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TEOPUA BEPOIATHOCTEN

Tom 55 n EE IIPUMEHEHUWUA Beinyck 3
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(© 2010 r. CAMMAROTA V.*, ORSINGHER E.*

ANGULAR PROCESSES RELATED TO CAUCHY
RANDOM WALKS

B craTbe m3yuaeTcs yriioBOW TPOIECC, CBA3AHHBIN CO CITYYalHBIM
Oy KTAHUSIMI B €BKJIAIOBOM U HEEBKJIMIOBOM IIPOCTPAHCTBE, IITaru Ko-
TOPBIX UMEIOT pacupenenenue Korm.

OTO NPUBOMUT K PAINIHOTO PONA HEIMHEHHBIM TPeoOpa3OBaHUIM
CITyJalHBIX BEJIMYUH C pacmpenereHneM Kormm, COXpaHSIONINM TJIOT-
vocTs Komm. Mer npuBonnM sIBHBII BHI 9TUX DPACHPENETIEHAN IS
BCEBO3MOXKHBIX KOMOMHAIIUHM TapaMeTpoB MacuiTaba U COBUTA.

AHanMM3UPYIOTCS HEMPEPBIBHBIE IPOOU, CONEPKAIINE CITy YATHbIE Be-
auauHLbl ¢ pacnpenererueM Komm. Iloxasano, uTo Ha m-M sTame ciy-
JafiHble BEIMYWHBL BCE €llle MMeloT pacupenenenue Kormm ¢ mapame-
TpaMmu, CBSI3aHHBIMEU C yuciiamMu PuboHauum. DTO MO3BOIISIET HAM II0-
Ka3aTh, YTO MOCIENOBATEIBHOCTE CXOOUTCS 110 PACIPENeIeHUIO K 30510-
TOMY CEYEHUIO.

Kaouesvie caosa u ¢Ppasvi: runepboOImdeckas TPUTOHOMETPHS,
3aKOH apKCUHYCA, HEITPEPBIBHBIE IPo0H, unciia PuboHaTIN, HETMHETHBIE
Ipeo0pa30OBaHMs CIIyYalHbIX BEJINYNH.

1. Introduction. We consider a particle starting from the origin O
of R? which takes initially a horizontal step of length 1 and a vertical one,
say C;, with a standard Cauchy distribution. It reaches therefore the posi-
tion (1, Cy). The line [; joining the origin with (1, C;) forms a random angle
©; with the horizontal axis (see Figure 1).

On [; the traveller repeats the same movement with a step of unit length
(either forward or backward) along I; and a standard Cauchy distributed
step, say C,, on the line orthogonal to [;. The right triangle obtained with
the last two displacements has a hypotenuse belonging to the line I, with
random inclination ©, on [;.
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Rome «La Sapienza», P.le Aldo Moro 5, 00185 Rome, Italy; e-mail: valenti-
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l 1,,///,,,///,,,,,

Fig. 1. The angular process in the Euclidean plane. By C(,; ;) we indicate the j-th
random displacement with Cauchy distribution possessing scale parameter a; and
location parameter b;

After n steps the sequence of random angles O4,...,0, describes the
rotation of the moving particle around the starting point, their partial sums
describe an angular random walk which can be written as

Sn:@1+---+@n:Zarcthj, (1.1)

Jj=1

where C; are independent standard Cauchy random variables. If the random
steps of the planar random walk above were independent Cauchy random
variables with scale parameter a; and location parameter b;, then the pro-
cess (1.1) must be a little bit modified and rewritten as

Sn:@1+-~~+@n=Zarcthj, (1.2)

Jj=1

where C; ~ C(q4, ,)- The model (1.2) can be extended also to the case where
the first step has length d; and the second one is Cauchy distributed with
scale parameter a; and location parameter b; (see Figure 1), then

tg0; = Cla;/d; by /d;)-

The same random walk can be generated if the two orthogonal steps,
at each displacement, are represented by two independent Gaussian random
variables X, and Y;. In this case, for each right triangle, we can write

X.

J

If X; and Y; are two standard independent Gaussian random variables then
tg©,; = X /Y, possesses standard Cauchy distribution and we get the model
n (1.1). The model (1.2) can be obtained by considering orthogonal Gaus-
sian steps with different variances and in this case the scale parameter of the
random variables C; is the ratio a; = o /o *.



Angular processes related to Cauchy random walks 491

The model (1.1) describing the angular random process has a hyper-
bolic counterpart. We consider a particle starting from the origin O of
the Poincaré half-plane H? = {(z,y): y > 0}. At the j-th displacement,
Jj = 1,2,..., the particle makes two steps of random hyperbolic length 7,
and 7); on two orthogonal geodesic lines. The j-th displacement leads to a
right triangle T} with sides of length 7, and 7); and random acute angles ©;
and (:)j. In each triangle T; the first step is taken on the extension of the
hypotenuse of the triangle 7;_; (see Figure 2). From hyperbolic trigonome-
try (for basic results on hyperbolic geometry see, for example, [5]) we have
that

sh);
\/Ch2 1 Ch2 ﬁ] -1

sh; chi;

sin @J = .
\/Ch2 ?7] Ch2 ﬁj -1

, cosO; =

From the above expressions we have that

_ th#;
~ shy,”

tg @j

If we take independent random hyperbolic displacements n; and 7); such

th n;
shn;

that the random variables F; = are standard Cauchy distributed, then

©, = arctg C;. If the triangles 7, were isosceles, then tg©®; = 1/chn; and
©, € [—7/4,7/4] so that in this case the Cauchy distribution cannot be
attributed to tg ©;.

\

Fig. 2. The angular random process in the Poincaré half-plane

In the model described here the random steps (and therefore the random
angular windings ©,) are independent. If we consider the model of papers [2]
and [3], where the displacements are taken orthogonally to the geodesic lines
joining the origin O of H? with the positions occupied at deviation instants,
the angular displacements ©; must be such that

. shn; d 2
sin®,; = ‘ — = shn; cos | arctg H ch®n,
V31+1I_,ch’n, r=1
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and therefore involve dependent random variables.
For the area of the random hyperbolic triangle 7T; we note that

- th 7, th 7;
area (1}) = g -0, -0, = g — [arctg (shzj> + arctg <sh2j)]
T
2

J Wi
. (cothAnj 4 coth ﬁj) — arcetg (coth o coth ﬁj)
shn; shn;

sh7; shn;

Since each acute angle inside 7} is linked to both sides of the triangle, the
analysis of the random process A, = }_7_, area (7}) is much more compli-
cated and we drop it.

Let C; ~ Ca;p,), J = 1,2,..., be independent Cauchy random variables,
where a; is the scale parameter and b; is the location parameter. In the study
of the angular random walk (1.1) and (1.2) we must analyze the distribution
of the following nonlinear transformations of Cauchy random variables:

Cy+ Cs
U= ——F"- 1.3
1 _ 01027 ( )
since o 1o
arctg Cy + arctg Cy = arctg %LCHCQ'Q

Since the 1960 a wide class of nonlinear transformations of Cauchy ran-
dom variables has been considered. Williams [10], Knight [6] and Letac [7]
proved that transformations of the form

Hi
ef(z) =kr+a ;x—%’
where € = +1, a,7; € R and k, u; > 0, preserve the Cauchy distribution.

In particular, in [10] the following characterization for Cauchy random
variables is proved. The random variable X is a standard Cauchy if and
only if (1+bX)/(b— X) is a standard Cauchy for some constant b which is
not the tangent of a rational multiple of .

Knight [6] asserts that a random variable X is of Cauchy type if and only
if the random variable (aX + b)/(cX + d) is still of Cauchy type, whenever
ad — bec # 0.

Our problem is more strictly related to the results obtained by Pitman
and Williams [8]. They proved that the standard Cauchy distribution is pre-
served under certain types of transformations represented by meromorphic
functions whose poles are all real and simple. As a corollary they obtained
that, if P and @) are two independent random variables uniformly distributed
in (0,7), then the random variables X = tg P and Y = tg @ are standard

Cauchy and
X + Y law
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We will show that the random variable (1.3) is endowed with Cauchy
distribution in a much more general situation, namely when the random
variables C;, j = 1,2, have nonzero location parameters b; and scale param-
eters a;. The scale and location parameters of U depend on both parame-
ters a; and b; suitably combined.

In particular, if b, = by, = 0 and a; = a, = 1, then U is still distributed
as a standard Cauchy distribution and therefore in (1.1) we have that

S, ' arctg C.

Since also 1/C is a standard Cauchy (for basic properties of Cauchy random
variables see, for example, [9, p. 105], from (1.3), a number of related random
variables preserving the form of the Cauchy distribution can be considered.
For example, the random variables

GGy +1 1-C,C, C, +C,

Ji=—= - Zy="—""" Z.=_—_"=
'Y o, -Cc,’ PP Cc+c,’ TP ocC,-1

also possess standard Cauchy distribution.

If by = by = 0 and the scale parameters a;, a, are different, then (1.3)
still preserves the Cauchy distribution but with scale parameter equal to
(a1 + az)/(1+ ajas) and location parameter equal to zero. This can be
grasped by means of the following relationship:

a; + as C}

arctg Cy 4 arctg Cy 2w arctg {
1 + aias

(1.4)

where C; ~ C(,, o). Result (1.4) is illustrated in Figure 3.

A A
ap C
9,
a) C
a C
9y o
0 » 0 »

Fig. 3. The figure shows that shooting a ray with inclination ©1, uniformly distributed,
against the line at distance a1 and then shooting a ray with a uniformly distributed
angle O on the line at distance a2 is equivalent to shooting on the barrier at the
distance a = (a1 + a2)/(1 + a1az2) with a uniformly distributed angle ©

By iterating the process (1.4) we arrive at the formula

3 3
aw _1a; + ajaq2a

E arctg C; o arctg{zj B e SC}
1+Zi;ﬁjaiaj

j=1



494 Cammarota V., Orsingher E.

which gives an insight into further extensions of the process outlined above.

Much more complicated are the cases, where the location parameters of
the Cauchy distributions are different from zero. For the special case, where
C, and C; are independent Cauchy such that C; ~ C( ) and Cy ~ Ci ),
the random variable (1.3) still possesses Cauchy density with scale parameter
(2b% +4)/(b* + 4) and location parameter 2b%/(b* + 4).

We have obtained the general distribution of (1.3), where C; and Cs are
independent Cauchy such that C; ~ C(q4, 5,) and C; ~ Cl4, ,), and also the

distribution of
o ’}/Cl + 502

U= 01—50102

for arbitrary positive real numbers 3,7, and o + 8 # 0. In particular, if
C; and C, are independent standard Cauchy random variables, then U is
Cauchy with scale parameter equal to |(y + 0)/(a + )| and location param-
eter equal to zero.

In the last section we examine continued fractions involving Cauchy
random variables. In particular, we have studied

1
V,= ——— (1.5)
L P
and 1
Uv,=—"— (1.6)
1+ —HL@

which generalize the random variables V; = 1/(1 4+ C) and U; = 1/(1 + C?).
Continued fractions involving random variables have been analyzed in [4] and
more recently in [1]. The random variable U; has the arcsine distribution in
[0, 1], while U; = tU;, with ¢t > 0, has distribution

d
P{Uteds}zis 0<s<t

/st —s)

For each n > 1, the random variables V,, are Cauchy distributed with scale
parameter a, and location parameter b, that can be expressed in terms of
Fibonacci numbers. This permits us to prove the monotonicity of a, and b,
and that lim,, ,, a, = 0 and lim,, ,. b, = ¢—1, where p = (1 + \/3)/2 is the
golden ratio. Finally we obtain that the sequences of random variables 14V,
and 14 U,, n > 1, converge in distribution to the number ¢ = (1 + v/5)/2.
This should be expected, since it has the infinite fractional expansion

1++v5 1
Vi1

(1.7)

which is related to (1.5) and (1.6).
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2. Centered Cauchy random variables. In this section we study
the distribution of the following random variable:

. ’}/Cl + 6C2

V=ahees .

where C; and C, are independent, standard Cauchy. We assume, without
restrictions, that 3, 7, 6 are nonnegative real numbers all different from zero
(because of the symmetry of C;, j = 1,2) and a + 8 # 0. In the following
theorem we prove that U is still Cauchy distributed.

Theorem 2.1. The random variable U in (2.1) possesses Cauchy dis-
tribution with scale parameter equal to |(y + 9)/(a + B)| and location param-
eter equal to zero. We can also restate the result in symbols as

7+5C

U .
a+

Proof. The density of the random variable U can be obtained by
means of the transformation

" yr + oy
- a—fzy’

)

with (z,y) € R* and Jacobian equal to

| = ay + §3v?
(v + puw)?’
The joint density g = g(u,v) reads
(u,0) = 1 1 ay + 6 Bv?
YT A0 T+ ((au—80)/(y + Buv))? (7 + Buv)?
1 ay + 6Bv?

72(1 + v2) v2(B2u? + 62) + 2uv(By — da) + a2u? + 42’

where (u,v) € R? and must be integrated with respect to v in order to
obtain the distribution of U. Therefore

P{701 +0Cs du}

a— pC,Cy

_ du “)[ 1 ay + 68v? }dv

o2 ) o L1 02 02(u2B? 4 62) 4 2uu(By — da) + ula® 4 2
du (> [Av+ B Cv+D

-2 do, (2.2
o [T+ s s e 09
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where

_ 2u(By — ad)(80 — ay)
[u?(a = B8)* + (v = 0)°][u*(e + B) + (v + 0)7]
_ (Ow pO)[(v* = 0%) + u*(e® — 5%)]
[u (= B)* + (v = 0)*)[w* (e + B)* + (v + 0)*)’
C — ( 252 +62)
_ (67 — ad)[u'aB(B” — o) + u?(By — ad)(3ary — B6) + ¥6(v* — 6%)]
[w? (e = B)* + (v = 6)*][u*(a + B)* + (v + 6)?] ’

We start by evaluating the first part of the integral (2.2):

/°° { Av N Cv ] dv
1+v2  v2(u?f? +62) —|— 2vu(fy — dar) + ula? + 2
L [ 1T 250 F VAT, W
T2 1+02  v2(u?f? 4 62) + 2vu(By — da) + u?a? + 2

d

e ( L+ )
=5, m__los 2(w2B? + 0%) + 20u(By — 6a) + uPa® + 12 )|,

o0 1

A B d

+ Au(By — éa) /700 v2(u?B? + 0%) + 2vu(By — da) + u?a® + 2 Y
0o 1

= Au(By —

u(By —da) /_Oo v2(u? 32 + 02) 4 2vu(fy — da) + ua? + 2 dv

T

= Au(fBy — da) my (2.3)

where the last integral is obtained by means of the change of variable

_ 2B~ — 50)2 2
y ,7u252+52+u(ﬂfy (5a):Z u2a2+72_u(ﬂ’y da) :zuaﬁ—i—’yé

Vu2p? + 82 u?(3? + 02 Vur? + 6%
In view of result (2.3) and inserting the values of A, B and D we have that
du oo{Av—i—B_i_ Cv+D ] y
) L 1402 02(u?f? + 62) 4+ 2vu(By — da) + u?a? + 2
du 1
=———[4 B o)+ D
 waB 10 AuUBY —ad)+ (w*a +70) + D]

ZdU{ (70 + u*aB)(By — ad)[W?(B* — o) + (v* = 0%)]
T L(w2af + o) [u(a — B)* + (v — )*|[u*(a + B)2 + (v + 6)?]
(78 +v?aB)(ay — Bo)[u*(a® — B°) + (v* = 6°)] ]
(u2af + y0)[u(a — 8)% + (v — 6)?|[u*(a + B)? + (v + 9)?]
du w?(8% —a?)(B — a)(y +0) + (v* = 6*)(a + B)(y — 9)
T [u¥(a—0)+ (v = 0)[u*(a+ B)2 + (v +6)]
_du (a4 B)(y+9)uP(a—B)+ (v —0)*
T [u*(a—B)2+ (v — 6)%[u*(a + B)? + (v + 9)?]
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_du (a+ B)(y+9)

" ot BP + (7 + 0

Another approach is based on the conditional characteristic function,

; [~ du
E iBU C — — 7/ iB(yu+dv)/(a—Puv)
{e | ? v} T J-—c0 ¢ 1 =+ ’1,1,2
_1/00 e oy + 5 dw
T J—oo v2(B2w? + §2) + 2vw(By — da) + w2a? +2

where w = (yu + 6v)/(ae — fuv). The inverse Fourier transform gives the
conditional density g(w|v) and thus we arrive again at the integral (2.2).
Theorem 2.1 is proved.

Remark 2.1. A special case implied by Theorem 2.1 concerns the
random variable

C,+C
Vo G + Cy 7
1-C1C,
where C; ~ C(,, 0), j = 1,2, are independent Cauchy random variables with
location parameter equal to zero and scale parameter a; > 0. If we choose
vy =ay, 6 =ay, « =1, and 8 = a,a,, we conclude that

e a1C1 + a2C1 1aw a1 + a2
1-— a1a20102 1+ a1Qay

In the same way we obtain that

"/\, . ’701 + (502 law ’ya101 =+ 5@202 law Yaq —+ 6@2 C
o — /80102 o — ﬁalagclcg o+ Ba1a2
where a + (ajas # 0.
Remark 2.2. Inview of Theorem 2.1 we can obtain by recurrence

the distribution of the current angle after n steps for the angular random
walk

S, = Z arctg C;
j=1
described in the introduction. We have

S, = Z arctg C(aj,o) = arctg C(a,_,,0) + arctg Ca, 0,
j=1

where arctg Cs, , o) is the random variable S,,_;. In particular, if a; = 1 for
j=1,...,n, we have the following property of the standard Cauchy random
variables C;:
n
Z arctg C; faw arctg C.

j=1
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Remark 2.3. A simple byproduct of Theorem 2.1 is that

, 1 LTty aias dz dy
ot f o)
= 2 e PV S @ T )@+ )

/2 /7‘-/2 ox { altgel—i‘aztgeg
P 1-— a10a9 tg¢91 tg92

} dé, do,

—m/2 w/2

- exp{ -t g (2.4)

1+ a102

In (2.4) we have used the transformations z = a; tg6; and y = astgf. In
the special case a; = ay = 1 the relationship (2.4) yields

/2 tg6, +tgo
o= L g% g2}d9d9
e = €x
w/z/ﬂ/z p{ 1 —tg0:tgb- T
w/2 ) 7T
_ / zﬂtg(01+02)d91d92:—2/ xcos(Btgz)dz. (2.5)
/2 J—m2 ™ Jo

In the last step of (2.5) we have used the transformations 6; + 6, = z and
05 = y. The integral (2.5) shows that, if (©;,0,) is uniform in the square
S = {(61,02): —7/2 < |0;] < w/2, i = 1,2}, then the random variable
W = tg(0;+0;) has characteristic function e~ 18l because O, + 0O, is uniform
and therefore W is Cauchy distributed.

Remark 24. It is well known that for a planar Brownian mo-
tion {(B1(t), Ba2(t)),t > 0} starting from (z,y) the random variable B;(T,)
possesses Cauchy distribution with parameters (z,y), where

T, = inf{t > 0: By(t) = 0}.

If the starting points of two planar Brownian motions (B:(t), Bi(t)), for
t = 1,2, are located on the y axis as in Figure 4, then we have that

©=0,+0, = arctg B% (T,

law

= arctg C; + arctg Cy faw arctg

) + arctg B3(T,,)
ai + as

1 + a;Qo

where C; and C, are two independent Cauchy random variables with scale
parameters a; and a., respectively, and location parameters equal to zero.
Therefore if the starting point of a third Brownian motion has coordinates
(0, (a1 + a2)/(1 + a1a2)) then B(T(4,+42)/(1+a1as)) TePresents its hitting posi-
tion on the z-axis. This point forms with (0, 1) and the origin a right triangle
with an angle equal to © = ©; + ©,.
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\/

B(T,.) BN(T,) B(T,)

Fig. 4. The hitting position on the z-axis of a planar Brownian motion is Cauchy dis-
tributed. In the figure the random angles ©1, O3, and © = ©1 + ©4 are shown. For
a = (a1 + a2)/(1 4 a1az) the right-hand figure shows the hitting position Bi(7,)

3. Noncentered Cauchy random variables. For independent
Cauchy random variables C; and C, with location parameters b, and b, and
scale parameters a; and as, the random variable U in (2.1) is still Cauchy
distributed with both parameters affected by the values of the location pa-
rameters by, b, and the scale parameters a;, a,.

Theorem 3.1. If C;, i = 1,2, are two independent Cauchy random
variables with location parameters b; and scale parameters a;, then the ran-
dom wvariable U 1is still Cauchy distributed with scale parameter

. (a1 + ag)(l + a1y — blbg) + (bl + b2)(a1b2 + CLle)
(1 + ajay — blbz)Q + (albg + a2b1)2

ay =

and location parameter

(0/1 + 0/2)(0/1172 + agbl) — (bl + bg)(l + ajay — b1b2)

b —
v (1 + ajay — b1b2)2 + (ale + a2b1)2

P roof. We obtain the density function of the random variable U by
observing that

. Cy+Cy
P{U € dw} = E{P{1 — .G, € dw‘Cg}}

and remarking that

ay 1+ y?
T[(w —y)/(1+wy) —u]* +ai (1+wy)?

P{ Cy+C, dw

1.0, Ed“"@_y}_
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Therefore
P{U € dw}
a1a2 dw / 1 1+ 92 1 d
(w=9)/(+wy) = b +af (1T wy)? (y— b +a3
B a1a2 dw / 1+192 1 q
B [w—y = b+ wy)P +af(L+wy)? (y— b+ a3
a1a2 dw / 1+ 92
= d 3.1
[2E — 2yF + G|[y2 — 2yH + K| (3.1)
where
E=1+2bhw+ (a] +b3)w?, F=-b —(a?+b7— 1w+ bw?
G=al+b —2byw+w?, H=by,, K=a3+bs.
We rewrite the integral in (3.1) in the following form:
ajas dw [ Ay+ B Cy+ D
P = 2
{U € dw} L/?E—2yF+G y? —2yH + K dy (32)
with
A+CE=0, —2AH+B-2CF+DE =1, 3.3

AK —2HB+CG —2DF =0, BK + DG = 1.

The integrals in (3.2) can be worked out by means of the changes of variables

2

yWE — \/_ =[G~ %, y-H=aVK - H.
The first integral becomes
/°° Ay+ B 4
o WWE—F/NEP+G—F2/E"”

* 1 BE+ AF +zAVGE — F?
— z,

wE  (22+1)V/GE — F?

and the second one takes the form

/°° Cy+ D d _/°° D+CH+xC\/K—H2dx
e —HP+ K- T | @y OWE B

A substantial simplification can be obtained because

VGE — F? = a,(1 + w?), VH — K2 = a,.
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If we turn back to the distribution (3.2), in view of the above calculations,
we have that

ay dw * BE + AF + zAa; (1 + w?)
P{Uedw}— 21+ w)E o] dz
a dw D —|— CH + xCas,
+— g dx.

We observe that, by the first equation of (3.3),

arasdw [ A © gz B
72 (E+C)/_ool+a:2dw_0

and

ax

P = —_—
{U € dw} {aQ TE(1 + w?) - T
_{ B-CF " D+CH}d
a27(1+w2) aq . w.

BE + AF D+CH}
—— dw

The values of B, C, and D can be derived by solving the system (3.3),
simplified as
B+2C(HE—-F)+DE=1, —-2BH+C(G—-EK)—-2DF =0,
BK + DG = 1.

By means of cumbersome computations we arrive at the final result

P{U € dw}
1
= ;{(1 + a1a9 — blbz)[’w(albz + agbl) + aq + (12]
— (arb + a2b)[w(1 + @105 = biby) — (b + by)]}

X {[w(l + ajas — biby) — (by + by)]? + [w(aiby + aghy) +ay + ag]Q}_l
_ (a1 + az)(1 + ajag — bibe) + (by + ba)(a1bs + azby)
(1 + ajay — b1by)? + (a1by + agby)?
y { [w N (a1 4 az)(arby + asby) — (by + bo)(1 + aras — blbg)r
(14 aras — b1bs)? + (a1bs + aby)?
n [(Ch + a2)(1 4 a1ay — biby) + (by + by)(a1by + azbl)r}I'
(1 + ajas — b1bg)? + (a1by + azby)?

Theorem 3.1 is proved.
Remark 3.1. In view of Theorem 3.1 it is possible to obtain the
following particular cases.
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(i) For a; = a; = 1 and b; = by = b, we have that

20244 2
WE i VT
This shows that U has center of symmetry on the positive half-line if b > 0
and on the negative half-line if b < 0, therefore the nonlinear transforma-
tion U preserves the sign of the mode.
(ii) For a; = a; = a and b; = by, = b we have that

2a(1 + a® +b?) B 2b(a® +b* — 1)
(1+a?—b%)%+ (2ab)2” 7 (1+a®—b2)2 + (2ab)?’

We note that ay and by depend simultaneously from the scale and location
parameters of the random variables involved in U.

ay =

4. Continued fractions. The property that the reciprocal of a
Cauchy random variable has still a Cauchy distribution has a number of
possible extensions which we deal with in this section.

We start by considering the sequence

1 1 1

Vzi’ :7, ey Vn:—, 41
I+ C T 1+ g —l (41)

and prove the following theorem.

Theorem 4.1. The random variables defined in (4.1) have Cauchy dis-
tribution, V,, ~ Cia, »,), where the scale parameters a, and the location pa-
rameters b, satisfy the recursive relationships

Qn
el = ——————— =12,... 4.2
An+t1 (1+bn)2+a%’ n ) 4y ) ( )

b, +1
(1+0b,)%+a2’

P r oo f. Let us assume that V,, possesses Cauchy density with param-
eters a,, and b,,. Then V,,,; writes

1 1
P =P =P — .
{Voy1 < v} {1+Vn<v} {1+an+an<v}

After some computations the density of V,,; can be written as

an/((1+b,)* +a?)
v — (b +1)/((1 4 b,)% + a2)]2 + a2 /[(1 + b,)? + a2]?’

It can be ascertained directly that Vi possesses Cauchy distribution with
parameters a; = 1/2 and b; = 1/2.

Theorem 4.1 is proved.

Remark 4.1. We have evaluated the following table of parame-
ters a,, and b,:

n=12.... (4.3)

bn+1 -

v € R.

an+1 (U) =
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n] 1] 2 3 [.. 102
an | 1/2 [1/5 [1/13 | ... | 5.77e 2
b, | 1/2 [ 3/5 | 8/13 | ... | 0.618034

For n = 1,2,3 we can observe that the scale parameters a, coincide with
the inverse of the odd-indexed Fibonacci numbers while the sequence b,, has
the numerators coinciding with the even-indexed Fibonacci numbers and the
denominators correspond to the odd-indexed Fibonacci numbers.
In light of the previous considerations we can show that for n > 1
F;, 1

Ay, =

bn - - F )
2n+1

— , 44
F2n+1 ( )

where F,, n > 0, is the Fibonacci sequence. Recalling that the Fibonacci
numbers admit the representation (it can easily be checked by induction)

" —(1—p)" (4.5)

\/g ’

where ¢ = (1++/5)/2 is the golden ratio, we now prove that if a, and b,
have the representations (4.4), then also a,,; and b,.; can be expressed in
the same form. From (4.2) and (4.3) we have

F, =

by = Fo,/Foni1 +1 _ FopioFoniq
" (Fon/Fonia +1)2 +1/F3,.,  F5, ., +1
2n+1 _ 1— 2n+1
= F2n+2[ 4n+4 d An+4 ( 2(1012 2n+2 ] \/g
@it + (1 — )intd — 22 F2(1 — )2 +2 + 5
2n+1 _ 1— 2n+1 Fn
:F2”+2[ ont1 z 2+1( Qf—)s 2+3}\/g= nt?
[t — (1 — )2t ][p2n+8 — (1 — )2 +3] Fonys

Similar calculations prove that a,, 1, = ﬁ In view of representations (4.4)
and (4.5), it is easy to show that

F . 1 1— 2n 1

lim b, = lim " _ lim (« 2)/¢) m =, =91
1

lim a, = lim =0.

n—oo n—o00 2n-+1

Otherwise, observing that the sequence b,, n > 1, is increasing, because

bupr _ FongaFonn _ "0+ (1 —@)™ P41
by FonisFa @ (1—)tnt3—4 77

and taking the limits in (4.2) and (4.3) we have that

L H+1
L=——"+—— H=—" "~ 4.
(14 H)?>+ L (14 H)?>+ L (4.6)
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where H = lim,,,, a,, and L = lim,, ., b,. From the relationships (4.6) we

derive the equality
L L

H H+1
that implies L = 0. In fact, for L # 0, we arrive at the absurd that H =
H + 1. Substituting L = 0 in the second formula of (4.6) we obtain

1

H = .
H+1

Since H satisfies the algebraic equation H?> + H — 1 = 0, it follows that
H = ¢ — 1, where ¢ is the golden ratio (see Figure 5).

1
0.618034 0.618034

Fig. 5. In the left figure the densities of the Cauchy random variables Vi, Va2, Vs, and Vi
are shown. In the right figure the densities of Uy, Uz, Us and Uy are plotted

Remark 4.2. A slightly more general case concerns the sequence

e 1 B 1
e c1 + d1Clag o) ey + apdy + bod, C’
1 1
Wo=——, Wz=—7"7+7+—+....
2 Co +d2W1 8 C3 +d3W2

By performing calculations similar to those of Theorem 4.1 we have that W;
has Cauchy distribution with scale parameter a; and location parameter b,
such that

a1 — d1a0 b — c + dlbo
! (Cl + d1b0)2 + d%a%’ ! (Cl + d1b0)2 + d%ag '
Similarly, if W, ~ C(a, 5,), then Wy, 11 ~ C4, ., 4,.,), Where
Aoy = dn-i-lan
" (n + dugib)? + d2 a2 @
b _ Cn41 + dn+1bn '
n+l1 —

(CnJrl + dn+1bn)2 + d12’7,+1a$t
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for every n > 2. The sequences in (4.7) for ¢, = d, = 1 coincide with (4.2)
and (4.3).

Another sequence of continued fractions involving the Cauchy distribu-
tion is the following one:

1 1 1

= — = . Un: . 4‘8
1_|_C2’ 2 1+1+102’ ) 1 ( )

U,
L+ 5=

1
1+C2
It is well known that the random variable U; possesses the arcsine law. Unlike
the sequence V,, studied above the sequence U,,, n > 1, has a density structure

changing with n. Some calculations are sufficient to show that U, U,, Us, Uy
have density, respectively, equal to

1

fo,(u) = m, 0<u<l,
1 1
folw) = = oeasy 2 4<h
1 1 2
JoW) = e Do 2z ' 3%
fo,(u) = ! S cu<?
v i — 1)V 3w(u_3) 5 3

The general result concerning U, is stated in the following theorem.
Theorem 4.2. For every n > 1 the distribution of the random variable
U, is given by
1 1
(=D ay + (=1)"Buu] /(=1)"B, + (—1)" (0 + Ba)u
1

SV ST ey e e n A

where (_1)n(an + ﬁn)/(an + 2/8n) < (_1)nu < (_1)nﬂn/(an + /B’ﬂ)v and
Qn, Bn € N satisfy the recursive relationships o, = Bn_1, Bn = Qn_1 + Bn_1-

Proof From (4.8) we have that U,,; = 1/(1 + U,,). Then proceeding
by induction, i.e., assuming that U,, has distribution (4.9), we obtain that

P{U, € du} = -

d 1—u d [henfn)
11 1
- omu? (1) o + (=1)"Bu(1 - u)/u]
y 1
V(=D B0+ (1) (o + Ba) (1 — u) /u
X ! du

\/(_1)n+1(an + /8n) + (_1)n(an + 25n)(1 - u)/u
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1
~ (=) B+ (D) (an + o))
1

\/(_1)n+1(an + /671) + (_1)n(an + 2571)“
X 1 d
VD (@ + 28, + (1 2o + 35,)u
In the first integral the function h(«,, 3,) represents the right boundary of
the support of U,. We conclude that U, ; possesses distribution (4.9) by
taking o, 1 = B, and B,,1 = a, + B,. Theorem 4.2 is proved.

Remark 4.3. The sequence (3, is a Fibonacci sequence, since we
have that 8, = G,_1 + @n_1 = Bn_1 + Bn_2. We note that the sequence of
coefficients «,, and 3, are such that lim,, . @ y1/Bni1 = limy, o0 Bn/Bni1 =
¢ —1. On the base of arguments similar to those of Remark 4.1 it is possible
to show that the sequence U,, n > 1, converges in distribution to ¢ — 1.
In this case the upper and lower bounds of the domain of definition of the
densities fy, (u), n > 1 are expressed as ratios of Fibonacci numbers (see
Figure 5).
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