stacks.iop.org/JOptA/10/115005) for an animation.

(This figure is in colour only in the electronic version)

More recently, Zhao et al (2007) have also stated that

spin-to-orbital conversion can occur in a homogeneous and

isotropic medium, in the context of a tightly focused optical

vortex beam. Again, this cannot be the case, since no torque

can act on the medium. The conversion does not occur within

the homogeneous medium, but when the beam is focused by

the lens—at the interfaces between the various media, where

the media concerned are inhomogeneous.

In more general media, where a torque can be exerted,

conversion between spin and orbital angular momenta may be

possible. For example, Marrucci et al (2006) have considered

such conversion in inhomogeneous anisotropic media.

To achieve the special case of conversion between spin

and orbital angular momenta while maintaining a constant total

angular momentum flux, the total torque must be zero, despite

the torque density being non-zero.

3.2. Torque density acting on lens

In light of the above considerations, the transformation of

spin angular momentum to orbital angular momentum by the

lens must result in a reaction torque density about the z-

axis acting on the lens that depends on the choice of origin.

While, as noted above, such a torque acting on empty space

is unacceptable on physical grounds, it is not only entirely

reasonable, but expected, in the case of a lens.

One need only to consider a simple ray picture of the

action of a lens where the z-axis and the axis of the lens do

not coincide. If we choose a z-axis parallel to the lens axis,

but laterally displaced from it, incident rays will be parallel to

the z-axis, but the focused rays will generally not pass through

the z-axis. Thus, each focused ray carries orbital angular

momentum about the z-axis, while the incident rays do not.

Consequently, there must be a reaction torque density acting

on the lens; this torque density depends on the choice of origin.

The component about any axis parallel to the beam axis of the

total torque acting on the lens is, of course, zero.

3.3. Rotation in optical traps

The presence of orbital angular momentum in the focal region

suggests that orbital motion of absorbing or reflective spherical

5
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particles should be observable in optical tweezers. However,

since particles trapped in a Gaussian beam trap will be located

on the beam axis, all that will be observed will be spinning

of the particle about its axis. In order to observe this orbital

angular momentum, it would be necessary to use a multiringed

beam with initial zero orbital angular momentum, for example

a Laguerre–Gauss mode LGp0, with p > 1, or a Bessel beam,

as the input to the objective lens of the trap. In this case,

particles trapped in one of the rings rather than the central spot

can be expected to undergo orbital motion.

An experiment intended to measure the conversion of spin

to orbital angular momentum has been carried out by Zhao

et al (2007), who reported an observed effect. However, since

they used an LG01 beam, initially carrying h̄ orbital angular

momentum per photon as well as spin due to its polarization,

the results are not as unambiguously clear as they would have

been had the beam had an initial orbital angular momentum

of zero. However, their work does appear to be a valid

experimental detection of this effect.

4. Conclusion

We note that focusing a circularly polarized beam preserves

the total angular momentum flux of the beam about its axis.

However, the spin component of the angular momentum flux

is necessarily reduced as the beam is more strongly focused.

Due to the conservation of total angular momentum when the

beam is focused by a rotationally symmetric optical system,

there must be a corresponding increase in the orbital angular

momentum flux. This result is remarkable in that it predicts

the generation of orbital angular momentum by a rotationally

symmetric optical system, in apparent contradiction with

common expectation.

This orbital angular momentum is associated with the

axial component of the electric field, Ez , which has the typical

exp(iφ) dependence of charge 1 optical vortices; we call this a

longitudinal optical vortex.
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