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We discuss various questions which arise when one con-
siders the central projection of three dimensional fractal
sets (galaxy catalogs) onto the celestial globe. The issues
are related to how fractal such projections look. First we
show that the lacunarity in the projection can be arbitrarily
small. Further characteristics of the projected set—in par-
ticular scaling—depend sensitively on how the apparent sizes
of galaxies are taken into account. Finally, we discuss the
influence of opacity of galaxies. Combining these ideas, seem-
ingly contradictory statements about lacunarity and apparent
projections can be reconciled.

PACS: 98.62, 05.20, 02.50

The distribution of galaxies in the universe poses some
intriguing puzzles. A group of physicists led by one of
the authors of the present letter (L.P.), found by statis-
tical analysis of all publically available three dimensional
galaxy catalogs, that galaxies are distributed fractally
with a fractal dimension of about 2 up to the largest
distances available, namely (50 — 100)h='Mpc [1]. On
the other hand, there are strong arguments which favor
homogeneity i.e., a dimension of 3, in a range of up to
3000h~!Mpec, which is the Hubble scale [2,3]. At dis-
tances of the order of this limit, largely unknown evolu-
tionary effects probably influence the galaxy distribution,
which complicates the analysis.

In this Letter, we study some of the problems related
to the observations at “large” distances up to the Hubble
limit.

General theoretical arguments lead to a prediction of a
homogeneous universe, which has dimension 3, while the
analysis performed in [1] indicate a dimension of about
2, as far as three-dimensional data are available. What
is even more intriguing is that the projection of the avail-
able data onto the celestial globe shows no apparent la-
cunarity and this seems in flagrant contradiction with
the dimension of 2 found in [1], when one considers the
data as a point set in 3 dimensions. In a widely circu-
lated letter, Peebles has asked whether the mathematics
of fractals allows for such a phenomenon.

Our—perhaps surprising—result is that if one takes
finite size effects properly into account, a set of dimension
2 in 3-dimensional space can have a non-fractal and quite
homogeneous projection onto the celestial globe. We will
explain this result below and put it into perspective with

known mathematical facts. Depending on how finite size
effects are taken into account, sometimes the projection
will be homogeneous and sometimes it will be fractal. In
particular, we will argue that there is no contradiction
between observing a fractal dimension 2 in 3-dimensional
space and a uniform projection of equal size points onto
the celestial globe.

Of course, this result leaves wide open the more funda-
mental question of how a galaxy distribution of dimen-
sion of 2 can be reconciled with the homogeneity of the
universe predicted by the currently accepted cosmologi-
cal models. We have no answer to this puzzle. In this
letter we just show that absence of a unique interpreta-
tion of the measurements—to have more confidence in
the data.

In order to explain the “projection paradox” and to
put it into context, we first explain some mathematical
aspects of the problem. A set A in R? is said to have
Hausdorff dimension d if it can be covered by sets S; s of
diameter less than ¢ in such a way that the “Hausdorff
measure”

H*(A) = lim nf > (diams; 5)* (1)

is zero for s > d and infinite for s < d. For s = d
one can have HY(A) = oo or H*(A) < oco. Thus, if the
Hausdorff dimension is d, then H%(A) can be finite or in-
finite. When d is an integer and H?(A) is finite, one can
decompose A into a regular part (consisting of piecewise
rectifiable sets of dimension d, such as lines or sheets) and
a singular part (consisting of “dust”), see [4], Section 6.2,
[5], Section 9. For non-integer d the regular part is ab-
sent. Almost every projection of the regular part onto
a d-dimensional plane is of positive measure, while all
projections of the singular part (which is the interesting
case for the study of galaxies) have measure 0, i.e., they
are very small. Finally, if H¢(A) is infinite, then a clever
method, called the “Venetian blind construction” shows
that the projection onto any subspace can be prescribed,
and can be essentially anything we want. For example,
one can construct a set in 3-space whose projection onto
all two-dimensional planes is a “sundial” in the sense that
it shows the hour (minutes, and seconds) of the current
time in Roman numerals ( [4], Section 6.3).

Thus, in the light of a strict mathematical definition,
the answer to Peebles’ question is that the projection is



of positive measure (and hence relatively smooth) only in
the cases when d > 2 or when d = 2 and either H? = oo
or A has a regular part. In this last case, the set A
must contain rectifiable “lines” or “sheets.” We disregard
this situation as physically irrelevant because galaxies are
considered as points or tiny disks in this analysis and thus
form a “dust-like,” i.e., irregular set.

In this Letter, we argue that this is not the whole
story, because some finite size effects come into play in
a subtle and beautiful way. To demonstrate this point
more clearly, we first work with 1-dimensional sets in a
2-dimensional space and then illustrate the extension to
2-dimensional sets in 3-space.

We say that a set (of galaxies) has an effective dimen-
sion 1 inside a physical space of dimension 2 at length
scale r if the mean number n(r)dr of galaxies between
distance r and r+dr goes like C'dr, where C is a constant.
Integrating from 0 to r we find for the total number of
galaxies, N:

N(r) = /OT dr'n(r') ~ Cr | (2)

and this is characteristic of the distribution of a set of di-
mension 1. (For a 2-dimensional set, the corresponding
laws are n(r) ~ C'r, and N(r) ~ C'r?/2.) Eq. 2 shows
the well-known fact that if the dimension of a set is not
equal to the dimension of the space in which it is em-
bedded, then the number density goes down (in our case
like 1/r). This is precisely the cosmologically intriguing
aspect when dealing with distributions which are not of
maximal dimension.

We next study what happens when we project such a
set onto the celestial globe (the unit circle in the case
of a 2-dimensional universe). If the galaxies are consid-
ered just as a countable set of points, the question of
the measure of their projection makes no sense, since it
is equal to O by definition. This is, however, not what
one means by the dimension of an experimentally mea-
sured set, where anyway only a finite number of points
occur [6]. In fact, dimension is experimentally a notion
which holds only over a certain range of scales. Even tak-
ing that into account, the mathematical theorems cited
above tell us that the projected density has zero measure
when H! is finite and the set is singular.

Next, we analyze in more detail various aspects which
come into play when one considers the projections of
galaxies onto the celestial globe. The issues we discuss
here are lacunarity, the role of taking into account ap-
parent sizes, and the influence of opacity. We first define
these quantities. The lacunarity describes the sizes of
voids between the galaxies. These voids can be large in
a set of small dimension, but we shall show that they
can be arbitrarily small in the projection. The apparent
size problem has to do with whether we represent galax-
ies as points of equal size, or apparent size. The first
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FIG. 1. The Patterns 0 to 3 used to subdivide a five by five
square.
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FIG. 2. A fractal of dimension 1 in 2-space, and its projec-
tion onto a circle. There are 7 levels of recursion.

representation will be called pizel projection and the sec-
ond apparent size projection. Finally, opacity is related
to the following observational problem: We assume there
is a limit to how close together two galaxies can be ob-
served, and this means that little opaque disks are drawn
around each observed galaxy.

We illustrate all these phenomena for a set of dimen-
sion 1 in 2-space. We then generalize to the case of a set
of dimension 2 in 3-space. Our example is constructed
as follows: Divide the unit square into 25 equal small
squares and fill the central square and the four corners.
We call this “Pattern 0.” Similarly, we can fill 5 among
25 squares by Patterns 1, 2, and 3 as shown in Fig. 1

The fractal of Fig. 2 is then obtained by dividing the
square recursively, choosing at each level randomly one of
the 4 patterns. (An even more homogeneous projection
is obtained by choosing at level n the pattern (n mod4)
of Fig. 1.) These fractals have dimension 1, finite Haus-
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FIG. 3. Five levels of the same fractal as in Fig. 2. Each
“inner” feature is scaled outwards as shown by the lines for
one feature. The corners contain the same feature as the
central square. The outermost features of the central square
are mapped as indicated by the radial lines. Going deeper into
the recursion, each successive feature is projected clockwise
to the boundary until one reaches again the corner squares in
light gray which are mappings of the innermost feature.

dorff measure H', and are of the singular type described
above. Of course, space gets quite empty far away from
the origin, but such fractals “block” the skylight in al-
most all directions for an observer at the center, and
hence she will see an almost uniformly black sky as in
Fig. 2. If the observer is not at a center, but still on a
“galaxy,” as we are, this argument continues to hold af-
ter enough iterations. To understand why the lacunarity
decreases, we scale each point from the center to a fixed
distance: (x,y) = (x/r,y/r), where r = (2% +y?)'/?. In
Fig. 3, we blow each “inner” point up to a position on
the outer set of squares. Since there is always one of 4
squares colored in each of the Patterns 0-3, we see that
the apparent open space can be at most about 3/5%% of
what it was at the previous level. Thus we get an esti-
mate that the mazimal angular void scales like (3/5)™ as
the number n of levels grows. This answers one of Pee-
bles’ questions: There need not be any sizeable voids in
the projection of a set of dimension 1 in 2-space (or for
that matter, a set of dimension 2 in 3-space).

We next discuss how the projection onto the celestial
globe can vary, depending on whether we show apparent
size (as in Fig. 3) or just a pixel (as in the circle around
Fig. 4). To simplify the discussion, we assume that all
galaxies are small spheres of fixed diameter e. The pro-
jection of a galaxy at distance r has apparent size ~ €/r.
One can view this in one of two ways: Either the re-
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FIG. 4. The same as Fig. 3, but now with “opaque” galax-
ies. Note that the projected density on the unit circle becomes
almost uniform.

mote galaxies have very small projections (somehow less
than a pixel), or the close-by ones have very large projec-
tions. Note that we discuss here for simplicity a universe
of galaxies of equal size. How big is the area covered by
these projections? Since

H'(A) = lim Y diam(S;s) , (3)
6—0 ;
and there are ~ C( galaxies at a distance r and
diam(S; 5) = 9, we find that the number of galaxies (x
area of pixel projection) in a ring extending from r,;, to
Tmax 1S given by

Tmax

»\/\A\ﬁzlzuﬂ:ﬂmxv ~ \ &ﬂ\ C ~ QQ.ENSW - ﬂ.:i:v ) A%v

Tmin

while the projected area is

\ &ﬂ\ Q\ﬂ\ =C _Om Aﬂ:;x\ﬂ:l:v . Amv

min

(The area is smaller when the projected galaxies start
to overlap, i.e., for very fat rings.) These equations ex-
plain why projected galaxies drawn as points (Eq. 4) look
more homogeneous after increasing the size of the annu-
lus (Tmax; "min) = A(Tmax, Tmin); Whereas a projection of
the apparent area occupied by galaxies (Eq. 5) is invari-
ant under scaling transformations. The homogenization
resulting in a point projection (Eq. 4) has been used as
proof for the homogeneity of the universe [3]. However, in
our simple fractal model, homogenization occurs as well,
for shells with rpax > 5%rmin, and thus the reasoning in
[3] is not conclusive. At small radii, finite size effects
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