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ТЕОРИЯ ВЕРОЯТНОСТЕЙ
Том 55 И ЕЕ ПРИМЕНЕНИЯ Выпу с к 3

2010

c© 2010 г. CAMMAROTA V.∗ , ORSINGHER E.∗

ANGULAR PROCESSES RELATED TO CAUCHY
RANDOM WALKS

В статье изучается угловой процесс, связанный со случайным
блужданиями в евклидовом и неевклидовом пространстве, шаги ко-
торых имеют распределение Коши.

Это приводит к различного рода нелинейным преобразованиям
случайных величин с распределением Коши, сохраняющим плот-
ность Коши. Мы приводим явный вид этих распределений для
всевозможных комбинаций параметров масштаба и сдвига.

Анализируются непрерывные дроби, содержащие случайные ве-
личины с распределением Коши. Показано, что на n-м этапе слу-
чайные величины все еще имеют распределение Коши с параме-
трами, связанными с числами Фибоначчи. Это позволяет нам до-
казать, что последовательность сходится по распределению к золо-
тому сечению.

Ключевые слова и фразы: гиперболическая тригонометрия,
закон арксинуса, непрерывные дроби, числа Фибоначчи, нелинейные
преобразования случайных величин.

1. Introduction. We consider a particle starting from the origin O
of R2 which takes initially a horizontal step of length 1 and a vertical one,
say C1, with a standard Cauchy distribution. It reaches therefore the posi-
tion (1,C1). The line l1 joining the origin with (1,C1) forms a random angle
Θ1 with the horizontal axis (see Figure 1).

On l1 the traveller repeats the same movement with a step of unit length
(either forward or backward) along l1 and a standard Cauchy distributed
step, say C2, on the line orthogonal to l1. The right triangle obtained with
the last two displacements has a hypotenuse belonging to the line l2 with
random inclination Θ2 on l1.

∗Dipartimento di Statistica, Probabilità e Statistiche applicate, University of
Rome «La Sapienza», P.le Aldo Moro 5, 00185 Rome, Italy; e-mail: valenti-
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Fig. 1. The angular process in the Euclidean plane. By C(aj ,bj) we indicate the j-th
random displacement with Cauchy distribution possessing scale parameter aj and
location parameter bj

After n steps the sequence of random angles Θ1, . . . ,Θn describes the
rotation of the moving particle around the starting point, their partial sums
describe an angular random walk which can be written as

Sn = Θ1 + ∙ ∙ ∙+Θn =
n∑

j=1

arctgCj , (1.1)

where Cj are independent standard Cauchy random variables. If the random
steps of the planar random walk above were independent Cauchy random
variables with scale parameter aj and location parameter bj , then the pro-
cess (1.1) must be a little bit modified and rewritten as

Sn = Θ1 + ∙ ∙ ∙+Θn =
n∑

j=1

arctgCj , (1.2)

where Cj ∼ C(aj ,bj). The model (1.2) can be extended also to the case where
the first step has length dj and the second one is Cauchy distributed with
scale parameter aj and location parameter bj (see Figure 1), then

tgΘj = C(aj/dj ,bj/dj).

The same random walk can be generated if the two orthogonal steps,
at each displacement, are represented by two independent Gaussian random
variables Xj and Yj . In this case, for each right triangle, we can write

tgΘj =
Xj

Yj
.

If Xj and Yj are two standard independent Gaussian random variables then
tgΘj = Xj/Yj possesses standard Cauchy distribution and we get the model
in (1.1). The model (1.2) can be obtained by considering orthogonal Gaus-
sian steps with different variances and in this case the scale parameter of the
random variables Cj is the ratio aj = σ

Y
j /σ

X
j .
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The model (1.1) describing the angular random process has a hyper-
bolic counterpart. We consider a particle starting from the origin O of
the Poincaré half-plane H2+ = {(x, y): y > 0}. At the j-th displacement,
j = 1, 2, . . ., the particle makes two steps of random hyperbolic length ηj
and η̂j on two orthogonal geodesic lines. The j-th displacement leads to a
right triangle Tj with sides of length ηj and η̂j and random acute angles Θj
and Θ̂j. In each triangle Tj the first step is taken on the extension of the
hypotenuse of the triangle Tj−1 (see Figure 2). From hyperbolic trigonome-
try (for basic results on hyperbolic geometry see, for example, [5]) we have
that

sinΘj =
sh η̂j√

ch2 ηj ch
2 η̂j − 1

, cosΘj =
sh ηj ch η̂j√
ch2 ηj ch

2 η̂j − 1
.

From the above expressions we have that

tgΘj =
th η̂j
sh ηj

.

If we take independent random hyperbolic displacements ηj and η̂j such

that the random variables Ej =
th η̂j
sh ηj

are standard Cauchy distributed, then

Θj = arctgCj . If the triangles Tj were isosceles, then tgΘj = 1/ch ηj and
Θj ∈ [−π/4, π/4] so that in this case the Cauchy distribution cannot be
attributed to tgΘj .

Fig. 2. The angular random process in the Poincaré half-plane

In the model described here the random steps (and therefore the random
angular windings Θj) are independent. If we consider the model of papers [2]
and [3], where the displacements are taken orthogonally to the geodesic lines
joining the origin O of H2+ with the positions occupied at deviation instants,
the angular displacements Θj must be such that

sinΘj =
sh ηj√

1 +
∏j
r=1 ch

2 ηr

= sh ηj cos

(

arctg
j∏

r=1

ch2 ηr

)
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and therefore involve dependent random variables.
For the area of the random hyperbolic triangle Tj we note that

area (Tj) =
π

2
−Θj − Θ̂j =

π

2
−
[

arctg

(
th η̂j
sh ηj

)

+ arctg

(
th ηj
sh η̂j

)]

=
π

2
− arctg

(
coth ηj
sh η̂j

+
coth η̂j
sh ηj

)

= arcctg

(
coth ηj
sh η̂j

+
coth η̂j
sh ηj

)

.

Since each acute angle inside Tj is linked to both sides of the triangle, the
analysis of the random process An =

∑n
j=1 area (Tj) is much more compli-

cated and we drop it.
Let Cj ∼ C(aj ,bj), j = 1, 2, . . ., be independent Cauchy random variables,

where aj is the scale parameter and bj is the location parameter. In the study
of the angular random walk (1.1) and (1.2) we must analyze the distribution
of the following nonlinear transformations of Cauchy random variables:

U =
C1 + C2
1− C1C2

, (1.3)

since

arctgC1 + arctgC2 = arctg
C1 + C2
1− C1C2

.

Since the 1960 a wide class of nonlinear transformations of Cauchy ran-
dom variables has been considered. Williams [10], Knight [6] and Letac [7]
proved that transformations of the form

εf(x) = kx+ α−
n∑

i=1

μi

x− γi
,

where ε = ±1, α, γi ∈ R and k, μi > 0, preserve the Cauchy distribution.
In particular, in [10] the following characterization for Cauchy random

variables is proved. The random variable X is a standard Cauchy if and
only if (1 + bX)/(b−X) is a standard Cauchy for some constant b which is
not the tangent of a rational multiple of π.

Knight [6] asserts that a random variable X is of Cauchy type if and only
if the random variable (aX + b)/(cX + d) is still of Cauchy type, whenever
ad− bc 6= 0.
Our problem is more strictly related to the results obtained by Pitman

and Williams [8]. They proved that the standard Cauchy distribution is pre-
served under certain types of transformations represented by meromorphic
functions whose poles are all real and simple. As a corollary they obtained
that, if P and Q are two independent random variables uniformly distributed
in (0, π), then the random variables X = tgP and Y = tgQ are standard
Cauchy and

tg(P +Q) =
X + Y

1−XY
law
= X.
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We will show that the random variable (1.3) is endowed with Cauchy
distribution in a much more general situation, namely when the random
variables Cj, j = 1, 2, have nonzero location parameters bj and scale param-
eters aj . The scale and location parameters of U depend on both parame-
ters aj and bj suitably combined.
In particular, if b1 = b2 = 0 and a1 = a2 = 1, then U is still distributed

as a standard Cauchy distribution and therefore in (1.1) we have that

Sn
law
= arctgC.

Since also 1/C is a standard Cauchy (for basic properties of Cauchy random
variables see, for example, [9, p. 105], from (1.3), a number of related random
variables preserving the form of the Cauchy distribution can be considered.
For example, the random variables

Z1 =
C1C2 + 1

C1 −C2
, Z2 =

1−C1C2
C1 +C2

, Z3 =
C1 +C2
C1C2 − 1

,

also possess standard Cauchy distribution.
If b1 = b2 = 0 and the scale parameters a1, a2 are different, then (1.3)

still preserves the Cauchy distribution but with scale parameter equal to
(a1 + a2)/(1 + a1a2) and location parameter equal to zero. This can be
grasped by means of the following relationship:

arctgC1 + arctgC2
law
= arctg

{
a1 + a2
1 + a1a2

C

}

, (1.4)

where Cj ∼ C(aj ,0). Result (1.4) is illustrated in Figure 3.

Fig. 3. The figure shows that shooting a ray with inclination Θ1, uniformly distributed,
against the line at distance a1 and then shooting a ray with a uniformly distributed
angle Θ2 on the line at distance a2 is equivalent to shooting on the barrier at the
distance a = (a1 + a2)/(1 + a1a2) with a uniformly distributed angle Θ

By iterating the process (1.4) we arrive at the formula

3∑

j=1

arctgCj
law
= arctg

{∑3
j=1 aj + a1a2a3

1 +
∑
i 6=j aiaj

C

}
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which gives an insight into further extensions of the process outlined above.
Much more complicated are the cases, where the location parameters of

the Cauchy distributions are different from zero. For the special case, where
C1 and C2 are independent Cauchy such that C1 ∼ C(1,b) and C2 ∼ C(1,b),
the random variable (1.3) still possesses Cauchy density with scale parameter
(2b2 + 4)/(b4 + 4) and location parameter 2b3/(b4 + 4).
We have obtained the general distribution of (1.3), where C1 and C2 are

independent Cauchy such that C1 ∼ C(a1,b1) and C2 ∼ C(a2,b2), and also the
distribution of

U =
γC1 + δC2
α− βC1C2

for arbitrary positive real numbers β, γ, δ and α + β 6= 0. In particular, if
C1 and C2 are independent standard Cauchy random variables, then U is
Cauchy with scale parameter equal to |(γ + δ)/(α+ β)| and location param-
eter equal to zero.

In the last section we examine continued fractions involving Cauchy
random variables. In particular, we have studied

Vn =
1

1 + 1
1+ 1

1+C

(1.5)

and

Un =
1

1 + 1
1+ 1

1+C2

(1.6)

which generalize the random variables V1 = 1/(1 +C) and U1 = 1/(1 +C
2).

Continued fractions involving random variables have been analyzed in [4] and
more recently in [1]. The random variable U1 has the arcsine distribution in
[0, 1], while Ut = tU1, with t > 0, has distribution

P{Ut ∈ ds} =
ds

π
√
s(t− s)

, 0 < s < t.

For each n > 1, the random variables Vn are Cauchy distributed with scale
parameter an and location parameter bn that can be expressed in terms of
Fibonacci numbers. This permits us to prove the monotonicity of an and bn
and that limn→∞ an = 0 and limn→∞ bn = ϕ−1, where ϕ = (1 +

√
5)/2 is the

golden ratio. Finally we obtain that the sequences of random variables 1+Vn
and 1 + Un, n > 1, converge in distribution to the number ϕ = (1 +

√
5)/2.

This should be expected, since it has the infinite fractional expansion

1 +
√
5

2
= 1 +

1

1 + 1
1+∙∙∙

(1.7)

which is related to (1.5) and (1.6).



Angular processes related to Cauchy random walks 495

2. Centered Cauchy random variables. In this section we study
the distribution of the following random variable:

U =
γC1 + δC2
α− βC1C2

, (2.1)

where C1 and C2 are independent, standard Cauchy. We assume, without
restrictions, that β, γ, δ are nonnegative real numbers all different from zero
(because of the symmetry of Cj, j = 1, 2) and α + β 6= 0. In the following
theorem we prove that U is still Cauchy distributed.

Theorem 2.1. The random variable U in (2.1) possesses Cauchy dis-
tribution with scale parameter equal to |(γ + δ)/(α+ β)| and location param-
eter equal to zero. We can also restate the result in symbols as

U
law
=
γ + δ

α+ β
C.

P r o o f. The density of the random variable U can be obtained by
means of the transformation

u =
γx+ δy

α− βxy
, v = y,

with (x, y) ∈ R2 and Jacobian equal to

|J | =
αγ + δβv2

(γ + βuv)2
.

The joint density g = g(u, v) reads

g(u, v) =
1

π2(1 + v2)

1

1 + ((αu− δv)/(γ + βuv))2
αγ + δβv2

(γ + βuv)2

=
1

π2(1 + v2)

αγ + δβv2

v2(β2u2 + δ2) + 2uv(βγ − δα) + α2u2 + γ2
,

where (u, v) ∈ R2, and must be integrated with respect to v in order to
obtain the distribution of U . Therefore

P

{
γC1 + δC2
α− βC1C2

∈ du
}

=
du

π2

∫ ∞

−∞

[
1

1 + v2
αγ + δβv2

v2(u2β2 + δ2) + 2vu(βγ − δα) + u2α2 + γ2

]

dv

=
du

π2

∫ ∞

−∞

[
Av +B

1 + v2
+

Cv +D

v2(u2β2 + δ2) + 2vu(βγ − δα) + u2α2 + γ2

]

dv, (2.2)
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where

A =
2u(βγ − αδ)(βδ − αγ)

[u2(α− β)2 + (γ − δ)2][u2(α+ β)2 + (γ + δ)2]
,

B =
(αγ − βδ)[(γ2 − δ2) + u2(α2 − β2)]

[u2(α− β)2 + (γ − δ)2][u2(α+ β)2 + (γ + δ)2]
,

C = −A(u2β2 + δ2),

D =
(βγ − αδ)[u4αβ(β2 − α2) + u2(βγ − αδ)(3αγ − βδ) + γδ(γ2 − δ2)]

[u2(α− β)2 + (γ − δ)2][u2(α+ β)2 + (γ + δ)2]
.

We start by evaluating the first part of the integral (2.2):
∫ ∞

−∞

[
Av

1 + v2
+

Cv

v2(u2β2 + δ2) + 2vu(βγ − δα) + u2α2 + γ2

]

dv

=
A

2

∫ ∞

−∞

[
2v

1 + v2
−

2v(u2β2 + δ2)± 2u(βγ − δα)
v2(u2β2 + δ2) + 2vu(βγ − δα) + u2α2 + γ2

]

dv

=
A

2
lim

d→∞,c→−∞
log

(
1 + v2

v2(u2β2 + δ2) + 2vu(βγ − δα) + u2α2 + γ2

)∣∣
∣
∣

d

c

+Au(βγ − δα)
∫ ∞

−∞

1

v2(u2β2 + δ2) + 2vu(βγ − δα) + u2α2 + γ2
dv

= Au(βγ − δα)
∫ ∞

−∞

1

v2(u2β2 + δ2) + 2vu(βγ − δα) + u2α2 + γ2
dv

= Au(βγ − δα)
π

u2αβ + γδ
, (2.3)

where the last integral is obtained by means of the change of variable

v
√
u2β2 + δ2+

u(βγ − δα)
√
u2β2 + δ2

= z

√

u2α2 + γ2 −
u2(βγ − δα)2

u2β2 + δ2
= z
u2αβ + γδ
√
u2β2 + δ2

.

In view of result (2.3) and inserting the values of A, B and D we have that

du

π2

∫ ∞

−∞

[
Av +B

1 + v2
+

Cv +D

v2(u2β2 + δ2) + 2vu(βγ − δα) + u2α2 + γ2

]

dv

=
du

π

1

u2αβ + γδ
[Au(βγ − αδ) +B(u2αβ + γδ) +D]

=
du

π

[
(γδ + u2αβ)(βγ − αδ)[u2(β2 − α2) + (γ2 − δ2)]

(u2αβ + γδ)[u2(α− β)2 + (γ − δ)2][u2(α+ β)2 + (γ + δ)2]

+
(γδ + u2αβ)(αγ − βδ)[u2(α2 − β2) + (γ2 − δ2)]

(u2αβ + γδ)[u2(α− β)2 + (γ − δ)2][u2(α+ β)2 + (γ + δ)2]

]

=
du

π

u2(β2 − α2)(β − α)(γ + δ) + (γ2 − δ2)(α+ β)(γ − δ)
[u2(α− β)2 + (γ − δ)2][u2(α+ β)2 + (γ + δ)2]

=
du

π

(α+ β)(γ + δ)[u2(α− β)2 + (γ − δ)2]
[u2(α− β)2 + (γ − δ)2][u2(α+ β)2 + (γ + δ)2]
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=
du

π

(α+ β)(γ + δ)

u2(α+ β)2 + (γ + δ)2
.

Another approach is based on the conditional characteristic function,

E {eiβU |C2 = v} =
1

π

∫ ∞

−∞
eiβ(γu+δv)/(α−βuv)

du

1 + u2

=
1

π

∫ ∞

−∞
eiβw

αγ + δβv2

v2(β2w2 + δ2) + 2vw(βγ − δα) + w2α2 + γ2
dw,

where w = (γu+ δv)/(α− βuv). The inverse Fourier transform gives the
conditional density g(w|v) and thus we arrive again at the integral (2.2).
Theorem 2.1 is proved.
R e m a r k 2.1. A special case implied by Theorem 2.1 concerns the

random variable

V =
C1 + C2
1− C1C2

,

where Cj ∼ C(aj ,0), j = 1, 2, are independent Cauchy random variables with
location parameter equal to zero and scale parameter aj > 0. If we choose
γ = a1, δ = a2, α = 1, and β = a1a2, we conclude that

V
law
=
a1C1 + a2C1
1− a1a2C1C2

law
=
a1 + a2
1 + a1a2

C.

In the same way we obtain that

V̂ =
γC1 + δC2
α− βC1C2

law
=
γa1C1 + δa2C2
α− βa1a2C1C2

law
=
γa1 + δa2
α+ βa1a2

C,

where α+ βa1a2 6= 0.
R e m a r k 2.2. In view of Theorem 2.1 we can obtain by recurrence

the distribution of the current angle after n steps for the angular random
walk

Sn =
n∑

j=1

arctgCj

described in the introduction. We have

Sn =
n∑

j=1

arctgC(aj ,0) = arctgC(ân−1,0) + arctgC(an,0),

where arctgC(ân−1,0) is the random variable Sn−1. In particular, if aj = 1 for
j = 1, . . . , n, we have the following property of the standard Cauchy random
variables Cj :

n∑

j=1

arctgCj
law
= arctgC.
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R e m a r k 2.3. A simple byproduct of Theorem 2.1 is that

E eiβU =
1

π2

∫

R2
exp

{

iβ
x+ y

1− xy

}
a1a2 dx dy

(a21 + x
2)(a22 + y

2)

=
1

π2

∫ π/2

−π/2

∫ π/2

−π/2
exp

{

iβ
a1 tg θ1 + a2 tg θ2
1− a1a2 tg θ1 tg θ2

}

dθ1 dθ2

= exp

{

−
a1 + a2
1 + a1a2

|β|
}

. (2.4)

In (2.4) we have used the transformations x = a1 tg θ1 and y = a2 tg θ2. In
the special case a1 = a2 = 1 the relationship (2.4) yields

e−|β| =
1

π2

∫ π/2

−π/2

∫ π/2

−π/2
exp

{

iβ
tg θ1 + tg θ2
1− tg θ1 tg θ2

}

dθ1 dθ2

=
1

π2

∫ π/2

−π/2

∫ π/2

−π/2
eiβ tg(θ1+θ2) dθ1 dθ2 =

2

π2

∫ π

0

x cos(β tg x) dx. (2.5)

In the last step of (2.5) we have used the transformations θ1 + θ2 = x and
θ2 = y. The integral (2.5) shows that, if (Θ1,Θ2) is uniform in the square
S = {(θ1, θ2): −π/2 < |θi| < π/2, i = 1, 2}, then the random variable
W = tg(Θ1+Θ2) has characteristic function e

−|β| because Θ1+Θ2 is uniform
and therefore W is Cauchy distributed.

R e m a r k 2.4. It is well known that for a planar Brownian mo-
tion {(B1(t), B2(t)), t > 0} starting from (x, y) the random variable B1(Ty)
possesses Cauchy distribution with parameters (x, y), where

Ty = inf{t > 0: B2(t) = 0}.

If the starting points of two planar Brownian motions (Bi1(t), B
i
2(t)), for

i = 1, 2, are located on the y axis as in Figure 4, then we have that

Θ = Θ1 +Θ2 = arctgB
1
1(Ta1) + arctgB

2
1(Ta2)

law
= arctgC1 + arctgC2

law
= arctg

a1 + a2
1 + a1a2

C,

where C1 and C2 are two independent Cauchy random variables with scale
parameters a1 and a2, respectively, and location parameters equal to zero.
Therefore if the starting point of a third Brownian motion has coordinates
(0, (a1 + a2)/(1 + a1a2)) then B(T(a1+a2)/(1+a1a2)) represents its hitting posi-
tion on the x-axis. This point forms with (0, 1) and the origin a right triangle
with an angle equal to Θ = Θ1 +Θ2.
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Fig. 4. The hitting position on the x-axis of a planar Brownian motion is Cauchy dis-
tributed. In the figure the random angles Θ1, Θ2, and Θ = Θ1+Θ2 are shown. For
a = (a1 + a2)/(1 + a1a2) the right-hand figure shows the hitting position B1(Ta)

3. Noncentered Cauchy random variables. For independent
Cauchy random variables C1 and C2, with location parameters b1 and b2 and
scale parameters a1 and a2, the random variable U in (2.1) is still Cauchy
distributed with both parameters affected by the values of the location pa-
rameters b1, b2 and the scale parameters a1, a2.

Theorem 3.1. If Ci, i = 1, 2, are two independent Cauchy random
variables with location parameters bi and scale parameters ai, then the ran-
dom variable U is still Cauchy distributed with scale parameter

aU =
(a1 + a2)(1 + a1a2 − b1b2) + (b1 + b2)(a1b2 + a2b1)

(1 + a1a2 − b1b2)2 + (a1b2 + a2b1)2

and location parameter

bU =
(a1 + a2)(a1b2 + a2b1)− (b1 + b2)(1 + a1a2 − b1b2)

(1 + a1a2 − b1b2)2 + (a1b2 + a2b1)2
.

P r o o f. We obtain the density function of the random variable U by
observing that

P{U ∈ dw} = E
{

P

{
C1 + C2
1− C1C2

∈ dw
∣
∣
∣
∣C2

}}

and remarking that

P

{
C1 + C2
1− C1C2

∈ dw
∣
∣
∣
∣C2 = y

}

=
a1

π[(w − y)/(1 + wy)− b1]2 + a21

1 + y2

(1 + wy)2
dw.
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Therefore

P{U ∈ dw}

=
a1a2 dw

π2

∫ ∞

−∞

1

[(w − y)/(1 + wy)− b1]2 + a21

1 + y2

(1 + wy)2
1

(y − b2)2 + a22
dy

=
a1a2 dw

π2

∫ ∞

−∞

1 + y2

[w − y − b1(1 + wy)]2 + a21(1 + wy)2
1

(y − b2)2 + a22
dy

=
a1a2 dw

π2

∫ ∞

−∞

1 + y2

[y2E − 2yF +G][y2 − 2yH +K]
dy, (3.1)

where

E = 1 + 2b1w + (a
2
1 + b

2
1)w

2, F = −b1 − (a21 + b
2
1 − 1)w + b1w

2,

G = a21 + b
2
1 − 2b1w + w

2, H = b2, K = a
2
2 + b

2
2.

We rewrite the integral in (3.1) in the following form:

P{U ∈ dw} =
a1a2 dw

π2

∫ ∞

−∞

[
Ay +B

y2E − 2yF +G
+

Cy +D

y2 − 2yH +K

]

dy (3.2)

with
A+ CE = 0, −2AH +B − 2CF +DE = 1,

AK − 2HB + CG− 2DF = 0, BK +DG = 1.
(3.3)

The integrals in (3.2) can be worked out by means of the changes of variables

y
√
E −

F
√
E
= x

√

G−
F 2

E
, y −H = x

√
K −H2.

The first integral becomes

∫ ∞

−∞

Ay +B

(y
√
E − F/

√
E)2 +G− F 2/E

dy

=

∫ ∞

−∞

1

E

BE +AF + xA
√
GE − F 2

(x2 + 1)
√
GE − F 2

dx,

and the second one takes the form

∫ ∞

−∞

Cy +D

(y −H)2 +K −H2
dy =

∫ ∞

−∞

D + CH + xC
√
K −H2

(x2 + 1)
√
K −H2

dx.

A substantial simplification can be obtained because

√
GE − F 2 = a1(1 + w

2),
√
H −K2 = a2.
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If we turn back to the distribution (3.2), in view of the above calculations,
we have that

P{U ∈ dw} =
a2 dw

π2(1 + w2)E

∫ ∞

−∞

BE +AF + xAa1(1 + w
2)

x2 + 1
dx

+
a1dw

π2

∫ ∞

−∞

D + CH + xCa2
1 + x2

dx.

We observe that, by the first equation of (3.3),

a1a2 dw

π2

(
A

E
+ C

)∫ ∞

−∞

x

1 + x2
dx = 0

and

P{U ∈ dw} =
{

a2
BE +AF

πE(1 + w2)
+ a1

D + CH

π

}

dw

=

{

a2
B − CF
π(1 + w2)

+ a1
D + CH

π

}

dw.

The values of B, C, and D can be derived by solving the system (3.3),
simplified as

B + 2C(HE − F ) +DE = 1, −2BH + C(G− EK)− 2DF = 0,

BK +DG = 1.

By means of cumbersome computations we arrive at the final result

P{U ∈ dw}

=
1

π

{
(1 + a1a2 − b1b2)[w(a1b2 + a2b1) + a1 + a2]

− (a1b2 + a2b1)[w(1 + a1a2 − b1b2)− (b1 + b2)]
}

×
{
[w(1 + a1a2 − b1b2)− (b1 + b2)]

2 + [w(a1b2 + a2b1) + a1 + a2]
2
}−1

=
(a1 + a2)(1 + a1a2 − b1b2) + (b1 + b2)(a1b2 + a2b1)

(1 + a1a2 − b1b2)2 + (a1b2 + a2b1)2

×
{[

w +
(a1 + a2)(a1b2 + a2b1)− (b1 + b2)(1 + a1a2 − b1b2)

(1 + a1a2 − b1b2)2 + (a1b2 + a2b1)2

]2

+

[
(a1 + a2)(1 + a1a2 − b1b2) + (b1 + b2)(a1b2 + a2b1)

(1 + a1a2 − b1b2)2 + (a1b2 + a2b1)2

]2}−1
.

Theorem 3.1 is proved.

R e m a r k 3.1. In view of Theorem 3.1 it is possible to obtain the
following particular cases.
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(i) For a1 = a2 = 1 and b1 = b2 = b, we have that

aU =
2b2 + 4

b4 + 4
, bU =

2b3

b4 + 4
.

This shows that U has center of symmetry on the positive half-line if b > 0
and on the negative half-line if b < 0, therefore the nonlinear transforma-
tion U preserves the sign of the mode.
(ii) For a1 = a2 = a and b1 = b2 = b we have that

aU =
2a(1 + a2 + b2)

(1 + a2 − b2)2 + (2ab)2
, bU =

2b(a2 + b2 − 1)
(1 + a2 − b2)2 + (2ab)2

.

We note that aU and bU depend simultaneously from the scale and location
parameters of the random variables involved in U .

4. Continued fractions. The property that the reciprocal of a
Cauchy random variable has still a Cauchy distribution has a number of
possible extensions which we deal with in this section.
We start by considering the sequence

V1 =
1

1 +C
, V2 =

1

1 + 1
1+C

, . . . , Vn =
1

1 + 1
1+∙∙∙+ 1

1+C

, (4.1)

and prove the following theorem.

Theorem 4.1. The random variables defined in (4.1) have Cauchy dis-
tribution, Vn ∼ C(an,bn), where the scale parameters an and the location pa-
rameters bn satisfy the recursive relationships

an+1 =
an

(1 + bn)2 + a2n
, n = 1, 2, . . . , (4.2)

bn+1 =
bn + 1

(1 + bn)2 + a2n
, n = 1, 2, . . . . (4.3)

P r o o f. Let us assume that Vn possesses Cauchy density with param-
eters an and bn. Then Vn+1 writes

P{Vn+1 < v} = P
{
1

1 + Vn
< v

}

= P

{
1

1 + an + bnC
< v

}

.

After some computations the density of Vn+1 can be written as

fVn+1(v) =
an/((1 + bn)

2 + a2n)

π[v − (bn + 1)/((1 + bn)2 + a2n)]2 + a2n/[(1 + bn)2 + a2n]2
, v ∈ R.

It can be ascertained directly that V1 possesses Cauchy distribution with
parameters a1 = 1/2 and b1 = 1/2.

Theorem 4.1 is proved.
R e m a r k 4.1. We have evaluated the following table of parame-

ters an and bn:
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n 1 2 3 . . . 102

an 1/2 1/5 1/13 . . . 5.77e−42

bn 1/2 3/5 8/13 . . . 0.618034

For n = 1, 2, 3 we can observe that the scale parameters an coincide with
the inverse of the odd-indexed Fibonacci numbers while the sequence bn has
the numerators coinciding with the even-indexed Fibonacci numbers and the
denominators correspond to the odd-indexed Fibonacci numbers.

In light of the previous considerations we can show that for n > 1

bn =
F2n

F2n+1
, an =

1

F2n+1
, (4.4)

where Fn, n > 0, is the Fibonacci sequence. Recalling that the Fibonacci
numbers admit the representation (it can easily be checked by induction)

Fn =
ϕn − (1− ϕ)n

√
5

, (4.5)

where ϕ = (1 +
√
5)/2 is the golden ratio, we now prove that if an and bn

have the representations (4.4), then also an+1 and bn+1 can be expressed in
the same form. From (4.2) and (4.3) we have

bn+1 =
F2n/F2n+1 + 1

(F2n/F2n+1 + 1)2 + 1/F 22n+1
=
F2n+2F2n+1

F 22n+2 + 1

= F2n+2

[
ϕ2n+1 − (1− ϕ)2n+1

ϕ4n+4 + (1− ϕ)4n+4 − 2ϕ2n+2(1− ϕ)2n+2 + 5

]√
5

= F2n+2

[
ϕ2n+1 − (1− ϕ)2n+1

[ϕ2n+1 − (1− ϕ)2n+1][ϕ2n+3 − (1− ϕ)2n+3]

]√
5 =
F2n+2

F2n+3
.

Similar calculations prove that an+1 =
1

F2n+3
. In view of representations (4.4)

and (4.5), it is easy to show that

lim
n→∞

bn = lim
n→∞

F2n

F2n+1
= lim
n→∞

1− ((1− ϕ)/ϕ)2n

ϕ− (1− ϕ)((1− ϕ)/ϕ)2n
=
1

ϕ
= ϕ− 1,

lim
n→∞

an = lim
n→∞

1

F2n+1
= 0.

Otherwise, observing that the sequence bn, n > 1, is increasing, because

bn+1

bn
=
F2n+2F2n+1

F2n+3F2n
=
ϕ4n+3 + (1− ϕ)4n+3 + 1
ϕ4n+3 + (1− ϕ)4n+3 − 4

> 1,

and taking the limits in (4.2) and (4.3) we have that

L =
L

(1 +H)2 + L2
, H =

H + 1

(1 +H)2 + L2
, (4.6)
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where H = limn→∞ an and L = limn→∞ bn. From the relationships (4.6) we
derive the equality

L

H
=

L

H + 1

that implies L = 0. In fact, for L 6= 0, we arrive at the absurd that H =
H + 1. Substituting L = 0 in the second formula of (4.6) we obtain

H =
1

H + 1
.

Since H satisfies the algebraic equation H2 + H − 1 = 0, it follows that
H = ϕ− 1, where ϕ is the golden ratio (see Figure 5).

Fig. 5. In the left figure the densities of the Cauchy random variables V1, V2, V3, and V4
are shown. In the right figure the densities of U1, U2, U3 and U4 are plotted

R e m a r k 4.2. A slightly more general case concerns the sequence

W1 =
1

c1 + d1C(a0,b0)
=

1

c1 + a0d1 + b0d1C
,

W2 =
1

c2 + d2W1
, W3 =

1

c3 + d3W2
, . . . .

By performing calculations similar to those of Theorem 4.1 we have that W1
has Cauchy distribution with scale parameter a1 and location parameter b1
such that

a1 =
d1a0

(c1 + d1b0)2 + d21a
2
0

, b1 =
c1 + d1b0

(c1 + d1b0)2 + d21a
2
0

.

Similarly, if Wn ∼ C(an,bn), then Wn+1 ∼ C(an+1,bn+1), where

an+1 =
dn+1an

(cn+1 + dn+1bn)2 + d2n+1a
2
n

,

bn+1 =
cn+1 + dn+1bn

(cn+1 + dn+1bn)2 + d2n+1a
2
n

(4.7)
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for every n > 2. The sequences in (4.7) for cn = dn = 1 coincide with (4.2)
and (4.3).

Another sequence of continued fractions involving the Cauchy distribu-
tion is the following one:

U1 =
1

1 +C2
, U2 =

1

1 + 1
1+C2

, . . . , Un =
1

1 + 1
1+∙∙∙+ 1

1+C2

. (4.8)

It is well known that the random variable U1 possesses the arcsine law. Unlike
the sequence Vn studied above the sequence Un, n > 1, has a density structure
changing with n. Some calculations are sufficient to show that U1, U2, U3, U4
have density, respectively, equal to

fU1(u) =
1

π
√
u(1− u)

, 0 < u < 1,

fU2(u) =
1

πu
√
(1− u)(2u− 1)

,
1

2
< u < 1,

fU3(u) =
1

π(1− u)
√
(2u− 1)(2− 3u)

,
1

2
< u <

2

3
,

fU4(u) =
1

π(2u− 1)
√
(2− 3u)(5u− 3)

,
3

5
< u <

2

3
.

The general result concerning Un is stated in the following theorem.

Theorem 4.2. For every n > 1 the distribution of the random variable
Un is given by

P{Un ∈ du} =
1

π[(−1)n+1αn + (−1)nβnu]
1

√
(−1)nβn + (−1)n+1(αn + βn)u

×
1

√
(−1)n+1(αn + βn) + (−1)n(αn + 2βn)u

du, (4.9)

where (−1)n(αn + βn)/(αn + 2βn) < (−1)nu < (−1)nβn/(αn + βn), and
αn, βn ∈ N satisfy the recursive relationships αn = βn−1, βn = αn−1 + βn−1.

P r o o f. From (4.8) we have that Un+1 = 1/(1 + Un). Then proceeding
by induction, i.e., assuming that Un has distribution (4.9), we obtain that

P{Un+1 ∈ du} =
d

du
P

{

Un >
1− u
u

}

du =
d

du

∫ h(αn,βn)

(1−u)/u
P{Un ∈ du}

=
1

π

1

u2
1

[(−1)n+1αn + (−1)nβn(1− u)/u]

×
1

√
(−1)nβn + (−1)n+1(αn + βn)(1− u)/u

×
1

√
(−1)n+1(αn + βn) + (−1)n(αn + 2βn)(1− u)/u

du
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=
1

π[(−1)nβn + (−1)n+1(αn + βn)u]

×
1

√
(−1)n+1(αn + βn) + (−1)n(αn + 2βn)u

×
1

√
(−1)n(αn + 2βn) + (−1)n+1(2αn + 3βn)u

du.

In the first integral the function h(αn, βn) represents the right boundary of
the support of Un. We conclude that Un+1 possesses distribution (4.9) by
taking αn+1 = βn and βn+1 = αn + βn. Theorem 4.2 is proved.

R e m a r k 4.3. The sequence βn is a Fibonacci sequence, since we
have that βn = βn−1 + αn−1 = βn−1 + βn−2. We note that the sequence of
coefficients αn and βn are such that limn→∞ αn+1/βn+1 = limn→∞ βn/βn+1 =
ϕ−1. On the base of arguments similar to those of Remark 4.1 it is possible
to show that the sequence Un, n > 1, converges in distribution to ϕ − 1.
In this case the upper and lower bounds of the domain of definition of the
densities fUn(u), n > 1 are expressed as ratios of Fibonacci numbers (see
Figure 5).
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