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ABSTRACT

We present self-consistent numerical simulations of the Sun’s convection zone and radiative interior using a two-
dimensional model of the solar equatorial plane. The background reference state is a one-dimensional solar structure
model. Turbulent convection in the outer convection zone continually excites gravity waves that propagate through-
out the stable radiative interior and deposit their angular momentum. We find that angular velocity variations in the
tachocline are driven by angular momentum transported by overshooting convective plumes rather than nonlinear
interaction of waves. The mean flow in the tachocline is time dependent but not oscillatory in direction and not like a
quasi-biennial oscillation (QBO). Since the forcing in this shallow region cannot be described by simple linear waves,
it is unlikely that the interaction of such waves is responsible for the solar cycle or the 1.3 yr oscillation. However, in
the deep radiative interior, the interaction of low-amplitude gravity waves, continually excited by the overshooting
plumes, is responsible for the angular velocity deviations observed there, which do resemble a very low amplitude
QBO. Near the center of the model Sun the angular velocity deviation is about 2 orders of magnitude greater than that
in the bulk of the radiative region and reverses its direction (prograde to retrograde or vice versa) in the opposite sense of
the angular velocity deviations that occur in the tachocline. Our simulations thus demonstrate how angular velocity
variations in the solar core are linked to those in the tachocline, which themselves are driven by convective overshooting.

Subject headinggs: convection — Sun: interior

1. INTRODUCTION

Internal gravity waves are ubiquitous in nature. Their influence
can be observed in striated cloud structures in our own atmosphere
many days of the year. In addition to the visual display of these
waves in our atmosphere, they have other more profound conse-
quences. The interaction of gravitywaveswith angular velocity shear
produces the quasi-biennial oscillation (QBO), which dominates
variability in the equatorial stratosphere and affects ozone levels.

Gravity waves have been invoked to explain several physical
problems in stellar interiors, such as (1) providing the extra mix-
ing required to solve the Li depletion problem in F stars (Garcia-
Lopez & Spruit 1991) and in the Sun (Montalban 1994), (2)
increasing turbulent mixing and affecting the solar neutrino pro-
duction (Press 1981), (3) maintaining the solid body rotation of
the Sun’s radiative interior (Schatzman 1993; Zahn et al.1997;
Kumar & Quataert 1997), and (4) controlling the solar cycle
(Kumar et al.1999, hereafter KTZ99). Internal gravity waves
have also been studied in binary stars (Zahn 1975; Goldreich &
Nicholson 1989) and have been used to explain the orbital prop-
erties of those star systems (Terquem et al. 1998). These theories,
however, are only as good as the poorly understood excitation and
evolution of gravity waves in stellar interiors. What gravity wave
spectra and amplitudes are generated? How effectively do gravity
waves transport angular momentum and mix species?

Some confusion has existed. For example, although gravity
waves were postulated to extract angular momentum from the
solar radiative interior and so enforce solid body rotation (Zahn
et al.1997; Schatzman 1993; Kumar & Quataert 1997), it was
quickly pointed out (Gough &McIntyre 1998; Ringot 1998) that
gravity waves tend to enhance local shear rather than smooth it.

Recognizing this antidiffusive nature of gravity waves in shear
flows, several authors published papers postulating an angular

velocity oscillation at the base of the solar convection zone
analogous to the QBO in the Earth’s stratosphere (Baldwin et al.
2001). In KTZ99, a spectrum of gravity waves generated by the
overlying convection is prescribed (adapted from Goldreich et al.
1994). This spectrum is then integrated to give a flux of angular
momentum that is transferred from the waves to the mean flow,
resulting in a periodic oscillation of angular velocity at the base of
the convection zone with a timescale of about 20 yr. In another
paper (Kim & MacGregor 2001) a two wave model is assumed:
one prograde propagating wave with a prescribed angular mo-
mentum flux, and one retrograde wave with another (negative)
prescribed flux. In addition, these authors include viscous dissi-
pation in the evolution equation for the mean flow and find that
the nature of the resulting angular velocity oscillation depends
sensitively on the value of the assumed viscous diffusivity. For
large viscous diffusivity a steady solution is found, whereas for
small values a chaotic oscillation is found. A periodic solution is
recovered only for intermediate values of the viscous diffusivity.
More recently, the KTZ99 model has been extended to show

that the oscillating shear layer at the base of the convection zone
acts as a filter on the low-frequency short-wavelength waves
(Talon et al. 2002; Talon & Charbonnel 2005). In their theory,
the filter preferentially damps prograde waves, allowing predom-
inantly retrograde waves, which carry negative angular momen-
tum, into the deep interior.When thesewaves dissipate they transfer
their negative angular momentum to the flow, and therefore effec-
tively extract prograde angular momentum from the low-latitude,
deep-solar interior, leading to solid body rotation in the solar ra-
diative zone.
The major shortcoming of both of these models is twofold.

First, neither model self-consistently calculates the generation of
the gravity waves by the solar convection zone. In KTZ99 a
spectrum and amplitude of gravity waves is assumed, a spectrum
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that is unfortunately untestable with observations and has not
been reproduced in numerical simulations. In addition, this spec-
trum neglects the production of gravity waves by overshooting
plumes. Second, and perhapsmore importantly, neithermodel cal-
culates the nonlinear wave-wave interactions (Reynolds stresses),
which contribute to the mean flow (see eq. [1], first term on right
hand side). In the past this nonlinear interaction has been pre-
scribed as a flux that is a function of height (KTZ99 and subse-
quent papers; Kim & MacGregor 2001); in the present work we
self-consistently and explicitly calculate this nonlinear interaction
rather than parameterizing it.

Here we present numerical simulations that address both of
these issues. Our model solves the fully nonlinear Navier-Stokes
equations in both the convective and radiative regions. Therefore,
the gravity waves are self-consistently generated by an overlying
convection zone, and the nonlinear terms are retained in the ra-
diation zone to account for the nonlinear wave interactions that
affect the mean flow.

2. WAVE-SHEAR FLOW INTERACTIONS

In this section we briefly review the hydrodynamic process by
which waves can transport their angular momentum to the flow in
which they travel. The natural example of this process is theQBO.
For amore complete discussion of theQBO see, e.g., Baldwin et al.
(2001), Lindzen (1990), and Holton (1994).

For simplicity consider the Boussinesq equations for a viscous
fluid in two-dimensional Cartesian (x-z) coordinates, x being the
horizontal coordinate and z the vertical coordinate. After decom-
posing the horizontal velocity intomean flow (U , a function of z)
and fluctuating (u’) components and taking the proper horizontal
average, the equation for the mean horizontal velocity becomes

@U

@t
¼ �

@u0w0

@z
þ �

@ 2U

@2z
: ð1Þ

In equation (1), u0 represents the fluctuating horizontal velocity
andw0 represents the fluctuating vertical velocity. This simple equa-
tion represents how small scale wave-wave interactions (Reynolds
stresses) influence the mean flow (U ). The only way a nonaxisym-
metric wave can transport angular momentum to the axisymmetric
mean flow is by a nonlinear interaction, i.e., the convergence of the
u0w0 flux,which requireswave attenuation (such as radiative damp-
ing or critical layers).

In the presence of differential rotation the picture becomesmore
complicated. In a rotating fluid, waves generated at a particular fre-
quency are Doppler-shifted away from that frequency according
to the equation

!(r) ¼ !gen þ m �gen � �(r)
� �

; ð2Þ

where m is the horizontal wavenumber, !gen is the frequency at
which the wave is generated in the frame rotating at�gen, and!(r)
is the frequency measured relative to the local rotation rate �(r).

Where �(r) > �gen prograde waves (m > 0) are shifted to
lower frequencies, and retrograde waves (m < 0) are shifted to
higher frequencies. Since radiative damping is strongly frequency
dependent (damping length / !4), prograde (lower frequency)
waves are damped in a shorter distance than retrograde (higher fre-
quency)waves. This differential damping causes progradewaves to
deposit their (positive) angular momentum closer to the gener-
ation site than retrograde waves deposit their (negative) angular
momentum, thus leading to a double-peaked shear layer. As
prograde (retrograde) waves continually deposit their positive
(negative) angular momentum, the amplitude of the angular

velocity shear increases. This increased shear causes prograde
waves to be shifted to ever smaller frequencies that are damped
even closer to the generation site. In this way the peak in the
prograde layer moves toward the source of the waves. When the
prograde shear becomes sufficiently steep it is broken down by
viscous diffusion leaving behind the retrograde layer. This process
repeats, with the period of the process inversely proportional to the
wave forcing. The prominent features of this physical process are
then threefold: (1) prograde flow lies above retrograde motion (or
vice versa), i.e., a double-peaked shear, (2) this pattern propagates
toward the generation site, and (3) the oscillation period is distinct
from the forcing timescale.

This physical picture was proposed initially by Lindzen &
Holton (1968) and Holton & Lindzen (1972) to explain the QBO
observed in the Earth’s atmosphere. Later, the physical theory
was tested in the remarkable experiment by Plumb & McEwan
(1978), and the basic physical mechanism was recovered. It has
also been suggested that an oscillation similar to the QBO occurs
in Jupiter’s atmosphere (Leovy et al. 1991), coined the quasi-
quadrennial oscillation (QQO) because of its 4 year period.

The robustness of this mechanism led astronomers to hypoth-
esize that the same physical mechanism could be operating in the
solar tachocline (KTZ99; Kim & MacGregor 2001; Talon &
Charbonnel 2005). This could then provide a handsome explana-
tion for oscillations at the base of the convection zone, whether
on 20 yr timescales (as in the dynamo, KTZ99) or 1 yr timescales
(as in the 1.3 yr oscillation, Kim&MacGregor 2001).We review
this mechanism here, so that comparisons between this process
and the zonal flow oscillations seen in the radiative region of our
model can be clearly made.

3. NUMERICAL MODEL

The numerical technique and model setup are identical to
those in Rogers & Glatzmaier (2005), except here we impose the
equatorial rotation profile as a function of radius as inferred from
helioseismology [�(r) is specified to be 465 nHz in the convec-
tion zone, 435 nHz in the stable region, and the tachocline is fit to
an error function]. We solve the Navier-Stokes equations with ro-
tation in the anelastic approximation in two-dimensional (2D) cy-
lindrical geometry (r, � ). The curl of themomentum equation, i.e.,
vorticity equation, is

@!

@t
þ v = :ð Þ! ¼ 2�(r)þ !½ �h�vr � 2vr

@�(r)

@r

�
g

Tr

@T

@�
�

1

�Tr

@T

@r

@p

@�
þ �92!: ð3Þ

The heat equation is

@T

@t
þ (v = : )T ¼ � vr

@T

@r
� (� � 1)Th�

� �

þ (� � 1)Th�vr

þ �� 9
2T þ (h� þ h�)

@T

@r

� �

þ �� 9
2T þ (h� þ h�)

@T

@r

� �

þ
Q

c
v

: ð4Þ

In these equations, v is the velocity, with radial, vr, and lon-
gitudinal, v�, components. The vorticity is w ¼ : < v and is
normal to the equatorial plane in this 2D geometry. The func-
tions h� ¼ d ln �/dr, h� ¼ d ln �/dr, g (gravity), T (temperature),
� (density), and � (ratio of specific heats, cp/cv) are radially
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dependent and taken from a standard solar model (J. Christensen-
Dalsgaard 2006, private communication); T is the temperature
perturbation and p is the pressure perturbation, which like !, are
functions of r, �, and time (t). Note in equation (4) that

@T

@r
� (� � 1)Th� � �

g

R
:�:adð Þ; ð5Þ

where R is the gas constant.
In our model we specify the thermal diffusivity as that given by

the solar model multiplied by a constant for numerical stability

� ¼ km
16�T

3

3�2kcp
: ð6Þ

Here km is generally set to 105, � is the Stefan-Boltzman constant,
and k is the opacity. The viscous diffusivity � ¼ �/�, is set so that
the dynamic viscosity (�) is constant (1011 g cm�1 s�1). These val-
ues for the diffusivities give aRayleigh number (=g��9TD4/��)
that varies from 108 at the base of the convection zone to 107 at the
top of the convection zone. Similarly, the Prandtl number varies
from 10�3 in the radiative core to 10�2 at the top of the convection
zone. The viscous diffusivity varies from 109 cm2 s�1 in the radia-
tive core to 1013 cm2 s�1 at the top of the convection zone, while
the thermal diffusivity varies from 109 cm2 s�1 at the solar core to
1012 cm2 s�1 at the base of the convection zone, where it subse-
quently drops again with radius (the same variation in height as
the standard solar model). As in all solar convection simulations,
these large viscous and thermal diffusivities are considered tur-
bulent diffusivities representing the transport and mixing done by
the unresolved (subgrid scale) motions.

We calculate the pressure term in (3) using the longitudinal
component of the momentum equation

1

�r

@p

@�
¼ �

@v�

@t
� (v = :v)� þ � (92

v)� �
h�

3r

@vr

@�

� �

: ð7Þ

These equations are supplemented by the continuity equation in
the anelastic approximation

: = �v ¼ 0 ð8Þ

that is satisfied by expressing �v as the curl of a stream function.
The model extends from 0.001 to 0.93 R�. The subadiabaticity
(:�:ad) in the radiative region is given by the solar model, and
we specify the superadiabaticity in the convection zone to be 10�7.

These equations are solved using a Fourier spectral transform
method in the longitudinal (�) direction and a finite difference
scheme on a nonuniform grid in the radial (r) direction. Time
advancing is done using the explicit Adams-Bashforthmethod for
the nonlinear terms and an implicit Crank-Nicolson scheme for the
linear terms. The boundaries are impermeable and stress free. The
inner boundary is isothermal and the outer boundary is held at a
constant heat flux. This code is parallelized using message pass-
ing interface (MPI) and the resolution is 2048 longitudinal zones ;
1500 radial zones, with 620 radial zones dedicated to the radiative
region. In the region just below the convection zone the radial res-
olution is 170 km. This model was evolved for 1 simulated yr,
requiring nearly six million 5 s time steps.

4. GRAVITY WAVE GENERATION AND PROPAGATION

Internal gravity waves are self-consistently generated at the
convective-radiative interface and subsequently propagate into
the stable radiative interior, where they are either dissipated (via

radiative damping, critical layer absorption, or wave breaking)
or set up standing waves. The wave spectrum has been discussed
in detail in Rogers & Glatzmaier (2005) and we discuss it here
only as a brief introduction. Figure 1 shows the power spectrum
of waves at the convective-radiative interface after approximately
10 months of integration.1 Power is broadly distributed in fre-
quency and horizontal wavenumber at the interface. This spec-
trum is not concentrated at the convective turnover frequency,
showing significant energy both well below that frequency (down
to our minimum calculated frequency of 1 �Hz) and well above.
Relative to analytic models this means that momentum deposition
in our model occurs over a wider range of depths.
The downward flux of kinetic energy for horizontal modem ¼

1 at the convective-radiative interface is compared to the ana-
lytically derived flux in KTZ99 (eq. [27] their paper, normalized
using their Fig. 2) in Figure 2. We compare the flux at values of
frequency divided by the convective turnover frequency because
of the different values for turnover frequency achieved in each
model.2 As can be seen in Figure 2, our model predicts signifi-
cantly lower kinetic energy flux atm ¼ 1, but that flux is distributed
rather uniformly in frequency relative to the large frequency drop
assumed in KTZ99. An integration over all frequencies and
wavenumbers yields a vertical kinetic energy flux similar to that
estimated previously in several works, namely Fwaves ¼ FTM,
where Fwaves is the vertical kinetic energy flux at the base of the
convection zone,FT is the total flux through the system, andM is
the Mach number for the convective motions.

5. CONVECTION ZONE AND TACHOCLINE

5.1. Angular Velocity Variations

Helioseismic observations indicate that, in the equatorial
plane, the convection zone spins faster than the radiative interior.

Fig. 1.—Power spectrum (cm2 s�2) of gravity waves just beneath the con-
vection zone. Energy is broadband in both frequency and wavenumber. Note that
any frequency/wavenumber combination with power greater than 10 cm2 s�2 is
represented as white.

1 Note that this spectrum is slightly different than that shown in Rogers &
Glatzmaier (2005) because of the imposed differential rotation at the tachocline.

2 Because of our increased thermal diffusivity, the convective velocities here
are larger, leading to a convective turnover frequency of around 10 �Hz, while
KTZ99 assume convective turnover frequencies of around 0.1 �Hz.
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The maintenance of differential rotation within the equatorial
plane of the convection zone is a three-dimensional (3D) process
involving the transport of angular momentum in both radius and
latitude, and the Coriolis forces resulting from axisymmetric
meridional circulation. Since our 2D geometry captures only the
transport in radius, we cannot expect to achieve a realistic differ-
ential rotation profile with the 2D model. Therefore, we impose
the observed equatorial angular velocity as a function of radius
in our model. As mentioned above, the background angular ve-
locity is set to a constant 465 nHz in the convection zone and to a
constant 435 nHz in the radiation zone; we prescribe a smooth fit
between these two values through the thin tachocline shear layer.
The resulting gravity-wave spectrum and angular momentum
transport is then investigated.

The time series of angular velocity �
0(r; t) relative to the

prescribed background angular velocity �(r) for this model is
shown in Figure 3 over 1 simulated year. As seen in this figure,
angular velocity in the convection zone is initially prograde,
relative to the prescribed�(r), in the lower part of the convection
zone and retrograde motion in the upper part. However, after this
initial adjustment period, angular velocity becomes very time de-
pendent and is predominantly retrograde in the lower part of the
convection zone and prograde in the upper part. This profile per-
sists for the last 8 months of integration, and is expected given
the density stratification and rotation of the solar interior. Within
the convection zone vorticity is locally generated by plumes ris-
ing and sinking from the boundaries. The angular momentum
transport from this process and the resulting angular velocity is
ultimately dictated by the density stratification (G. A. Glatzmaier
et al. 2007, in preparation). The density stratification in the Sun,
with smaller density scale height in the outer convection zone than
in the inner convection zone, leads to predominantly retrograde

Fig. 2.—Energy flux (ergs cm�2 s�1) beneath the convection zone for the
numerical simulation presented here (solid line) and from analytic predictions
(dotted line; KTZ99). The flux is plotted as a function of frequency ! divided by
the typical convective turnover frequency Nc for a more direct comparison. The
numerical simulation yields a much lower amplitude flux which is distributed
rather uniformly in frequency relative to that predicted analytically. The nu-
merical spectrum is not peaked at the convective turnover time. Note that while
our numerical simulation produces frequencies 10 times smaller than the con-
vective turnover frequency, we do not plot them here because the KTZ99 model
does not generate them.

Fig. 3.—Angular velocity variations. Top: Angular velocity variations rela-
tive to the prescribed solar profile as a function of time and radius. Red represents
prograde motion while blue represents retrograde motion. The black line repre-
sents the convective-radiative interface. Variations are shown in nHz. Bottom:
Angular velocity variation as a function of time at the convective-radiative in-
terface. The dotted line represents zero fluctuation about the mean. Note that the
first �4 months are an initial adjustment stage.

Fig. 4.—Ratio of fluid velocity to the phase velocity (for a typical frequency
and wavenumber), also known as the Froude number, a measure of the nonlin-
earity of the waves. This figure shows that motions are clearly nonlinear in the
tachocline and the core.
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flow at the base of the convection zone and prograde motion near
the top. This convective process dictates the nature of the motions
generated at the convective-radiative interface and subsequently
in the tachocline.

Intermittently, prograde motion from the top of the convection
zone will extend to the base of the convection zone and overshoot
into the tachocline. The angular velocity variations produced by
these motions vary in amplitude between�15 nHz, slightly larger
than the amplitudes of the observed 1.3 yr oscillation3 (Howe
et al. 2001). Figure 3 (top) clearly shows that the angular velocity
of the tachocline mimics the behavior in the lower part of the con-
vection zone; when the lower convection zone is prograde, the
tachocline is prograde and vice versa. This is an indication that the

behavior of the tachocline is dictated by convection zone dynam-
ics, rather than by gravity waves (see below).
In the overshoot region fluid motions are strongly nonlinear

(Rogers &Glatzmaier 2005). Figure 4 shows the ratio of the hor-
izontal fluid velocity to the horizontal phase speed (the Froude
number) for a typical frequency and wavenumber (20 �Hz, m ¼
10); this provides a measure of the nonlinearity of waves. For
linear waves ux/cxT1. However, as is clearly seen in Figure 4,
this criterion does not hold just below the convection zone.
While only one ratio is shown as a function of radius, this can
vary by an order of magnitude depending on the choice of fre-
quency andwavenumber.4However, using reasonable values for
frequency and wavenumber, the smallest value of this ratio just

3 These amplitudes are similar to those found in Talon et al. (2002). This
similarity is likely due to the fact that the integrated energy transferred to the
stable region is similar in the two models, although the spectrum is different.

Fig. 5.—Convergence of the mean Reynolds stress, viscous stress, and the sum @U /@t, over a 5 day period in both the convection zone (top) and overshoot region
(bottom; enlarged in radius by a factor of 3.5 relative to the top row). A semiperiodic oscillation is seen both in the convection zone and overshoot region. This oscillation
causes an oscillation in the amplitude (but not direction) of the mean zonal flow seen in Fig. 3. Note that any mean Reynolds stress, viscous stress, or sum that has a
magnitude greater than 10�10 cm s�2 is represented as red. Similarly, any value with a magnitude less than�10�10 cm s�2 is represented as blue. Therefore, the color scale
does not distinguish the very small differences between the highest prograde and retrograde amplitudes.

4 For larger (smaller) values of the horizontal wave mode number this ratio is
larger (smaller). Similarly, for larger (smaller) frequencies this ratio is smaller ( larger).
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below the convection zone is 0.1, still far from meeting the
linearity criterion above. Furthermore, it is clear in this figure
that linearization may not be justified in the solar core either, as
suggested by Press (1981).

The typical properties of a wave-driven oscillation are missing
in the tachocline in Figure 3 (top). There is no sign of a double-
peaked shear layer with retrograde motion underlying the pro-
grade (or vice versa). The disturbances in angular velocity do not
move upward (toward the source) in time, and the motions in this
region do not have different timescales than their source (the
convection zone). There appears to be no QBO-like oscillation.

5.2. Reynolds and Viscous Stresses

The mean zonal flow is determined by a balance between
viscous andReynolds stresses (as seen in eq. [1]). In order to better
understand the angular velocity profile in time (as shown in Fig. 3)
we examine the sources of that balance. Figure 5 shows the hor-
izontally averaged convergence of Reynolds stress (first term on
the right hand side of eq. [1], but now in cylindrical coordinates),
the viscous stress (second term on the right hand side of eq. [1], in
cylindrical coordinates), and the sum of these (the time rate of
change of themean zonal flowU ) in both the convection zone and
overshoot region over 5 days.

In themodel’s convection zone, the Reynolds stresses aremuch
larger than the viscous stresses. The pattern of Reynolds stress con-
vergence has a semiperiodic behavior with disturbances propagat-
ing up and down from a radius near 1/3 dcz (dcz is the convection
zone depth). When positive (i.e., prograde) Reynolds stress con-
vergence moves upward from this radius a negative value moves
downward and vice versa. This process reverses with a frequency
similar to the convective turnover frequency, roughly twice the
solar rotation rate. This oscillatory behavior is observed in our
simulations only when we include a radiative region beneath the
convection zone; we do not see it when we impose an imper-
meable lower boundary on the convection zone.Note also that this
radius of 1/3 dcz is approximately where v� for the large eddies
changes sign, and below which smaller, counterrotating cells

exist. Figure 6 shows a zoomed-in region of the convection zone,
displaying the vorticity within a few convective cells (red and
green are counterclockwise rotating eddies, and blue are clock-
wise). Beneath the large cells spanning most of the convection
zone is counterrotating fluid that is driven by the retrograde tilted,
downwelling plumes penetrating slightly into the stable overshoot
region. As a plume rebounds it is diverted laterally exciting
counterrotating eddies adjacent to it. It remains to be seen how
these counterrotating cells affect tachocline dynamics in a 3D
simulation.

Now consider the overshoot region in our model. Regions
with positive or negative Reynolds stress convergence in the lower
convection zone correspond to the same signed disturbances in the
overshoot region. These disturbances have a slight tendency to
propagate downward, i.e., away from their source in the convection
zone.When viscous terms are added (which in the overshoot region
havemagnitudes similar to the Reynolds stress terms), disturbances
clearly propagate away from the convection zone (Fig. 5). Thismo-
tion away from the convection zone is also seen in Figure 3, and
is due to diffusion away from the source.5

A semiperiodic oscillation in @U /@t is observed both within
the convection zone as well as in the overshoot region (Fig. 5).
However, this oscillation mainly affects the amplitude of U ,
usually not changing its direction (Fig. 3). This is because retro-
grade motions have a (very) slightly larger amplitude than pro-
grade motions. The asymmetry between prograde and retrograde
amplitudes in the overshoot region could arise from asymmetrical
driving by the convection zone or by wave damping in the pres-
ence of differential rotation. There are several arguments that
favor asymmetric driving by the convection zone. First, an os-
cillation in the sign of @U /@t is observed within the convection
zone, without a corresponding sign oscillation in U . Second, the
radial differential profile set up in the convection zone favors
retrograde motion near the base of the convection. Finally, mean

Fig. 6.—Zoom in of vorticity in the convection zone in the equatorial plane
viewed from the northern hemisphere. Large cells span the bulk of the convection
zone with counterrotating cells beneath due to the deflection of descending
plumes as they encounter the stiff radiative region. Red and green are counter-
clockwise rotating eddies, and blue is clockwise.

Fig. 7.—Angular velocity variations in the deep interior. Banded radial dif-
ferential rotation is seen here. The deviations in the core are 2Y3 orders of
magnitude larger than those in the bulk of the radiative interior. There appears to
be a link between deviations in the core and those in the tachocline (see Fig. 3).

5 Even if diffusion were neglected the disturbances do not move upward as in
the QBO.
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Reynolds stresses in the overshoot region are visibly linked to
similarly signed stresses in the convection zone, i.e., they do not
have different magnitudes or periods that one would expect if
they were due to differential wave damping.6 For these reasons,
and because there is no physical justification for symmetric driv-
ing, we conclude that prograde and retrograde motions in the over-
shoot region are asymmetrically driven by the convection zone.

There is clearly a strong correlation between Reynolds stresses
(Fig. 5) and mean angular velocity (Fig. 3) at the base of the con-
vection zone and in the overshoot region. This connection pro-
vides a convincing argument that angular velocity disturbances
in the overshoot region and tachocline (at least the top of the
tachocline) are driven by convective processes. Furthermore, the
absence of the main properties of a wave driven oscillation (mo-
tion toward the generation site in time, timescales different than
the forcing timescales, and a double-peaked shear layer) indicate
that these processes are not dominant in the overshoot region.
Given the spatially and temporally dependent filter on waves ex-
cited by these overshooting motions, it is unlikely that a coherent

double-peaked shear layer could ever develop in the shallow region
just below the convection zone, although this process may de-
velop deeper down (see xx 6 and 7). It appears that overshooting
plumes themselves transport angular momentum in a way that is
distinct from the nonlinear interaction of low-amplitude waves
that produces a shear layer oscillation. These plumes are buoy-
antly braked and radiatively damped, and their nonlinearity al-
lows for mode-mode transfer which affects the damping rate. The
transport is time dependent and depends critically on convection
zone dynamics. Therefore, it may be quite difficult to quantita-
tively predict the behavior in this region without more realistic
3D simulations. However, these 2D simulations do suggest that
the tachocline dynamics cannot be characterized as a nonlinear
interaction of infinitesimal waves.

6. THE DEEP INTERIOR AND CORE

A banded radial differential rotation profile is observed deep
within the radiative interior (Fig. 7). However, the amplitude of
the angular velocity variation is extremely low (0.02 nHz) rela-
tive to what it is in the convection zone and overshoot region. This
radial shear grows in time (Fig. 8) due to wave-wave interactions
which enforce shear. However, there is some indication that the

Fig. 8.—Time evolution of angular velocity variations. Some indication of a reversal is underway in the bulk of the radiative interior between 223 days and 348 days. In
the core there was clearly a reversal, which Fig. 7 tells us was around 130 days.

6 We have also run a model with no imposed differential rotation which
produces the same asymmetry, further corroborating our conclusion.
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growth is slowing and possibly reversing (Fig. 8) due to increased
viscous diffusion as angular velocity gradients increase; however,
we have not run the model long enough for a conclusive reversal.
The banded differential rotation is due to the broad spectrum of
frequencies generated and their continual deposition of angular
momentum due to radiative diffusion as they propagate. Banded
differential rotation in the Sun’s radiative interior has not been
inferred from helioseismology, possibly because the amplitude is
too low, or because these small-amplitude disturbances are easily
neutralized in 3D. In the core of our model the amplitude of the
angular velocity variation is 2Y3 orders of magnitude higher than
in the bulk of the radiative interior. This indicates that angular mo-
mentum transport fromwaves to zonal flow ismore efficient in the
core, which could be due to a number of factors, including wave
breaking, critical layers (where the phase speed of the wave ap-
proaches the mean rotation rate), or inefficient reflection as the
wave frequency approaches the Brunt-Väisälä frequency. Angular
velocity near the center is also enhanced because of geometry.
That is, very little angular momentum deposition is needed at
small radii to produce large changes in the angular velocity there.
However, we find that angular momentum deposition in the cen-
tral region is more than a geometrical effect.

Maxima in the convergence of the mean Reynolds stress deep
within the radiative interior (but a significant distance below the
overshoot region) propagate upward (Fig. 9) like a QBO, as
expected from the nonlinear interaction of low-amplitude waves
(see x 2). In addition, significant interference is seen in the lower
radiation zone, which likely comes from the interaction of in-
ward propagating and outward-reflected waves. While we have
not observed a complete reversal of the angular velocity in the
bulk of the radiative region, there is some evidence that one is
underway (Fig. 8).

The growth timescale for a wave-driven, double-peaked shear
layer is inversely proportional to the total kinetic energy flux in

waves and to the thermal diffusivity (Plumb 1977). In our sim-
ulation the total flux and the thermal diffusivity are larger in the
overshoot region than they are in the deep radiative interior.
Therefore, if a double-peaked shear layer could develop in the
overshoot region it would do so in a shorter time than such a
shear in the deep interior (i.e., in a shorter time than we have
simulated). However, a shear in the overshoot region does not
develop, not because of an insufficient integration time, but be-
cause the angular momentum transport by overshooting plumes
dominates this region. In the core the mean angular velocity
switches from retrograde to prograde at nearly the same time as
the tachocline switches from prograde to retrograde. This sug-
gests that the angular velocity of the core may be linked to the
angular velocity of the tachocline, and hence of the convection
zone. The link between tachocline angular velocity and that of
the core due to selective filtering has been elucidated previously in
Talon et al. (2002). Here we make the link between the tachocline
and the convection zone, and propose that a self-consistent study
of differential rotation in the Sun must not treat the radiative and
convective regions separately.

7. DISCUSSION

Despite some similarity between the convective-radiative
interface in the Sun and the Earth’s tropopause, there are several
obvious differences. In the Sun, convection is constantly driving
gravity waves everywhere below the overshoot region, whereas
the generation of large amplitude gravity waves in the Earth’s at-
mosphere is intermittent in time and space. Solar gravity waves
travel down into a converging region of increasing density,
whereas in the Earth’s atmosphere waves travel up into an ex-
panding region of decreasing density. Furthermore, previous
numerical simulations of convective penetration in a stratified at-
mosphere demonstrate a remarkable difference between pene-
tration into an overlying stable region and penetration into an
underlying stable region (Hurlburt et al. 1986). Penetration into
an underlying stable region is characterized by thin localized
downflows, whereas penetration into an overlying stable region
is characterized by larger scale broad upflows. This asymmetry
allows descending plumes to travel farther into an underlying
stable region than ascending motions travel into an overlying
stable region. Therefore, it is likely that penetrative convection
plays a more crucial role at the base of the solar convection zone
than it does at the Earth’s tropopause. These differences can have
profound effects on the role of overshoot, and hence on the scale,
frequency, and amplitude of the waves generated, and so on the
angular momentum transport by these waves.

Numerical simulations (Wedi & Smolarkiewicz 2006) of the
Plumb-McEwan laboratory experiment attempting to reproduce
the QBO have shown that the type and period of an oscillation in
the differential rotation profile depend sensitively on the forcing.
In particular, it is found that random forcing rarely produces a
periodic oscillation. Given the turbulent nature of the Sun, it is
likely that the forcing is fairly random.

For reasons stated above, it is unlikely that there is a QBO-like
oscillation associated with the solar tachocline where the region
is dominated by convective overshoot. However, QBO-like
oscillations may occur in stars with radiative envelopes because
of the inefficiency of overshoot into an overlying stable region
and because of a more similar geometry.

8. CONCLUSIONS

We have presented self-consistent numerical simulations of
convective overshoot and gravity wave generation, and the an-
gular momentum transport by these processes in a 2D model of

Fig. 9.—Convergence of the mean Reynolds stress in the bulk of the radiative
interior (blue represents negative, red positive values). Disturbances move up-
ward in time as expected from the nonlinear interaction of low-amplitude waves.
Significant interference is seen at smaller radii, probably due to the interaction of
inward propagating and reflected waves.
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the dynamics in the solar equatorial plane. We find that angular
velocity variations in the tachocline are driven by angularmomen-
tum transported by overshooting plumes rather than the nonlinear
interaction of low-amplitude waves. These overshooting plumes
are strongly nonlinear disturbances, which cannot be accurately
represented as an increased flux of low-amplitude waves. We
observe a semiperiodic oscillation in amplitude, but not in direc-
tion, of the mean flow in the tachocline because of an asymmetry
in the driving of prograde and retrograde motions. No QBO-like
oscillation is seen in our simulated tachocline. Since we find that
linear gravity waves are not dominant in the tachocline, it is un-
likely that they are responsible for the 1.3 yr oscillation or the 11 yr
solar cycle. It is no surprise that overshootingmotions play a dom-
inant role in the tachocline, andwe expect these results will persist
in three-dimensions.

In the deep radiative interior the continual deposition of angular
momentum by the nonlinear interaction of gravity waves pro-
duces a radially banded differential rotation. Our 2D simulation
does show indications of a low-amplitude QBO-like oscillation
well below the tachocline. However, it remains to be seenwhether
this pattern persists in 3D, considering its very low amplitude.

In the model’s core, the amplitude of the differential rotation
(i.e., angular velocity relative to the solar rotation rate) is about
2 orders of magnitude larger than that in the bulk of the radiative
region and similar to the magnitude within the convection zone.
We observe retrograde motion in the core reversing to prograde
motion in step with the counterreversal (prograde to retrograde)
at the tachocline. When there is predominantly prograde flow at
the base of the convection zone it selectively filters out prograde
propagating gravity waves, allowing predominantly retrograde
waves to propagate to the core where they deposit their (nega-
tive) angular momentum, and vice versa (Talon et al. 2002). Like
previous results our simulations therefore suggest that the an-
gular velocity variations in the solar core are linked to those in
the tachocline. However, unlike previous results we show here
that the variations in the tachocline are driven by convective

overshooting, therefore linking core rotation to convective
motions.
Unlike one dimensional parameterized models that make huge

simplifications, here we have calculated a 2D model that self-
consistently generates the waves and accurately calculates the non-
linear interaction responsible for angular momentum transport.
However, it is evident that the nature of angular momentum trans-
port by waves depends sensitively on the driving of the waves
and on the angular velocity profile those waves travel through.
The driving of waves will likely depend on the vigor of the fluid
motion, i.e., the Rayleigh and Reynolds numbers, and on the
dimensionality of the problem. It is likely that the frequency
and wavenumber spectra of the excited gravity waves would be
broadly distributed in a 3D turbulent simulation because of the
increased degrees of freedom. As mentioned above, a broad spec-
trummeans a larger range in depth overwhich angularmomentum
is transported. The angular velocity profile just below the con-
vection zone is likely determined by convective overshoot, which
also depends on the dimensionality of the problem. Because of
these dependencies, description of the fluid motion in the radia-
tive interior is a very complex issue that depends on convective
turbulence, overshoot, and nonlinear wave interactions in three
dimensions.
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