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ABSTRACT

We critically examine the constraints on internal angular momentum transport which can be inferred from
the spin-down of open cluster stars. The rotation distribution inferred from rotation velocities and periods is
consistent for larger and more recent samples, but smaller samples of rotation periods appear biased toward shorter
periods relative to v sin i studies. We therefore focus on whether the rotation period distributions observed in
star forming regions can be evolved into the observed ones in the Pleiades, NGC 2516, M 34, M 35, M 37,
and M 50 with plausible assumptions about star–disk coupling and angular momentum loss from magnetized
solar-like winds. Solid-body (SB) models are consistent with the data for low-mass fully convective stars but
highly inconsistent for higher mass stars where the surface convection zone can decouple for angular momentum
purposes from the radiative interior. The Tayler–Spruit magnetic angular momentum transport mechanism,
commonly employed in models of high-mass stars, predicts SB rotation on extremely short timescales of less
than 1 Myr and is therefore unlikely to operate in solar-type pre-main-sequence (pre-MS) and MS stars at the
predicted rate. Models with core–envelope decoupling can explain the spin-down of 1.0 and 0.8 solar mass
slow rotators with characteristic coupling timescales of 55 ± 25 Myr and 175 ± 25 Myr, respectively. The
upper envelope of the rotation distribution is more strongly coupled than the lower envelope of the rotation
distribution, in accord with theoretical predictions that the angular momentum transport timescale should be
shorter for more rapidly rotating stars. Constraints imposed by the solar rotation curve are also discussed. We
argue that neither hydrodynamic mechanisms nor our revised and less efficient prescription for the Tayler–Spruit
dynamo can reproduce both spin-down and the internal solar rotation profile by themselves. It is likely that a
successful model of angular momentum evolution will involve more than one mechanism. Further observational
studies, especially of clusters younger than 100 Myr, will provide important additional constraints on the internal
rotation of stars and could firmly rule out or confirm the operation of major classes of theoretical mechanisms.
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1. INTRODUCTION

Rotation is an important attribute of the life of a star.
When it is fast enough, rotation can trigger various (magneto-)
hydrodynamic instabilities that will drive mixing and angular
momentum transport in the star (e.g., Zahn 1992; Spruit 1999).
Unfortunately, except for the Sun, observations give information
only about surface rotation of stars. Therefore, indirect methods
have to be used to study rotation-driven transport processes in
stellar interiors. When stars reach the main sequence (MS), their
surface response to the torque from a magnetized wind depends
on the timescale for internal angular momentum transport.
If open clusters are treated as an evolutionary sequence, the
assumptions of solid body (SB) and differential rotation (DR)
lead to statistically distinguishable differences in the time
evolution of the distributions of cluster star rotation rates (see,
for example, Keppens et al. 1995; Krishnamurthi et al. 1997;
Allain 1998). At late ages, models also have to be consistent
with the strong coupling evident in the solar internal rotation
profile, with nearly SB rotation in the radiative core down to
∼0.2 R⊙ (Tomczyk et al. 1995; Couvidat et al. 2003).

The prior estimates of the timescale for core–envelope cou-
pling in solar-type stars usually agreed on a short coupling time
of order 1 Myr for the fastest rotators. However, they consid-

1 Current address: Department of Physics, and Astronomy, University of
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erably disagreed on the coupling time for slowly rotating solar
analogs for which the estimated values varied from 10–100 Myr
(e.g., Keppens et al. 1995; Allain 1998) to 0.5 Gyr (e.g., Irwin
et al. 2007). This discrepancy has been caused, on the one hand,
by not carefully treating the selection effects and statistics and,
on the other hand, by making particular assumptions about such
things as the disk-locking time, initial rotation period distribu-
tion, or the relative cluster ages which have since been updated.
For example, the early work assumed that α Per was 50 Myr and
the Pleiades was 70 Myr old (MacGregor & Brenner 1991). In
this work, we apply rigorous methods of statistical analysis to
the most recent large observational data sets on rotation periods
of low-mass stars in open clusters and extensive computational
modeling of their rotational evolution to constrain the timescale
for core–envelope coupling in the slowest rotators.

In this paper, we find that the timescale for core–envelope
coupling depends on both rotation rate and mass, but it is
significantly longer than would be predicted if SB rotation was
enforced on a short timescale. Angular momentum transport
by magnetic torques generated by the Tayler–Spruit dynamo
(Spruit 1999, 2002) does not pass this key test because it
always enforces SB rotation in a solar-type star, no matter
how slowly it rotates. This disagrees with the observational
evidence that slow rotators in young clusters are most likely to
possess DR (their cores rotate faster than their envelopes) rather
than follow the P–age relations computed using SB rotation
models. Furthermore, we show that even a revised prescription
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Table 1

Rotation Period Data

Cluster Age (Myr) Number of Stars in the Sample Source

M/M⊙ � 0.4 0.7 � M/M⊙ < 0.9 0.9 � M/M⊙ � 1.1

ONC 2 32 3 53 Rebull et al. (2004)

NGC 2264 4 13 12 63 Rebull et al. (2004)

Lupus 4 0 2 12 Rebull et al. (2004)

NGC 2362 5 70 46 44 Irwin et al. (2008a)

Tau-Aur 6 0 2 23 Rebull et al. (2004)

NGC 2547 30 94 26 0 Irwin et al. (2008b)

IC 2391 & IC 2602 40 0 8 28 Rebull et al. (2004)

α Per 70 0 8 28 Rebull et al. (2004)

Pleiades 115 0 20 19 Rebull et al. (2004)

Pleiades (v sin i) 115 39 50 51 Terndrup et al. (2000)

M 50 130 163 252 62 Irwin et al. (2009)

NGC 2516 180 183 0 0 Irwin et al. (2008a)

M 35 150 0 154 111 Meibom et al. (2009)

M 34 220 10 35 8 Irwin et al. (2006)

M 37 550 0 197 128 Hartman et al. (2009)

Hyades 600 0 8 17 Radick et al. (1987); Prosser et al. (1995)

for the Tayler–Spruit dynamo proposed by Denissenkov &
Pinsonneault (2007), which reduces the effective magnetic
viscosity by nearly 2 orders of magnitude, is still too efficient
in redistributing angular momentum in the outer parts of the
radiative core; this is inconsistent with the observed evolution of
slowly rotating solar analogues in the P–age plane. The revised
prescription comes to a better agreement with observations when
it is supplemented by an additional angular momentum transport
mechanism that should be able to operate in the inner core on a
longer timescale. Such a mechanism is also needed to assist the
revised prescription in shaping the solar SB rotation.

In our work, three different theoretical models are employed
to study the rotational evolution of solar-type stars: a simple
double-zone model and two full stellar evolutionary models,
one with a constant viscosity and the other with the effective
magnetic viscosities provided by the original and revised pre-
scriptions for the Tayler–Spruit dynamo. The models are de-
scribed in detail and compared with each other in Section 2.
Because the choice of basic model parameters is necessarily
constrained by observations, we find it helpful to briefly intro-
duce the samples of rotation period and v sin i data, that will be
used for a more detailed analysis later in Section 3, already at
the beginning of Section 2. In Section 3, we present the results
of our computations of rotation period distributions for solar-
type stars, as they evolve from the pre-MS deuterium birth line
to the solar age, and compare them with observations of rota-
tion periods in open clusters. A brief discussion and our main
conclusions are given in Section 4.

2. BASIC THEORETICAL MODELS AND
OBSERVATIONAL DATA

For studying the angular momentum evolution of solar-type
stars, it is important to specify correct initial and boundary con-
ditions as well as to incorporate into the stellar evolution code
three principal processes that are believed to govern changes of
their surface rotation with time: disk-locking, internal transport
of angular momentum, and angular momentum loss from the
surface. In this section, we briefly describe common ingredients
of our rotating stellar evolutionary models, such as the input
physics, the initial and boundary conditions, the law used for
angular momentum loss, and our considered mechanisms for
internal angular momentum transport.

Because of the complex inter-relationship between the phys-
ical processes involved in the rotational evolution of solar-type
stars, it is also important to use all available observational data
that can constrain it. Fortunately, thanks to ongoing and planned
ground and space based planet transit searches (such as the
Deep MMT Transit Survey, the Monitor Project, Kepler, and
COROT), extensive data sets of rotation periods for young and
intermediate-age open cluster low-mass stars have been accu-
mulating quickly during the last few years. The data that will
be used in our paper to constrain the models are summarized
in Table 1. Their corresponding rotation periods are plotted in
Figure 1 (crosses) for illustration.

2.1. Common Model Ingredients

In our full rotating evolutionary computations, we employ an
upgraded version of the computer code used by Denissenkov
& VandenBerg (2003). The most recent update is the adoption
of Alan Irwin’s improved equation of state (EOS).2 In addition,
the energy losses due to neutrino emission are now calculated
with the code distributed by Itoh et al. (1996). We use OPAL
opacities (Rogers & Iglesias 1992) for temperatures above ∼ 104

K, complemented by Alexander & Ferguson (1994) data for
lower temperatures. Nuclear reaction rates are taken from the
NACRE compilation (Angulo et al. 1999). Gravitational settling
is not included.

We accept Zahn’s concept of the rotation-induced anisotropic
turbulence in stellar radiative zones, with horizontal components
of the turbulent viscosity strongly dominating over those in
the vertical direction (Zahn 1992), which assumes that the
horizontal turbulence has erased the latitudinal DR. This allows
us to consider the angular velocity as a function of radius
alone. We take into account small corrections to the stellar
structure equations arising from the distortion of equipotential
surfaces by such shellular rotation (for details, see Denissenkov
& VandenBerg 2003). We used the Grevesse & Noels (1993)
mixture of heavy elements. Our code has been calibrated to
reproduce the solar luminosity L⊙ = 3.85 × 1033 erg s−1 and
radius R⊙ = 6.96 × 1010 cm at the solar age of t⊙ = 4.57 Gyr.
This procedure yields the initial hydrogen mass fraction X =

2 We use the EOS code that is made publicly available at
http://freeeos.sourceforge.net/ under the GNU General Public License.

http://freeeos.sourceforge.net/
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Figure 1. Rotation period data (crosses) for the three mass bins used in this
paper (see Table 1). Curves represent the SB rotational evolution computed with
different values of the initial period and disk-locking time using the double-zone
model and common model ingredients that are described and discussed in the
text later.

0.708 for the solar heavy-element mass fraction Z = 0.018, and
a mixing length α of 1.75.

2.2. Initial and Boundary Conditions

Our computations start on the pre-MS deuterium birth line of
Palla & Stahler (1991). For stars with masses M = 1 M⊙ and
0.8 M⊙, the estimated birth line radii are 4.8 R⊙ and 2.9 R⊙,
respectively. We assume that convective regions rotate as solid
bodies at all times. Rotation at the birth line is specified by
the initial rotation period P0. In practice, we begin with a non-
rotating fully convective model that is located above the birth
line. This model is evolved down to the birth line where it is spun
up to P = P0, which yields the initial model for our rotating
evolutionary computations. The initial period values are taken
from the observed period distributions of solar-type stars in the
youngest stellar clusters from our compiled data samples: the
Orion Nebula cluster (hereafter, ONC or Orion), NGC 2264, and
NGC 2362 (Table 1). The Kolmogorov–Smirnov (KS) test gives

high probabilities for these distributions to have been drawn
from the same real distribution (Figure 2). Because stars still
possess deep surface convection zones at these young ages,
different ways of achieving the same surface rotation rate at the
end of this stage will have similar final outcomes.

During its approach to the zero-age main sequence (ZAMS),
the protostar contracts. If its total angular momentum Jtot

conserved on the pre-MS then the star would spin up as a
result of the contraction. However, observations show that a
large number of stars arriving at the ZAMS rotate slowly, as
if their angular velocity rather than angular momentum has
remained constant (see Figure 3 of Rebull et al. 2004). The
most plausible explanation is that the interaction of protostars
with their accretion disks extracts angular momentum from the
central object, reducing or preventing spin-up as they contract.
This can occur from magnetic coupling between the protostar
and disk (Koenigl 1991; Shu et al. 1994) or through an enhanced
wind (Matt & Pudritz 2005). As in most other works (e.g.,
Krishnamurthi et al. 1997; Bouvier et al. 1997; Allain 1998;
Tinker et al. 2002), we model the interaction between the
protostar and accretion disk in a simple way, assuming that
during an initial time interval 0 � t � τd the interaction
maintains P (t) = P0. The disk-locking time τd is considered as
a free parameter.

In our stellar evolution code, the transport of angular momen-
tum is treated as a diffusion process described by

d

dt
(r2

Ω) =
∂

∂Mr

[

(4πr2ρ)2r2ν
∂Ω

∂Mr

]

, (1)

where d/dt is a derivative taken at a constant Mr, and ν is a
viscosity whose physical nature has yet to be identified in real
stars. Equation (1) needs two boundary conditions. A natural
initial condition for it is that the fully convective birth line
model rotates as an SB with Ω(0,Mr ) = Ωe(0) = 2π/P0, where
Ωe = 2π/P is the angular velocity of star’s convective envelope.
The inner SB rotation boundary condition ∂Ω/∂Mr = 0 is
applied at the surface of the innermost mass shell used in
our computations, at Mr ≈ 0. To derive the outer boundary
condition that has to be applied at the bottom of convective
envelope Mr = Mbce, we integrate Equation (1) from Mr = 0
to Mr = Mbce, taking into account that the time derivative of
the angular momentum of radiative core is

J̇c =
d

dt

2

3

∫ Mbce

0

r2
Ω dMr =

2

3
r2

bceΩeṀbce

+
2

3

∫ Mbce

0

d

dt
(r2

Ω) dMr = J̇tot − J̇e.

Here, Je = IeΩe is the angular momentum of convective
envelope, Ie being the envelope’s moment of inertia. Finally,
we obtain the following upper boundary condition:

IeΩ̇e = J̇tot − İeΩe −
2

3
r2

bceΩeṀbce

−
2

3

[

(4πr2ρ)2r2ν
∂Ω

∂Mr

]

Mbce

, (2)

in which J̇tot is the rate of angular momentum loss from the
stellar surface.

2.3. Angular Momentum Loss and Internal Transport

For the angular momentum loss from the surface, we adopt
the magnetized stellar wind prescription of Krishnamurthi et al.
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Figure 2. Panels (a) and (c): period distributions for solar-type stars in the Orion cluster (shaded histograms) are compared to those in NGC 2264 and NGC 2362 (thick
solid curves). The Kolmogorov–Smirnov test gives high probabilities (PKS ≫ 0.05) that the corresponding pairs of distributions have been drawn from the same real
distribution. Panels (b) and (d): cumulative distribution functions for the two pairs of clusters.

(1997):

J̇tot = −Kw

√

R/R⊙

M/M⊙

min
(

ΩeΩ
2
sat, Ω

3
e

)

. (3)

Here, Ωsat is the velocity at which the wind is saturated. The
parameter Ωsat is known to strongly depend on the stellar mass
(e.g., Andronov et al. 2003). In Figure 3, we have used upper
90th percentiles of the Ωe distributions for our cluster sample
to adjust the appropriate values of Ωsat for the three mass
bins that we use in this study. For internal angular momentum
transport, we assume that fast rotators behave as SB rotators,
a result both of theoretical calculations (Krishnamurthi et al.
1997; Sills et al. 2000) and indicated by prior spin-down studies
(Irwin et al. 2007; there were prior claims by the Monitor
group). The error bars to the percentiles were calculated using
bootstrap simulations by generating 1000 sampling distributions
for each cluster. Our adjusted Ωsat values (shown in each panel
in Figure 3) are close to those reported by Andronov et al.
(2003). In particular, we have found that the same value of
Ωsat = 8 Ω⊙ can be used for either of our “solar-type” mass
bins, 0.7 � M/M⊙ < 0.9 and 0.9 � M/M⊙ � 1.1, to
reproduce reasonably well their corresponding 90th percentiles.
This value lies between the estimates Ωsat = 6.4 Ω⊙ and
Ωsat = 10.5 Ω⊙ obtained by Andronov et al. (2003) for stars
with M = 0.8 M⊙ and M = 1.0 M⊙, respectively. For the “fully
convective” M � 0.4 M⊙ bin, we have adjusted the parameter
Ωsat = 2.5 Ω⊙. It can be compared with the value of 1.8 Ω⊙

used by Andronov et al. (2003) as a saturation threshold for
their 0.4 M⊙ model star. Note that in all our computations we
use stellar models with masses appropriate for the considered
mass bins, namely, 0.3 M⊙, 0.8 M⊙, and 1.0 M⊙. The parameter
Kw in Equation (3) is calibrated by requiring that our 0.8 M⊙

and 1.0 M⊙ models have Ωe = Ω⊙ = 2.86 × 10−6 rad s−1

(P⊙ = 25.4 days) at the solar age. For stars with M � 0.4 M⊙,
we use our 0.3 M⊙ model and the solar calibrated value of

Kw ≈ 3.19 × 1047 cm2 g s−2 that has produced the solid curve
in Figure 3(a).

2.3.1. Constant Viscosity

In this section, we consider angular momentum transport
in rotating stellar evolutionary models with a constant vis-
cosity ν(t,Mr ) = ν0. Although the assumption of constant
viscosity does not reveal the physical mechanism responsible
for the transport of angular momentum in solar-type stars, it
nevertheless permits us to estimate both an instructive mini-
mum value (ν0)min that still results in the solar SB rotation
and a maximum value (ν0)max such that the rotational evo-
lution with any value in excess of it looks identical to that
with ν0 = (ν0)max. We have computed the evolution of a ro-
tating 1 M⊙ star for two combinations of the disk-locking time
(in Myr) and initial rotation period (in days): (τd, P0) = (6, 8)
and (2, 3). For either of these combinations, the computations
have been done for the same set of values of Ωsat = 8 Ω⊙ and
ν0 = 2.5 × 104, 5 × 104, 105, 2.5 × 105, 5 × 105, 106, 107,
and 108 cm2 s−1. Results are presented in Figure 4 with solid
and dashed curves for the first and second combination of
initial conditions, respectively. Models with ν0 � (ν0)min ≈
5 × 104 cm2 s−1 have a residual DR at the solar age inconsis-
tent with helioseismic data. On the other hand, the rotational
evolution of models with ν0 � (ν0)max ≈ 106 cm2 s−1 is almost
indistinguishable from one another.

2.3.2. Effective Magnetic Viscosities from the Tayler–Spruit Dynamo

Spruit (1999, 2002) has elaborated upon the finding by
Tayler (1973) that toroidal magnetic fields frozen into plasma
in a stellar radiative zone are always subject to a pinch-type
instability. A release of magnetic energy by this instability
causes concentric magnetic rings to slide sideways, mainly
horizontally, along the equipotential surfaces and, to some
extent, also along the radius. Magnetic induction makes it
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Figure 3. Upper 90th and lower 10th percentiles of Ωe = 2π/P distributions
(crosses) for all of our compiled data samples (Table 1). The 90th percentiles
are used to adjust the parameter Ωsat (shown in each panel) by fitting them
to the SB rotation evolution (solid curves). The 10th percentiles for the fully
convective stars are also fitted well by an SB rotation evolution curve (panel (c)).
The percentile vertical error bars were evaluated through bootstrap simulations.

possible for the unstable radial displacement to produce a
weak poloidal field Br at the expense of toroidal magnetic
field Bϕ . If the radiative zone rotates differentially, the poloidal
field can be stretched around the rotation axis into a new
toroidal field that will again be subject to the Tayler instability.
Spruit’s original idea was that these consecutive poloidal/
toroidal field generations might sustain each other under certain
circumstances, thus forming a dynamo loop. The Tayler–Spruit
dynamo could drive some mixing through unstable radial
displacements with an effective diffusion coefficient ηe, as well
as some angular momentum transport by magnetic torques
proportional to the product BrBϕ with an effective viscosity
νe. However, estimating the diffusion coefficients is more
challenging. Denissenkov & Pinsonneault (2007) argued that
Spruit overestimated ηe and νe because the effective horizontal
displacement is reduced away from the rotation axis; the
heuristic approach used to derive the diffusion coefficients was
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Figure 4. Rotation period evolution of the Sun computed using the constant
viscosity model for the initial conditions (τd, P0) = (6 Myr, 8 days) (solid
curves), and (τd, P0) = (2 Myr, 3 days) (dashed curves), and for the values of
ν0 = 2.5 ×104, 5 ×104, 105, 2.5 ×105, 5 ×105, 106, 107, and 108 cm2 s−1

(from upper to lower curve for either combination of initial conditions).

also critiqued in Section 4 of Zahn et al. (2007). The latter
authors also did not find the predicted dynamo mechanism in
their numerical simulation; see also Rüdiger et al. (2009).

Whereas the original prescription for the Tayler–Spruit dy-
namo has been shown to produce a solar rotation profile in
agreement with helioseismic data (Eggenberger et al. 2005), the
revised prescription fails to do so alone (Denissenkov & Pin-
sonneault 2007). One of the objectives of the present work is
to see if these prescriptions can yield the evolution of surface
rotation consistent with the rotation period data for solar-type
stars in open clusters.

Let us summarize the basic equations for the magnetic
transport coefficients in the Spruit mechanism. For details, the
reader is referred to the paper of Denissenkov & Pinsonneault
(2007). For Spruit’s original prescription, it is convenient to
present the effective magnetic diffusivity and viscosity in the
following forms:

ηe = α Ky3, and νe = α K
N2

T + N2
µ

Ω2q2
y2. (4)

Here, q = |∂ ln Ω/∂ ln r| is the rotational shear, and y is a
solution of the fourth-order algebraic equation

α y4 − α y3 + β y − 2 = 0, (5)

where

α = r2 Ω
7 q4

K
(

N2
T + N2

µ

)3
, and β = 2

N2
µ

N2
T + N2

µ

(6)

are dimensionless coefficients. In Equations (4) and (6), we have
used standard notations for the thermal diffusivity

K =
4acT 3

3κρ2CP

, (7)

where κ and CP represent the opacity and the specific heat at
constant pressure, respectively, and for the T- and µ-component
of the square of the Brunt-Väisäla (buoyancy) frequency

N2
T =

gδ

HP

(∇ad − ∇rad), and N2
µ = gϕ

∣

∣

∣

∣

∂ ln µ

∂r

∣

∣

∣

∣

.

In the last expressions, g is the local gravity, HP is the pressure
scale height, ∇ad and ∇rad are the adiabatic and radiative
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temperature gradients (logarithmic and with respect to pressure),
and µ is the mean molecular weight. The quantities δ =
− (∂ ln ρ/∂ ln T )P,µ and ϕ = (∂ ln ρ/∂ ln µ)P,T are determined
by the EOS. In particular, for the perfect gas law δ = ϕ = 1.

When using the effective magnetic viscosity ν = νe in the
angular momentum transport Equation (1), it is important to
remember that the Tayler–Spruit dynamo keeps operating only
as long as the effective diffusivity ηe remains larger than the
magnetic diffusivity ηmag. When ηe approaches ηmag the poloidal
magnetic field decays through Ohmic dissipation faster than it
is generated by the unstable radial displacements of magnetic
rings. Although theory says nothing about the behavior of νe

in this limit, we can formally estimate a minimum value of the
effective magnetic viscosity that is reached when ηe = ηmag.
To do this, we replace ηe with ηmag in the first of Equations (4)
and then solve Equations (4)–(6) with respect to q and νe. The
effective magnetic viscosity approaches its minimum value of

(νe)min = 6.96 × 107

(

r

R⊙

) (

2 + ε

β + ε

)1/2
(ηmag

103

)1/2

×

(

N2
T + N2

µ

10−6

)−1/2
(

Ω

10−5

)3/2

cm2 s−1 (8)

when the shear is reduced to

qmin = 0.379

(

r

R⊙

)−1/2 (

β + ε

2 + ε

)3/4
(ηmag

103

)1/4

×

(

N2
T + N2

µ

10−6

)3/4
(

Ω

10−5

)−7/4

. (9)

The normalizations in the last two equations, for which we
have used values typical for the solar interior, assume that all
quantities are expressed in cgs units. We have also introduced
the reciprocal of the Roberts number ε = ηmag/K ≪ 1.

The ratio β defined by the second of Equations (6) remains
small (β ≪ 1) everywhere in the star until the age of ∼ 30 Myr
because nuclear reactions have not yet built up a sufficiently
strong µ-gradient in the stellar core. Given that by this age
Ωe approaches its maximum value that turns out to exceed
∼ 3 Ω⊙ ≈ 10−5 rad s−1 in most interesting cases (see Section 3,
and panel (a) in Figure 3), it is obvious from Equation (8) that
(νe)min will be of order 108 cm2 s−1 everywhere in our model
star during the first tens Myr of its evolution. Furthermore, since
β continues to remain very small outside the radius r ∼ 0.2 R⊙,
where N2

µ ≪ N2
T , up to the solar age, we can expect that (νe)min

will keep values of order 106–108 in the outer part of the radiative
core even at older ages. These expectations are confirmed by our
detailed computations. Taking into account that Equation (8)
gives only a lower limit for the effective magnetic viscosity and
the inner core with r � 0.2 R⊙ contributes less than 10% to
the total moment of inertia of the radiative core, we anticipate
that Spruit’s original prescription should always bring about the
P–age relations characteristic of SB rotators, like those obtained
with our constant viscosity model for ν0 > (ν0)max. However, we
have to ensure that in our computations the viscosity declines
abruptly as soon as the shear q is reduced below its critical
value given by Equation (9). This requirement may leave some
residual DR in the core of our final solar model.

In our full rotating stellar evolutionary models, we have
used an approximate computational method. It assumes that,
as soon as a radiative core develops in a pre-MS star and
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Figure 5. Rotation period evolution computed for the initial conditions
(τd, P0) = (6 Myr, 8 days), (6 Myr, 30 days), and (2 Myr, 3 days) using the
original prescription for the Tayler–Spruit dynamo (solid curves) and the con-
stant viscosity model with ν0 = 106, and 107 cm2 s−1 (dashed curves). The
dashed curves for ν0 = 107 cm2 s−1 almost coincide with the solid curves. All
computations have been performed with M = 1 M⊙ and Ωsat = 8 Ω⊙.

its rotation profile begins to deviate from uniform one, the
effective magnetic viscosity is large enough everywhere in
the core to potentially restore its uniform rotation. Our test
computations confirm this. However, when the redistribution of
angular momentum by magnetic torques has led to q ≈ qmin, the
Tayler–Spruit dynamo ceases to work, and its related viscosity
should be replaced with the molecular one νmol ≪ (νe)min. As
we have noted, theory does not describe how this transition
from (νe)min to νmol occurs. When an increase of Ωe at t > τd

caused by the residual pre-MS contraction of the star and its
angular momentum conservation finally gives way to an Ωe

decrease due to the surface loss of angular momentum with
the magnetized stellar wind, a much stronger DR tends to
accumulate in the core. However, as soon as the shear exceeds
its critical value qmin, a large viscosity of order (νe)min will
resume the redistribution of angular momentum by magnetic
torques smoothing out the angular velocity gradient until q drops
below qmin again. Following this qualitative picture, we put into
Equation (1) ν = (νe)min multiplied by an exponential factor
that cancels ν when q approaches qmin.

Figure 5 compares the results of our computations using
this method for (τd, P0) = (6, 8), (6, 30), and (2, 3) (solid
curves) with results that we obtained for the same initial
conditions but applying the constant viscosities ν0 = 106 and
107 cm2 s−1 (dashed curves). We have Ωsat = 8 Ω⊙ throughout.
The comparison shows that, for Spruit’s original prescription,
the rotation period evolution of the Sun coincides with that of
ν0 = 107 cm2 s−1 > (ν0)max; i.e., it always corresponds to the
SB rotation case. However, the solid curve in the bottom panel in
Figure 6 demonstrates that, unlike the constant viscosity model
with ν0 > (ν0)max, our solar model computed using Spruit’s
original prescription does contain a small differentially rotating
core, as we expected. Unfortunately, its presence cannot be
revealed by available helioseismic data (see, however, Garcı́a
et al. 2007). This result agrees with that reported by Eggenberger
et al. (2005).

For Spruit’s revised prescription (Denissenkov & Pinson-
neault 2007), the effective magnetic diffusivity and viscosity
are given by the following equations:

ηe = 2K
Ω

2q2 − N2
µ

N2
T + N2

µ − Ω2q2
, and νe =

(

r2
Ωη2

e

q2

)1/3

. (10)

After the substitution of ηe = ηmag into the first of these
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Figure 6. Rotation period evolution (upper panel) and final rotation profiles in
the solar models (bottom panel) computed using Spruit’s original (solid curves)
and revised prescription (dashed curves). Dotted curves represent a model with
no internal angular momentum transport. Filled circles in the bottom panel are
helioseismic data from Couvidat et al. (2003).

equations, we find that the revised Tayler–Spruit dynamo ceases
to work when the shear approaches a critical value

qmin = 102

(

ε

2 + ε

N2
T

10−6
+

N2
µ

10−6

)1/2
(

Ω

10−5

)−1

. (11)

A comparison of coefficients in Equations (9) and (11) shows
that in the second case the residual DR in the solar model is
expected to be much stronger. A minimum value of νe can be
estimated from the second of Equations (10) in which we put
ηe = ηmag and q = qmin. As a result, we obtain

(νe)min = 1.69 × 106

(

r

R⊙

)2/3
(ηmag

103

)2/3

×

(

ε

2 + ε

N2
T

10−6
+

N2
µ

10−6

)−1/3
(

Ω

10−5

)

cm2 s−1,

(12)

where all numbers are again expressed in cgs units.
It is instructive to compare the minimum values of the effec-

tive magnetic viscosity (νe)(8)
min and (νe)(12)

min given by Equations (8)
and (12), respectively. Their ratio is

(νe)(8)
min

(νe)
(12)
min

= 41.2

(

r

R⊙

)1/3 (

2 + ε

ε

)1/6
(ηmag

103

)−1/6

×

(

N2
T

10−6

)−1/6 (

Ω

10−5

)1/2

. (13)

The last two equations show that, even though the revised value
of (νe)min is less than the original one, it is still large enough
for us to employ the same computational method that we used
to study the evolution of rotating solar-type stars with Spruit’s
original prescription.

In Figure 6, results of our application of Spruit’s original
and revised prescriptions in full evolutionary computations of
rotating solar models are compared with each other as well
as with a rotating model with no internal transport of angular
momentum (solid, dashed, and dotted curve, respectively). We
confirm the conclusion made by Denissenkov & Pinsonneault
(2007), who used a crude approximation

Ω(r) = Ω⊙ +

∫ rbce

r

Ω qmin

dr

r

to construct an Ω-profile in their model of the present-day
Sun, that the revised prescription for the Tayler–Spruit dynamo
produces a solar model with a large rapidly rotating core,
in contradiction with helioseismic data (compare the dashed
curve with the filled circles representing observational data from
Couvidat et al. 2003 in bottom panel). Our new result obtained
here is that, in spite of this, the revised prescription leads to the
rotational evolution that has even shorter periods at ages older
than ∼ 30 Myr than the SB rotational evolution obtained with
Spruit’s original prescription (compare the dashed and solid
curves in top panel). This behavior is explained as follows. As
we anticipated, the values of (νe)min given by Equation (12)
indeed turned out to be large enough for the transport of angular
momentum from the core to envelope to occur on a short “SB
rotation” timescale like those we got in our constant viscosity
models with ν0 > (ν0)max ≈ 106 cm2 s−1. However, because
of an early build-up of a steep critical Ω-profile (like that
shown with dashed curve in bottom panel), below which the
Tayler–Spruit dynamo ceases to work, the amount of the core’s
angular momentum available for transport to the envelope is
diminished more and more as the evolution proceeds beyond
an age of ∼ 30 Myr. As a result, if we used the value of the
stellar wind parameter Kw = 2.8 × 1047 cm2 g s calibrated
for Spruit’s original prescription then the P–age relation for the
revised prescription would be nearly parallel to the solid curve
in top panel but it would be located at longer periods, hence the
solar rotation period would be overestimated. To match the solar
surface rotation, we had to reduce Kw to 1.25 × 1047 cm2 g s
for the revised prescription. This has shifted the P–age relation
toward its location shown with the dashed curve. Note that we
have also done test computations in which ηe from the first of
Equations (10) was used instead of ηmag to estimate νe. We have
not found noticeable differences with the results obtained using
the approximate method.

2.4. Double-zone Model

The two zone model was originally proposed by MacGregor
(1991) and it has since been employed by many others (e.g.,
MacGregor & Brenner 1991; Keppens et al. 1995; Siess &
Livio 1997; Allain 1998; Irwin et al. 2007). Angular momentum
transport between the radiative core and convective envelope is
parameterized as follows. The core and envelope, with moments
of inertia and rotation rates Ic, Ωc, Ie, and Ωe respectively,
are assumed to rotate as solid bodies. If Ωc > Ωe then the
maximum angular momentum that can be transferred from
the core to the envelope (∆J )max is estimated as a difference
between the core’s initial angular momentum Jc = IcΩc and
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the angular momentum Jc,eq = IcΩeq the core will have when
its angular velocity becomes equal to that of the envelope.
This final equilibrium velocity Ωeq is determined from the
angular momentum conservation: Jc + Je = Jc,eq + Je,eq, or
IcΩc + IeΩe = (Ic + Ie)Ωeq. So, we have

(∆J )max =
Ic Ie

Ic + Ie

(Ωc − Ωe).

As a free parameter, the double-zone model uses the core/
envelope coupling time τc that defines the rate (∆J )max/τc with
which the angular momentum is transferred from the core to
the envelope. An advantage of this model is that one needs to
know only how Ic, Ie, rbce, and Mbce are changing with time for
a particular star (the last two quantities are required to take into
account a displacement of the bottom of convective envelope
during the angular momentum transfer). If this information is
available (from full evolutionary computations) then the star’s
rotational evolution is obtained as a solution of the following
system of ordinary differential equations (ODEs):

dJc

dt
= −

(∆J )max

τc

+
2

3
r2

bceΩeṀbce, (14)

dJe

dt
=

(∆J )max

τc

−
2

3
r2

bceΩeṀbce + J̇tot, (15)

where J̇tot should be replaced by expression (3).
Because of its simplicity the double-zone model can be used

for Monte-Carlo simulations and other statistical studies, like
those conducted in next section. However, before doing this
we want to relate the constant viscosity model and the double-
zone model to one another through their parameters ν0 and τc.
In Figure 7, values of the coupling time are adjusted so that
the double-zone model simulates some of the P–age relations
that we computed with the constant viscosity model using
the same initial conditions. We have established the following
approximate3 correspondence between ν0 (in cm2 s−1) and τc

(in Myr): (ν0, τc) = (2.5 × 104, 90), (5 × 104, 40), (105, 20),
(2.5 × 105, 7), and (106, 1). This means that the double-zone
models with the coupling time longer than ∼ 40 Myr correspond
to the constant viscosity models that, by the solar age, still
possess residual DR inconsistent with helioseismic data. On
the other hand, the double-zone models with τc � 1 Myr
reproduce the P–age relations for SB rotators (cf. Allain 1998);
they are equivalent to the constant viscosity models with ν0 >
(ν0)max ≈ 106 cm2 s−1 as well as to the models in which angular
momentum is redistributed by magnetic torques generated by
the Tayler–Spruit dynamo in its original prescription.

3. COMPARISON WITH OBSERVATIONS

From a theoretical standpoint, the rotational evolution of low-
mass stars is a very complex process. It depends on a number of
parameters, such as the initial rotation period P0, disk-locking
time τd, angular velocity threshold for the magnetized wind
saturation Ωsat, and the rate of angular momentum redistribution
expressed in terms of the core/envelope coupling time τc,
constant viscosity ν0, or as a function of stellar structure and
other parameters when a particular physical mechanism is
chosen to describe it. Because of this complexity, the progress

3 As the morphology of P–age relations is slightly different for these models,
the adjusted values of τc are uncertain within ∼10%.
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Figure 7. Comparison of rotation period evolution of the Sun computed using the
constant viscosity (solid curves) and double-zone model (dashed curves). The
corresponding pairs of the viscosity and core/envelope coupling time adjusted
for the models’ P–age relations to resemble one another as closely as possible
are (ν0, τc) = (2.5 × 104, 90), (5 × 104, 40), (105, 20), (2.5 × 105, 7), and
(106, 1), where ν0 is given in cm2 s−1, and τc in Myr.

in this field is primarily driven by constantly accumulating and
improving observational data and their statistical analyses.

The basic method involves treating the open clusters as an
evolutionary sequence: namely, that the distribution of initial
conditions which produces the range of rotation rates seen in
young clusters is a product of the star formation process and
is independent of environment. Changes in the rotation distri-
bution with age therefore reflect structural evolution, angular
momentum loss from magnetized winds, and internal angular
momentum transport. Weber & Davis (1967) predicted an angu-
lar momentum loss rate which scales as Ω

3
e ; this was confirmed

by Skumanich (1972) and is well supported by studies of the
asymptotic spin-down of old MS stars. Without a saturation in
the effective loss rate, it would not be possible for rapid rota-
tion to survive in young cluster stars (Pinsonneault et al. 1990;
MacGregor & Brenner 1991). A similar saturation in coronal
X-ray activity and chromospheric activity is also seen (Krish-
namurthi et al. 1998). The properties of the upper envelope of
the distribution are used to constrain the saturation threshold for
rapid rotation.

The young slow rotators, however, are in the solar wind
regime. As a result, their response to this milder applied torque
can be used to diagnose the timescale over which the core
couples to the envelope. In the limit of weak coupling, the
envelope spins down quickly because of its small moment of
inertia; this stalls when the flow of angular momentum from the
core balances the applied torque. Surface spin-down resumes
at older ages when the core and envelope are coupled (see
Pinsonneault et al. 1989). By contrast, in the limit of SB rotation
at all times, measurable spin-down should not be seen in young
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clusters and there is no physical mechanism which produces
rapid early spin-down, followed by a pause and a resumption of
spin-down at later ages. The fraction of the moment of inertia
in the surface convection zone is a strong function of mass, so
the method can also be tested by comparing the spin-down of
nearly fully convective stars (where the moment of inertia of
the core is too small to impact spin-down) to stars with thinner
surface convection zones.

A number of physical mechanisms have been proposed to ex-
plain the solar SB rotation, such as the smoothing of DR by the
back reaction of the Lorentz force emerging from the generation
of a toroidal magnetic field by shearing of a preexisting poloidal
field (Mestel & Weiss 1987; Charbonneau & MacGregor 1993;
Denissenkov 2010), angular momentum redistribution by mag-
netic torques generated by the Tayler–Spruit dynamo (Eggen-
berger et al. 2005), or by internal gravity waves excited by
turbulent eddies in the solar convective envelope (Charbonnel
& Talon 2005; see, however, Denissenkov et al. 2008). However,
none of these mechanisms have been shown to agree or disagree
with available rotation period data for solar-type stars in open
clusters. In this paper, we subject the Tayler–Spruit dynamo to
such an observational test. The other mechanisms will be tested
in our forthcoming papers. We will start with Spruit’s original
prescription. As it always results in the P–age relations similar
to those obtained with the double-zone model having a short
coupling time of order 1 Myr (compare Figures 5 and 7), we
will use the latter as its substitute model. The main advantage
of this replacement is that the double-zone model computations
are very fast, therefore they can effectively be used to perform
extensive parameter-space investigations.

Our first step in reducing the number of free model parameters
is the adjustment of the value of Ωsat (see Section 2.3). For the
SB rotating (τc = 1 Myr) double-zone model to reproduce
as close as possible the upper 90th percentiles simultaneously
for all of our compiled Ωe data for each of the three mass
bins, we had to choose Ωsat = 8 Ω⊙ for our two “solar mass”
bins and Ωsat = 2.5 Ω⊙ for the “fully convective” mass bin
(upper solid curves in Figure 3, these curves are also plotted in
Figure 1, with Ωe being transformed back to P). This procedure
assumes quite naturally that the most rapidly rotating stars in
the samples evolve as SB rotators. In fact, it is impossible to
construct a double-zone model with DR that would fit the 90th
percentiles for the intermediate-age (∼100 Myr old) clusters,
those located immediately behind the maxima on the Ωe versus
age curves, without making unreasonable assumptions about its
parameters.

It turns out that the lower 10th percentiles for the stars with
M � 0.4 M⊙ can also be approximated reasonably well with an
SB rotation evolution curve (the lower and upper solid curves
in Figures 3(c) and 1(c), respectively). This result is expected
because a turbulent eddy viscosity in these fully convective stars
should redistribute angular momentum very quickly (e.g., see
Tinker et al. 2002). Having said that, we should mention a recent
evidence that casts some doubt on this simple interpretation.
The first period measurements for five stars with masses below
0.5 M⊙ in Praesepe (e.g., Scholz & Eislöffel 2007) appear to
disagree with the predicted model trends, but this sample is not
of sufficient size to draw firm conclusions.

In contrast, it turns out to be very difficult for an SB rotation
evolution curve to approach all the lower 10th percentiles
for stars in the mass bins centered at 1.0 M⊙ and 0.8 M⊙

(dashed curves in panels (a) and (b) in Figure 3), unless one
takes a disk-locking time well in excess of 20 Myr or starts

with a very slowly rotating star. If the double-zone model
parameters were not constrained by observational data but could
be chosen at our will then any mechanism of angular momentum
transport that persistently produces and maintains SB rotation, in
particular Spruit’s original prescription, could easily be brought
in agreement with the open cluster rotation period data for slowly
rotating solar-type stars. Indeed, in this case one could simply
choose appropriate combinations of the initial period and disk-
locking time, one or both of which having to be sufficiently long,
such that the double-zone model with SB rotation (τc = 1 Myr)
and with those parameters applied would embrace all the periods
for slow rotators, no matter how long they are (dashed and dot-
dashed curves in panels (a) and (b) in Figure 1).

However, observations do not allow such an arbitrary choice
of parameters of a rotational evolution model for solar-type stars.
In particular, the typical disk-locking time has been estimated
to lie in a range between 2 and 10 Myr. This result is based
on the measuring of such diagnostics of the presence of a
circumstellar disk around a pre-MS star as an IR excess, that
traces dust, or an Hα emission line width that traces accretion
(Hillenbrand 2005; Lyo & Lawson 2005; Bouwman et al. 2006;
Jayawardhana et al. 2006; Damjanov et al. 2007). A recent
statistical analysis of available data on the pre-MS circumstellar
disks has led Mamajek (2009) to the conclusion that “the fraction
of young stars with optically thick primordial disks and/or those
which show spectroscopic evidence for accretion appears to
approximately follow an exponential decay with characteristic
time ∼2.5 Myr.” Taken at its face value, this means that, on
average, only 10% of active disks around pre-MS solar-type
stars are expected to survive by the age of 5.8 Myr. However,
the dispersion of the disk life times can be quite large. For
instance, Sicilia-Aguilar et al. (2009) have found that ∼50%
of 18 members of the η Cham cluster studied by them still
show signatures of a circumstellar disk by the age of 8 Myr.
Therefore, in our models we will use the maximum disk-locking
time (τd)max = 20 Myr as a safe upper limit.

With the maximum disk-locking time limited by the value
of 10 Myr or even 20 Myr, the SB rotational evolution can
explain the longest periods in the intermediate-age clusters
only if it starts with initial periods that are much longer than
those measured in the youngest clusters (dashed and dot-
dashed curves in panels (a) and (b) in Figure 1). However,
the assumption that individual open clusters had their unique
distributions of P0 in the past, with very different statistics, does
not seem realistic because the same laws of physics had most
likely shaped them during the star formation. This conclusion
is supported by the fact that the period distributions for solar-
type stars in three of our youngest clusters, ONC, NGC 2264,
and NGC 2362, have high KS probabilities of having been
drawn from the same real distribution (Figure 2). Therefore,
we will assume that the period distributions of stars in clusters
of different ages f (t, P) represent an evolutionary sequence that
started with the same distribution f (0, P0). Besides, we will
consider the initial distribution of disk-locking times to be flat
and random in the interval 0 < τd � (τd)max with the maximum
value of (τd)max = 20 Myr. As a proxy for f (0, P0), we will
take period distributions for the three aforementioned young
clusters. If the initial rotation of cluster stars was much slower
than predicted by the ONC data then we should see clusters
arriving on the MS with very low rotation rates, e.g., systems
with ages below 100 Myr should already have a lot of slow
rotators. Small samples from very young open clusters exhibit
no such trend, but larger sample sizes are required.
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Figure 8. Upper 90th and lower 10th percentiles (crosses) of Ωe distributions for
all of our compiled data samples of open cluster solar-type stars are compared
with Ωe–age relations computed using the double-zone model. Dashed curves
correspond to τc = 1 Myr (SB rotation), solid curves (from upper to lower)
to DR with τc = 50, 100, and 150 Myr (panel (a)), and τc = 100, 200, and
300 Myr (panel (b)).

The assumptions that we have just made are not novel. For
instance, Irwin et al. (2007) evolved the observed rotation rates
of low-mass stars in NGC 2362 forward in time trying to
reproduce some statistics of Ωe distributions in older clusters.
Like us, they employed a double-zone model. To compare the
results of their computations with observations, Irwin et al.
(2007) calculated the lower 25th and upper 90th percentiles
of the observed distributions of Ωe for solar-type stars in
NGC 2362, IC 2391/IC 2602, α Per, M 34, and the Hyades.
These statistics have been chosen to characterize the slowest
and fastest rotators in the selected clusters. Using our double-
zone model with τc = 1 Myr, we confirm the conclusion made
by Irwin et al. (2007) that the rotational evolution of the fastest
rotators among solar-type stars can be simulated closely enough
with short coupling times characteristic of SB rotators (upper
dashed curves in Figure 8). In contrast, much longer coupling
times of order τc = 50–150 Myr and τc = 100–300 Myr for
the mass bins 0.9 � M/M⊙ � 1.1 and 0.7 � M/M⊙ < 0.9,
respectively, as obtained in our computations (solid curves in
the same figure), are required to explain the rotational evolution
of the slowest rotators.4

4 Irwin et al. (2007) reported much longer coupling times because they did
not recalibrate the wind parameter Kw for the slowest rotators.

From a theoretical standpoint, the inability of the SB rotation
model, on the one hand, and the ability of the DR model,
on the other hand, to reproduce the location of the slowest
rotators in the Ωe–age plot is caused by their, respectively,
inappropriate and appropriate characteristics of mapping of
f (0, P0) to f (t, P) for long rotation periods. Apparently, the
still unknown physical mechanism responsible for the internal
angular momentum transport in solar-type stars must have a
property, which is most likely related to Ωe, of making rotation
of the radiative core and convective envelope more and more
decoupled as one goes from a faster to slower rotating star.
For example, the timescale for internal angular momentum
transport by hydrodynamic mechanisms becomes shorter as
the rotation rate increases in this fashion (Pinsonneault et al.
1990). Assuming that a quantitative characteristic describing
this property changes continuously with Ωe (or P), this should
result in qualitative differences between the true Ωe distributions
for evolved clusters and those obtained with the double-zone
model for different values of τc. These qualitative differences
can be put on a scale by comparing the observed distributions of
Ωe with the modeled ones using the KS test. This procedure is
more rigorous than just matching the percentiles, because it uses
statistical information encoded in the entire distribution rather
than only in a part of it.

Given the aforementioned robust results concerning the
fastest solar-type rotators, the basic assumption of our following
statistical analysis is that the rotational evolution of stars with
sufficiently short initial rotation periods can be described by the
double-zone model with τc = 1 Myr, whereas that of slower
rotating stars needs τc ≫ 1 Myr. In principle, we ought to
introduce some monotonically increasing function τc(P0) into
our double-zone model that would produce a smooth transi-
tion from short-period SB rotators to stars with progressing DR
that had longer initial periods. However, given the simplicity
of the double-zone model, such approach looks overcompli-
cated. Therefore, we have decided to employ a simple step
function

τc(P0) =

{

1 Myr, if P0 � Pc,
τc ≫ 1 Myr, if P0 > Pc,

(16)

where Pc is a critical period.
The main objective of our statistical analysis of open cluster

rotation period data for solar-type stars is to get estimates of the
combination of parameters (Pc, τc) from Equation (16) that give
the highest KS probabilities of the hypothesis that an observed
Ωe distribution for an open cluster of age t and our theoretical Ωe

distribution computed for the same age t have been drawn from
the same real distribution. It is assumed that the initial period
distribution f (0, P0) is provided by the youngest clusters from
our data compilation: ONC, NGC 2362, or NGC 2264 (Table 1).
To do the analysis, we have performed extensive double-zone
model computations densely covering relevant regions (squares)
of the ((τd)max, τc) parameter space for a number of Pc values.
The resulting PKS contours are plotted in Figure 9 (the mapping
of ONC to M 35 for the mass bin centered at M = 1.0 M⊙),
Figure 10 (NGC 2362 to M 50 for M = 1.0 M⊙), Figure 11
(the mapping of NGC 2362 to M 34 for the mass bin centered
at M = 0.8 M⊙), and Figure 12 (NGC 2362 to M 50 for
M = 0.8 M⊙).

The PKS contour patterns revealed in Figures 9–11 clearly
show a decrease of the most probable value of the coupling time
with an increase of the disk-locking time, as expected. Indeed,
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Figure 9. Contours of the Kolmogorov–Smirnov probability of the hypothesis that the observed and modeled period distributions of M 35 stars with M = 1.0 ± 0.1 M⊙

have been drawn from the same real distribution. The initial periods are taken from the ONC cluster. The double-zone model with the dependence (16) of τc on P0 has
been employed. Simulations have been done for the shown intervals of the parameters τc and (τd)max, and for the values of Pc specified in parenthesis atop each panel.

(A color version of this figure is available in the online journal.)

a star whose pre-MS rotation rate was being kept constant,
as a result of its interaction with a circumstellar disk, for a
longer time would arrive at the ZAMS having a smaller amount
of angular momentum stored in the radiative core. Therefore,
even a shorter coupling time will not lead to a fast rotation
of its convective envelope simply because there is not much
of angular momentum left in the core to be transported to the
envelope.

From Figure 2 and Table 1, we can see that there is a large
number of stars in the youngest clusters with periods P0 < 12
days. Yet the PKS contour patterns in Figures 9–11 first become
apparent, as Pc increases, and then get dissolved well before
the critical period reaches the value of 12 days. This means that
the double-zone model cannot reproduce the Ωe distributions
in evolved clusters under the assumption that all stars are
SB rotators. There is always a group of stars with rotation
of the radiative core decoupled from that of the convective
envelope. For the mass bin centered at 1.0 M⊙, a lower limit
for the coupling time can be estimated as τc � 30 Myr for
(τd)max = 20 Myr, and τc � 55 Myr for (τd)max = 10 Myr
(Figure 9). Figure 10 gives nearly 20 Myr longer coupling
times. Probable values of the parameter Pc that divides stars
into SB rotators and objects possessing DR range from 2.5
to 5.5 days for these two mappings. However, what is more

important for us here is that, in all considered cases, we can
completely rule out the pure SB rotation evolution (Pc = ∞)
as a solution. Consequently, Spruit’s mechanism or any other
physical mechanism that can only produce nearly SB rotation
should be rejected as a prescription for rotational evolution
of solar-type stars. The true model should have a parameter
(presumably related to Ωe) that allows it to tune up its rotational
evolution so that the latter would resemble the rotational
evolution of the double-zone model with the coupling time
changing from τc = 1 Myr to τc ≈ 55 Myr. For stars with
masses in the interval 0.7 � M/M⊙ < 0.9, we estimate much
longer coupling times: τc � 150 Myr for (τd)max = 20 Myr,
and τc � 200 Myr for (τd)max = 10 Myr (Figures 11 and 12).
This result can be anticipated from Figure 8 where we compare
the lower 10th percentiles with our DR double-zone model
computations.

As an additional statistical exercise aiming to demonstrate the
failure of SB rotation to serve as a unique solution for all solar-
type stars, we have evolved the observed period distributions
for M 35 and M 50 backward in time to zero age, assuming
the short coupling time of 1 Myr for all stars, to see how their
initial period distributions might resemble those of Orion and
NGC 2264, respectively. To solve this inverse problem, we have
first projected (using our double-zone model with τc = 1 Myr)
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Figure 10. Contours of the Kolmogorov–Smirnov probability of the hypothesis that the observed and modeled period distributions of M 50 stars with M = 1.0±0.1 M⊙

have been drawn from the same real distribution. The initial periods are taken from the NGC 2362 cluster. The double-zone model with the dependence (16) of τc on
P0 has been employed. Simulations have been done for the shown intervals of the parameters τc and (τd)max, and for the values of Pc specified in parenthesis atop
each panel.

(A color version of this figure is available in the online journal.)

a sufficiently wide rectangular domain of the (log P0, log τd)
parameter space into the log P space at the ages of M 35 and
M 50. The projections have turned out to look like perfect planes.
Contour lines for the M 35 projection are plotted in upper panel
in Figure 13. It is seen that the backward solution is not unique.
In fact, every value of log P (t) at an older age t is mapped into

a diagonal line segment

log P0 ≈ a log τd + b (17)

back at t = 0. To assign a unique value of the initial period for
log P (t), we have decided to randomly select τd from an interval
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Figure 11. Contours of the Kolmogorov–Smirnov probability of the hypothesis that the observed and modeled period distributions of M 34 stars with M = 0.8±0.1 M⊙

have been drawn from the same real distribution. The initial periods are taken from the NGC 2362 cluster. The double-zone model with the dependence (16) of τc on
P0 has been employed. Simulations have been done for the shown intervals of the parameters τc and (τd)max, and for the values of Pc specified in parenthesis atop
each panel.

(A color version of this figure is available in the online journal.)
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Figure 12. Contours of the Kolmogorov–Smirnov probability of the hypothesis that the observed and modeled period distributions of M 50 stars with M = 0.8±0.1 M⊙

have been drawn from the same real distribution. The initial periods are taken from the NGC 2362 cluster. The double-zone model with the dependence (16) of τc on
P0 has been employed. Simulations have been done for the shown intervals of the parameters τc and (τd)max, and for the values of Pc specified in parenthesis atop
each panel.

(A color version of this figure is available in the online journal.)
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Figure 13. Upper panel: contour lines in a domain of initial conditions
(log P0, log τd) that are projected to specified values of log P (shown on the
lines) at the age of M 35 (150 Myr) for SB rotational evolution computed using
the double-zone model with τc = 1 Myr. These lines are used to restore the
initial period distribution for solar-type stars in M 35 (shaded histogram in
middle panel) and to compare it with the Orion period distribution (thick solid
curve). Bottom panel shows the corresponding comparison between M 50 and
NGC 2264.

(A color version of this figure is available in the online journal.)

restricted by the end points of the diagonal (Equation (17)).
Thus computed “initial” rotation periods for the M 35 and
M 50 stars are compared with the Orion and NGC 2264 period
distributions in Figure 13 (middle and bottom panels).

We see that the hypothesis that all solar-type stars, indepen-
dently of their rotation periods, evolved like SB rotators would
require that M 35 and M 50 had initially contained much larger
fractions of slow rotators compared to Orion and NGC 2264.
Because this is unlikely to be the case, we should reject any
prescription for the internal transport of angular momentum

that enforces SB rotation in a solar-type star without respect to
how slowly it rotates. In particular, the original Tayler–Spruit
dynamo cannot be considered as a relevant mechanism for an-
gular momentum redistribution in solar-type stars because it
always enforces nearly SB rotation in both fastest and slowest
rotators.

4. DISCUSSION AND CONCLUSIONS

One of the main conclusions made in this paper is that the
observed rotation period distributions of low-mass stars in open
clusters do not seem to support the hypothesis that all solar-type
stars evolve as SB rotators. Instead, statistical analyses of these
data show that only the fastest rotators among solar-type stars
can be considered to possess SB rotation during their entire
evolution, whereas their slowly rotating counterparts are most
likely to manifest internal DR between the ages of ∼ 30 Myr and
several hundred Myr. This is not a new result though because,
e.g., Irwin et al. (2007) came to a similar conclusion. A novelty
of our work is that we have used the entire period distributions
of solar-type stars in a number of open clusters of different
ages, not just some of their statistics, and extensive Monte-
Carlo simulations to put this conclusion on a more rigorous
quantitative basis. This seems to be quite a reasonable approach
to the solution of the problem, given that it has a large number of
poorly constrained parameters. In particular, we have found that
a star with M = 1.0 ± 0.1 M⊙ that starts its rotational evolution
with a period P0 � 2–4 days should have the rotation of its
convective envelope and radiative core coupled on a timescale
of order τc = 55 ± 25 Myr, where the systematic uncertainty of
this estimate takes into account the anticipated decrease of the
coupling time with an increase of the disk-locking time. For a
slightly less massive star with M = 0.8 ± 0.1 M⊙, the coupling
time increases to τc = 175 ± 25 Myr. Given that the initial
period distributions, those for the youngest open clusters, have
rather densely occupied bins up to P0 ≈ 12 days (Figure 2),
it turns out that quite large fractions of solar-type stars (up to
50%) should go through a phase of DR evolution.

It is important to note that solar-type stars in open clusters
older than a few hundred Myr are not suitable for a type of
statistical analysis employed by us. The problem with the older
clusters is that rotation periods of solar-type stars in them have
already converged too close to each other, all aiming eventually
to approach the solar rotation. Therefore, period distributions
for the older clusters do not allow to make an unambiguous
conclusion about the rotational evolution of solar-type stars. To
illustrate this, we have evolved the NGC 2264 period distribution
of stars with M = 1.0 ± 0.1 M⊙ to a period distribution at
t = 550 Myr corresponding to the age of M 37 (Figure 14). We
see that at this old age the period distribution mapping admits
two branches of solutions, one with DR and another with SB
rotation. This bimodality is caused by the very narrow range of
the mapping at old ages which finally degenerates into a point
at the solar age.

The second novelty of our investigation is that we have
related the coupling time from the double-zone model to its
corresponding value of the constant viscosity from our full
stellar evolutionary model (Figure 7). In particular, the minimum
coupling time of 30 Myr obtained in our analysis of DR of
solar-type stars roughly corresponds to ν0 = 7.5×104 cm2 s−1,
whereas the longest coupling time of ∼80 Myr for stars with
M = 1.0 ± 0.1 M⊙ implies that in some of them the internal
transport of angular momentum can be as slow as that modeled
with a viscosity ν0 ≈ 3 × 104 cm2 s−1.
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Figure 14. Contours of the Kolmogorov–Smirnov probability of the hypothesis that the observed and modeled period distributions of M 37 stars with M = 1.0±0.1 M⊙

have been drawn from the same real distribution. The initial periods are taken from the NGC 2264 cluster. The double-zone model with the dependence (16) of τc on
P0 has been employed. Simulations have been done for the shown intervals of the parameters τc and (τd)max, and for the values of Pc specified in parenthesis atop
each panel. Because of the convergence to the solar rotation, there is an ambiguity in the rotational evolution mode (SB or DR) for this 550 Myr old cluster.

(A color version of this figure is available in the online journal.)

Finally, we have shown that original Spruit’s prescription
always enforces SB rotation in a solar-type star, no matter how
slowly it rotates. Therefore, it cannot be accepted as a physical
mechanism for the internal angular momentum redistribution in
radiative cores of solar-type stars many of which are indirectly
proved to possess a degree of DR.

We have also found that the revised prescription for the
Tayler–Spruit dynamo (Denissenkov & Pinsonneault 2007) re-
sults in the rotational evolution superficially resembling that ob-
tained using the original prescription, although the former leaves
a large differentially rotating radiative core in the present-day
solar model (Figure 6). Hence, the revised prescription appears
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Figure 15. Rotation period evolution and final rotation profiles in the solar
models computed using Spruit’s revised prescription (solid curves) and the
combined viscosity (Equation (18)) (dotted curves). Dashed curves represent
results obtained with the combined viscosity in which the term νGSF has been
multiplied by a factor of 10. For comparison, dot-dashed curve in upper panel
shows the rotational evolution computed using the double-zone model with
τc = 100 Myr (a model with DR).

to be in conflict both with the rotation period data for solar-type
stars in open clusters (like the original prescription) and with the
helioseismic data (unlike the original prescription). It is worth
seeing if other possible angular momentum transport mecha-
nisms can assist the revised prescription in bringing the rotating
solar model closer to observations. To test this idea, we have
supplemented the effective magnetic viscosity (Equation (12))
with viscosities arising from the secular shear instability (de-
noted by the subscript “ss” below), Goldreich–Schubert–Fricke
instability (GSF), as well as with the molecular viscosity (mol)
and a viscosity νmc = |rU (r)|/5 that approximately describes
the transport of angular momentum by meridional circulation
as a diffusion process:

ν = (νe)(12)
min + νss + νGSF + νmc + νmol. (18)

To calculate the quantities νss, νGSF, and the meridional circu-
lation velocity U (r), we have used the corresponding equations
from the Appendix of Chanamé et al. (2005). Note that their
expression for U (r) neglects terms depending on the µ-gradient
and its derivatives. Therefore, the meridional circulation in this
approximation is expected to penetrate deeper into the radiative
core than in the case of its fully consistent implementation orig-
inally proposed by Maeder & Zahn (1998) that had later been
applied to study the rotational mixing in solar-metallicity MS
stars with M � 1.35 M⊙ by Palacios et al. (2003).

In Figure 15, the dotted curves represent results of our
computations with the combined viscosity (Equation (18))
substituted into Equation (1). Note that a slightly increased
amount of angular momentum that can be transported from the
core to the envelope on a longer hydrodynamical timescale has
changed our results in the right directions: first, after the wind
constant Kw is properly recalibrated, the P–age relation has
shifted toward longer periods, and, second, the degree of DR in
the core has slightly been reduced. To find out if these changes
will further grow in the same directions when the efficiency
of supplementary angular momentum transport mechanisms
increases, we have multiplied νGSF, the dominating viscosity
in the core, by a factor of 10. Results of this artificial viscosity
enhancement are plotted in Figure 15 with dashed curves. We
see that both the P–age relation and the core rotation profile
have indeed continued to change in the right directions. This
exercise shows that the revised prescription cannot be rejected as
easily as the original one. There remains a possibility that, when
being assisted by other transport processes, it may reproduce the
observational data yet.

Our main conclusion is critically based on a comparison
of theoretical predictions and observations of rotation periods
for the slowest rotators in the intermediate-age open clusters.
Therefore, if the observational data were biased toward the
longest periods that would undermine confidence in our results.
The real situation turns out to be opposite. Observations for some
of our used open clusters (for those with smaller data samples)
are actually biased toward the shortest periods, as is expected
from the photometric period measurement procedure that needs
longer observational times to accumulate data sufficient for
extracting longer periods. The following example illustrates
this bias. Filled circles in upper panels of Figure 16 represent
the Pleiades v sin i unbiased data from Terndrup et al. (2000).
For comparison, open circles in the upper left panel show the
Pleiades data used in our work that do appear to be biased toward
lower rotation periods. On the other hand, open circles in the
upper right panel are the M 35 data from Meibom et al. (2009).
Their original periods have been transformed into v sin i values
using a randomly generated angle 0 � i � π/2 and R = R⊙.
The lower right panel shows that the unbiased data for the two
clusters of similar age look alike (PKS = 0.112, the medians
are 6.8 and 8.5, the first and third quartiles are 5.4 and 13 for
the Pleiades, and 4.7 and 18 for M 35). In contrast, the biased
Pleiades data in the lower left panel have very different median
and third quartile values, 15 and 39, respectively.

To sum up, our main conclusions can concisely be formulated
as follows. Whereas the period distributions for the fastest
rotators among solar-type stars in open clusters are very well
reproduced assuming their SB rotation, the period distributions
for the slowest rotators are better described by stellar models
with DR in their radiative cores. This conclusion is in agreement
with previous results reported by Irwin et al. (2007). Our new
result is that the original prescription for the Tayler–Spruit
dynamo always enforces SB rotation in a solar-type star even
if the star is a slow rotator. Therefore, this angular momentum
transport mechanism is unlikely to operate in solar-type early
MS stars. The revised prescription for the Tayler–Spruit dynamo
cannot explain the observed period distributions either. Besides,
it leaves a large rapidly rotating radiative core in the present-
day solar model. To be consistent with observations, the revised
prescription needs to be assisted by other angular momentum
transport mechanisms that must be able to penetrate into the
deep core and operate on a longer timescale.
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Figure 16. Filled circles in upper panels are the Pleiades v sin i unbiased data from Terndrup et al. (2000). Open circles in the upper left panel are the Pleiades data
used in this paper that appear to be biased toward lower rotation periods. Open circles in the upper right panel are the M 35 data from Meibom et al. (2009). Periods
have been transformed into v sin i values using a randomly generated angle 0 � i � π/2 and R = R⊙. The lower right panel shows that the unbiased data for the two
clusters of similar age look alike (PKS = 0.112, the medians are 6.8 and 8.5, the first and third quartiles are 5.4 and 13 for the Pleiades, and 4.7 and 18 for M 35). In
contrast, the biased Pleiades data in the lower left panel have very different median and third quartile values, 15 and 39, respectively. Vertical dotted lines in upper
panels show the range of 0.7 � M/M⊙ � 1.1.
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Eff-Darwich, A., Mathur, S., & Provost, J. 2007, Science, 316, 1591

Grevesse, N., & Noels, A. 1993, in Origin and Evolution of the Elements, ed.
N. Prantzos, E. Vangioni-Flam, & M. Casse (Cambridge: Cambridge Univ.
Press), 15

Hartman, J. D., et al. 2009, ApJ, 691, 342

Hillenbrand, L. A. 2005, arXiv:astro-ph/0511083v1

Irwin, J., Aigrain, S., Bouvier, J., Hebb, L., Hodgkin, S., Irwin, M., & Moraux,
E. 2009, MNRAS, 392, 1456

Irwin, J., Aigrain, S., Hodgkin, S., Irwin, M., Bouvier, J., Clarke, C., Hebb, L.,
& Moraux, E. 2006, MNRAS, 370, 954

Irwin, J., Hodgkin, S., Aigrain, S., Bouvier, J., Hebb, L., Irwin, M., & Moraux,
E. 2008a, MNRAS, 384, 675

Irwin, J., Hodgkin, S., Aigrain, S., Bouvier, J., Hebb, L., & Moraux, E.
2008b, MNRAS, 383, 1588

Irwin, J., Hodgkin, S., Aigrain, S., Hebb, L., Bouvier, J., Clarke, C., Moraux,
E., & Bramich, D. M. 2007, MNRAS, 377, 741

Itoh, N., Hayashi, H., Nishikawa, A., & Kohyama, Y. 1996, ApJS, 102, 411

Jayawardhana, R., Coffey, J., Scholz, A., Brandeker, A., & van Kerkwij, M. H.
2006, ApJ, 648, 1206

Keppens, R., MacGregor, K. B., & Charbonneau, P. 1995, A&A, 294, 469

Koenigl, A. 1991, ApJ, 370, L39

Krishamurthi, A., Pinsonneault, M. H., Barnes, S., & Sofia, S. 1997, ApJ, 480,
303

Krishamurthi, A., et al. 1998, ApJ, 493, 914

Lyo, A.-R., & Lawson, W. A. 2005, J. Korean Astron. Soc., 38, 241

MacGregor, K. B. 1991, in Angular Momentum Evolution of Young Stars, ed.
S. Catalano & J. R. Stauffer (Dordrecht: Kluwer), 315

MacGregor, K. B., & Brenner, M. 1991, ApJ, 376, 204

Maeder, A., & Zahn, J.-P. 1998, A&A, 334, 1000

Mamajek, E. E. 2009, in AIP Conf. Proc. 1158, Exoplanets and Disks: Their
Formation and Diversity, ed. T. Usuda, M. Tamura, & M. Ishi (Melville, NY:
AIP), 3

Matt, S., & Pudritz, R. E. 2005, ApJ, 632, L135

Meibom, S., Mathieu, R. D., & Stassun, K. G. 2009, ApJ, 695, 679

Mestel, L., & Weiss, N. O. 1987, MNRAS, 226, 123

Palacios, A., Talon, S., Charbonnel, C., & Forestini, M. 2003, A&A, 399,
603

Palla, F., & Stahler, S. W. 1991, ApJ, 375, 288

http://dx.doi.org/10.1086/175039
http://adsabs.harvard.edu/abs/1994ApJ...437..879A
http://adsabs.harvard.edu/abs/1994ApJ...437..879A
http://adsabs.harvard.edu/abs/1998A&A...333..629A
http://adsabs.harvard.edu/abs/1998A&A...333..629A
http://dx.doi.org/10.1086/343030
http://adsabs.harvard.edu/abs/2003ApJ...582..358A
http://adsabs.harvard.edu/abs/2003ApJ...582..358A
http://dx.doi.org/10.1016/S0375-9474(99)00030-5
http://adsabs.harvard.edu/abs/1999NuPhA.656....3A
http://adsabs.harvard.edu/abs/1999NuPhA.656....3A
http://adsabs.harvard.edu/abs/1997A&A...326.1023B
http://adsabs.harvard.edu/abs/1997A&A...326.1023B
http://dx.doi.org/10.1086/510365
http://adsabs.harvard.edu/abs/2006ApJ...653L..57B
http://adsabs.harvard.edu/abs/2006ApJ...653L..57B
http://dx.doi.org/10.1086/432410
http://adsabs.harvard.edu/abs/2005ApJ...631..540C
http://adsabs.harvard.edu/abs/2005ApJ...631..540C
http://dx.doi.org/10.1086/173357
http://adsabs.harvard.edu/abs/1993ApJ...417..762C
http://adsabs.harvard.edu/abs/1993ApJ...417..762C
http://dx.doi.org/10.1126/science.1116849
http://adsabs.harvard.edu/abs/2005Sci...309.2189C
http://adsabs.harvard.edu/abs/2005Sci...309.2189C
http://dx.doi.org/10.1086/379698
http://adsabs.harvard.edu/abs/2003ApJ...597L..77C
http://adsabs.harvard.edu/abs/2003ApJ...597L..77C
http://dx.doi.org/10.1086/522079
http://adsabs.harvard.edu/abs/2007ApJ...670.1337D
http://adsabs.harvard.edu/abs/2007ApJ...670.1337D
http://www.arxiv.org/abs/1002.2261v1
http://dx.doi.org/10.1086/510345
http://adsabs.harvard.edu/abs/2007ApJ...655.1157D
http://adsabs.harvard.edu/abs/2007ApJ...655.1157D
http://dx.doi.org/10.1086/589502
http://adsabs.harvard.edu/abs/2008ApJ...684..757D
http://adsabs.harvard.edu/abs/2008ApJ...684..757D
http://dx.doi.org/10.1086/378954
http://adsabs.harvard.edu/abs/2003ApJ...598.1246D
http://adsabs.harvard.edu/abs/2003ApJ...598.1246D
http://dx.doi.org/10.1051/0004-6361:200500156
http://adsabs.harvard.edu/abs/2005A&A...440L...9E
http://adsabs.harvard.edu/abs/2005A&A...440L...9E
http://dx.doi.org/10.1126/science.1140598
http://adsabs.harvard.edu/abs/2007Sci...316.1591G
http://adsabs.harvard.edu/abs/2007Sci...316.1591G
http://adsabs.harvard.edu/abs/1993oee..conf...15G
http://dx.doi.org/10.1088/0004-637X/691/1/342
http://adsabs.harvard.edu/abs/2009ApJ...691..342H
http://adsabs.harvard.edu/abs/2009ApJ...691..342H
http://www.arxiv.org/abs/astro-ph/0511083v1
http://dx.doi.org/10.1111/j.1365-2966.2008.14158.x
http://adsabs.harvard.edu/abs/2009MNRAS.392.1456I
http://adsabs.harvard.edu/abs/2009MNRAS.392.1456I
http://dx.doi.org/10.1111/j.1365-2966.2006.10521.x
http://adsabs.harvard.edu/abs/2006MNRAS.370..954I
http://adsabs.harvard.edu/abs/2006MNRAS.370..954I
http://dx.doi.org/10.1111/j.1365-2966.2007.12725.x
http://adsabs.harvard.edu/abs/2008MNRAS.384..675I
http://adsabs.harvard.edu/abs/2008MNRAS.384..675I
http://dx.doi.org/10.1111/j.1365-2966.2007.12669.x
http://adsabs.harvard.edu/abs/2008MNRAS.383.1588I
http://adsabs.harvard.edu/abs/2008MNRAS.383.1588I
http://dx.doi.org/10.1111/j.1365-2966.2007.11640.x
http://adsabs.harvard.edu/abs/2007MNRAS.377..741I
http://adsabs.harvard.edu/abs/2007MNRAS.377..741I
http://dx.doi.org/10.1086/192264
http://adsabs.harvard.edu/abs/1996ApJS..102..411I
http://adsabs.harvard.edu/abs/1996ApJS..102..411I
http://dx.doi.org/10.1086/506171
http://adsabs.harvard.edu/abs/2006ApJ...648.1206J
http://adsabs.harvard.edu/abs/2006ApJ...648.1206J
http://adsabs.harvard.edu/abs/1995A&A...294..469K
http://adsabs.harvard.edu/abs/1995A&A...294..469K
http://dx.doi.org/10.1086/185972
http://adsabs.harvard.edu/abs/1991ApJ...370L..39K
http://adsabs.harvard.edu/abs/1991ApJ...370L..39K
http://dx.doi.org/10.1086/303958
http://adsabs.harvard.edu/abs/1997ApJ...480..303K
http://adsabs.harvard.edu/abs/1997ApJ...480..303K
http://dx.doi.org/10.1086/305173
http://adsabs.harvard.edu/abs/1998ApJ...493..914K
http://adsabs.harvard.edu/abs/1998ApJ...493..914K
http://adsabs.harvard.edu/abs/2005JKAS...38..241L
http://adsabs.harvard.edu/abs/2005JKAS...38..241L
http://adsabs.harvard.edu/abs/1991amey.conf..315M
http://dx.doi.org/10.1086/170269
http://adsabs.harvard.edu/abs/1991ApJ...376..204M
http://adsabs.harvard.edu/abs/1991ApJ...376..204M
http://adsabs.harvard.edu/abs/1998A&A...334.1000M
http://adsabs.harvard.edu/abs/1998A&A...334.1000M
http://adsabs.harvard.edu/abs/2009AIPC.1158....3M
http://dx.doi.org/10.1086/498066
http://adsabs.harvard.edu/abs/2005ApJ...632L.135M
http://adsabs.harvard.edu/abs/2005ApJ...632L.135M
http://dx.doi.org/10.1088/0004-637X/695/1/679
http://adsabs.harvard.edu/abs/2009ApJ...695..679M
http://adsabs.harvard.edu/abs/2009ApJ...695..679M
http://adsabs.harvard.edu/abs/1987MNRAS.226..123M
http://adsabs.harvard.edu/abs/1987MNRAS.226..123M
http://dx.doi.org/10.1051/0004-6361:20021759
http://adsabs.harvard.edu/abs/2003A&A...399..603P
http://adsabs.harvard.edu/abs/2003A&A...399..603P
http://dx.doi.org/10.1086/170188
http://adsabs.harvard.edu/abs/1991ApJ...375..288P
http://adsabs.harvard.edu/abs/1991ApJ...375..288P


No. 2, 2010 ANGULAR MOMENTUM TRANSPORT IN SOLAR-TYPE STARS 1287

Pinsonneault, M. H., Kawaler, S. D., & Demarque, P. 1990, ApJS, 74, 501
Pinsonneault, M. H., Kawaler, S. D., Sofia, S., & Demarque, P. 1989, ApJ, 338,

424
Prosser, C. F., et al. 1995, PASP, 107, 211
Radick, R. R., Thompson, T. D., Lockwood, G. W., Duncan, D. K., & Baggett,

W. E. 1987, ApJ, 321, 459
Rebull, L. M., Wolff, S. C., & Strom, S. E. 2004, AJ, 127, 1029
Rogers, F. J., & Iglesias, C. A. 1992, ApJ, 401, 361
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Scholz, A., & Eislöffel, J. 2007, MNRAS, 381, 1638
Shu, F., Najita, J., Ostriker, E., Wilkin, F., Ruden, S., & Lizano, S. 1994, ApJ,

429, 781
Sicilia-Aguilar, A., et al. 2009, ApJ, 701, 1188

Siess, L., & Livio, M. 1997, ApJ, 490, 785
Sills, A., Pinsonneault, M. H., & Terndrup, D. M. 2000, ApJ, 534, 335
Skumanich, A. 1972, ApJ, 171, 565
Spruit, H. C. 1999, A&A, 349, 189
Spruit, H. C. 2002, A&A, 381, 923
Tayler, R. J. 1973, MNRAS, 161, 365
Terndrup, D. M., Stauffer, J. R., Pinsonneault, M. H., Sills, A., Yuan, Y., Jones,

B. F., Fischer, D., & Krishnamurthi, A. 2000, AJ, 119, 1303
Tinker, J., Pinsonneault, M., & Terndrup, D. M. 2002, ApJ, 564, 877
Tomczyk, S., Schou, J., & Thompson, M. J. 1995, ApJ, 448, L57
Weber, E. J., & Davis, L., Jr. 1967, ApJ, 148, 217
Zahn, J.-P. 1992, A&A, 256, 115
Zahn, J.-P., Brun, A. S., & Mathis, S. 2007, A&A, 474, 145

http://dx.doi.org/10.1086/191507
http://adsabs.harvard.edu/abs/1990ApJS...74..501P
http://adsabs.harvard.edu/abs/1990ApJS...74..501P
http://dx.doi.org/10.1086/167210
http://adsabs.harvard.edu/abs/1989ApJ...338..424P
http://adsabs.harvard.edu/abs/1989ApJ...338..424P
http://dx.doi.org/10.1086/133541
http://adsabs.harvard.edu/abs/1995PASP..107..211P
http://adsabs.harvard.edu/abs/1995PASP..107..211P
http://dx.doi.org/10.1086/165645
http://adsabs.harvard.edu/abs/1987ApJ...321..459R
http://adsabs.harvard.edu/abs/1987ApJ...321..459R
http://dx.doi.org/10.1086/380931
http://adsabs.harvard.edu/abs/2004AJ....127.1029R
http://adsabs.harvard.edu/abs/2004AJ....127.1029R
http://dx.doi.org/10.1086/172066
http://adsabs.harvard.edu/abs/1992ApJ...401..361R
http://adsabs.harvard.edu/abs/1992ApJ...401..361R
http://dx.doi.org/10.1111/j.1365-2966.2009.15339.x
http://adsabs.harvard.edu/abs/2009MNRAS.399..996R
http://adsabs.harvard.edu/abs/2009MNRAS.399..996R
http://dx.doi.org/10.1111/j.1365-2966.2007.12333.x
http://adsabs.harvard.edu/abs/2007MNRAS.381.1638S
http://adsabs.harvard.edu/abs/2007MNRAS.381.1638S
http://dx.doi.org/10.1086/174363
http://adsabs.harvard.edu/abs/1994ApJ...429..781S
http://adsabs.harvard.edu/abs/1994ApJ...429..781S
http://dx.doi.org/10.1088/0004-637X/701/2/1188
http://adsabs.harvard.edu/abs/2009ApJ...701.1188S
http://adsabs.harvard.edu/abs/2009ApJ...701.1188S
http://dx.doi.org/10.1086/304905
http://adsabs.harvard.edu/abs/1997ApJ...490..785S
http://adsabs.harvard.edu/abs/1997ApJ...490..785S
http://dx.doi.org/10.1086/308739
http://adsabs.harvard.edu/abs/2000ApJ...534..335S
http://adsabs.harvard.edu/abs/2000ApJ...534..335S
http://dx.doi.org/10.1086/151310
http://adsabs.harvard.edu/abs/1972ApJ...171..565S
http://adsabs.harvard.edu/abs/1972ApJ...171..565S
http://adsabs.harvard.edu/abs/1999A&A...349..189S
http://adsabs.harvard.edu/abs/1999A&A...349..189S
http://dx.doi.org/10.1051/0004-6361:20011465
http://adsabs.harvard.edu/abs/2002A&A...381..923S
http://adsabs.harvard.edu/abs/2002A&A...381..923S
http://adsabs.harvard.edu/abs/1973MNRAS.161..365T
http://adsabs.harvard.edu/abs/1973MNRAS.161..365T
http://dx.doi.org/10.1086/301259
http://adsabs.harvard.edu/abs/2000AJ....119.1303T
http://adsabs.harvard.edu/abs/2000AJ....119.1303T
http://dx.doi.org/10.1086/324153
http://adsabs.harvard.edu/abs/2002ApJ...564..877T
http://adsabs.harvard.edu/abs/2002ApJ...564..877T
http://dx.doi.org/10.1086/309598
http://adsabs.harvard.edu/abs/1995ApJ...448L..57T
http://adsabs.harvard.edu/abs/1995ApJ...448L..57T
http://dx.doi.org/10.1086/149138
http://adsabs.harvard.edu/abs/1967ApJ...148..217W
http://adsabs.harvard.edu/abs/1967ApJ...148..217W
http://adsabs.harvard.edu/abs/1992A&A...265..115Z
http://adsabs.harvard.edu/abs/1992A&A...265..115Z
http://dx.doi.org/10.1051/0004-6361:20077653
http://adsabs.harvard.edu/abs/2007A&A...474..145Z
http://adsabs.harvard.edu/abs/2007A&A...474..145Z

	1. INTRODUCTION
	2. BASIC THEORETICAL MODELS AND OBSERVATIONAL DATA
	2.1. Common Model Ingredients
	2.2. Initial and Boundary Conditions
	2.3. Angular Momentum Loss and Internal Transport
	2.4. Double-zone Model

	3. COMPARISON WITH OBSERVATIONS
	4. DISCUSSION AND CONCLUSIONS
	REFERENCES

