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Angular tolerant resonant grating filters under
oblique incidence
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Resonant grating filters have been proposed as a promising alternative to multilayer stacks for narrowband
free-space filtering. The efficiency of such filters under normal incidence has been demonstrated. Unfortu-
nately, under oblique incidence, the limited angular tolerance of the resonance forbids any filtering applica-
tions with use of standard collimated incident beams. Using a multimode planar waveguide and a bi-atom
grating, we show how to increase the angular tolerance up to the divergence of standard beams (0.2 deg) with-
out modifying the spectral bandwidth (0.1 nm), under any oblique angle of incidence. © 2005 Optical Society
of America
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1. INTRODUCTION
A resonant grating filter (RGF) is basically a periodically
perturbed planar waveguide that reflects light specularly.
It is well known that the reflectivity of such a structure
possesses peaks for some incident wavelengths that are
generated by the coupling and outcoupling of a mode of
the waveguide.1 These peaks can be tailored to create
free-space narrow-bandpass filters.2,3 It has been shown
experimentally that an RGF can achieve spectral line-
widths of the order of angstroms, wide rejection bands,
and near 100% diffraction efficiency at the center
wavelength.4,5 On the other hand, these resonances
have been shown to display extreme sensitivity to the an-
gular orientation of the incident wave.6 It has been ob-
served that under oblique incidence, the angular line-
width is proportional to the spectral linewidth,4,7 typically
Du/Dl 5 0.1 deg nm21. This angular sensitivity prohib-
its de facto the use of this device for narrowband filtering.
Increasing the angular tolerance while keeping a narrow
spectral peak is thus a crucial issue. It has been shown
that under normal incidence a better angular tolerance
can be obtained6,8 with some modifications to the struc-
ture. In this configuration, two counterpropagating
modes are excited by the incident beam. The interaction
between these two modes broadens the angular response,
while the spectral peak is not affected.9 Several grating
designs have been proposed to take advantage of this
property: ‘‘doubly periodic’’ gratings,9 very deep
gratings,10 and gratings on top of a multimode
waveguide.11 Each of these was shown to display dispro-
portionately broad angular selectivity under normal inci-
dence.

To our knowledge, no work has hitherto addressed the
issue of increasing the angular tolerance under oblique
incidence. Yet most free-space filters are required to
work under oblique incidence to avoid the use of a beam
separator in collecting the filtered signal. Hence, high
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angular tolerance is desirable for dense wavelength divi-
sion multiplexing filters especially because they are usu-
ally cascaded to filter many different wavelengths. In
the following, we first describe the principle underlying
the broadening of the angular response at normal inci-
dence, and then we show how to extend it to oblique inci-
dence.

2. INCREASING ANGULAR TOLERANCE
UNDER NORMAL INCIDENCE
In this section we present a simple intuitive explanation
of the broadening of the angular response under normal
incidence. Consider a waveguide supporting a guided
mode described by the dispersion relation linking the
guided mode’s wave vector to its wavelength am(l) or
lm(a). The guided wave is by definition nonleaky, so
that am(l) . max(nsub , nsup)2p/l, where nsub , nsup are
the substrate and superstrate refraction indices, respec-
tively. In all of the examples below, the mode is TE po-
larized, but similar conclusions apply to TM-polarized
modes. The waveguide is perturbed by a one-
dimensional lamellar grating coupler with period d and
height h; see Fig. 1(a). Hereafter, the grating is consid-
ered to be a small perturbation of the reference planar
waveguide system, so that h ! l. We introduce the rela-
tive permittivity expansion coefficient of the grating eq
defined by

e~x ! 5 (
q52`

`

eq exp~iqKx !, (1)

where K 5 2p/d and e(x) is the relative permittivity of
the structure restricted to the grating region. The inci-
dent plane wave illuminating the structure is described
by its angle of incidence u and its wavelength l, which
varies about l0 , the wavelength to be filtered. The spa-
tial incident pulsation (2p times the spatial frequency) is
a(l) 5 2p sin u/l, and the incidence angle and grating
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Fig. 1. (a) Illumination configuration and representation in the Fourier space of the phase-matching condition at a given wavelength.
(b) Dispersion relation of the mode in the perturbed waveguide. (c), (d) Reflectivity of the grating versus the wavelength and incident
angle. nsub 5 1.448, nsup 5 1, n layer 5 2.07, thickness e 5 300 nm, d 5 971 nm, h 5 20 nm, a 5 721 nm.
period are chosen so that ua 2 Ku ' am(l0). In this
case, a spectral resonance peak occurs close to lm(a
2 K) ' l0 , and both its spectral and angular linewidth
are proportional6,7 to uhe1u2; see Figs. 1(c) and 1(d).
When the incident spatial pulsation is changed slightly
(by altering the angle of incidence) to a 1 Da, the spec-
tral resonance peak will be shifted toward lm(a 1 Da
2 K)10; see Fig. 1(b). Hence the guiding idea for in-
creasing the angular tolerance without modifying the
spectral linewidth is to design a reference system sup-
porting a dispersionless mode in the vicinity of l0 .

One possibility for obtaining a locally dispersionless
mode is to transform the planar waveguide into a mode
bandgap (MBG) waveguide and work in the vicinity of the
stop band. This amounts to introducing a periodic per-
turbation of the structure, thus forming a Bragg grating,
with period d8 such that p/d8 5 K8/2 ' am(l0). This
modulation opens up a mode-frequency bandgap (or stop
band) close to l0 (Ref. 12) owing to the coupling of the
mode with wave vector am and the Bragg reflected mode
with wave vector 2am through the reciprocal space lattice
vector K8 satisfying a 2 K8 ' 2a. The coupling
strength and gap width depend on the Fourier coefficient
of the periodic relative permittivity of the MBG wave-
guide associated with K8.6,7,13 At the frequency edge of
the gap, the mode is a stationary nonleaky wave14 whose
dispersion relation becomes flatter with increasing gap
width. Once the MBG waveguide is designed, it suffices
to add a grating coupler to couple and outcouple the lo-
cally dispersionless mode and obtain an angular tolerant
reflectivity resonance. The spectral linewidth depends
only on the parameters of the grating coupler, and the an-
gular behavior is linked to that of the MBG waveguide:
In this sense, they are totally independent.

Now, if one wants to obtain a device that transmits and
reflects light in the specular direction only, the structure
formed by the superposition of the MBG waveguide with
the grating coupler should be periodic with a period L
that satisfies a 1 2qp/L . max(nsub , nsup)2p/l0 , with
q Þ 0. In this case, the sole possibility is to take a null
and d equal to a multiple of d8; hereafter, we choose d
5 2d8 5 L. The solutions with a Þ 0, i.e., oblique inci-
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dence, correspond to Littrow mounting, in which case at
least two orders will be reflected. Thus the final struc-
ture is a d-periodic grating whose pattern is optimized to
assume the roles of both the grating coupler and the MBG
waveguide; see Fig. 2(a). The permittivity coefficient e1
is responsible for the coupling of the incident beam into
the counterpropagating modes and the spectral linewidth,
while e2 (which is associated with the MBG wave vector
2K 5 K8) is responsible for the mutual interaction of the
modes and the angular tolerance, as summarized in Fig.
2(a). Hence we have established the fact that under nor-
mal incidence, a resonant grating may possess angularly
tolerant resonances due to the naturally flat dispersion
relation of the mode in the vicinity of the second-order
stop band, as seen in Fig. 2(b).1,6,10,11 A possible design
for an angularly tolerant device is the bi-atom grating de-
picted in Fig. 2. The pattern of the grating has been cho-
sen such that the permittivity Fourier coefficients satisfy
ue2u . ue1u. The spectral and angular reflectivity curves
plotted in Figs. 2(c) and 2(d) of the bi-atom grating, de-
scribed in Fig. 3, show that the angular tolerance has
been increased by a factor of 30 compared with that of the
simple lamellar grating studied in Fig. 1. We now show
how this approach can be used to design angularly toler-
ant RGF functioning under oblique incidence.
3. ANGULARLY TOLERANT RESONANT
GRATING FILTERS UNDER OBLIQUE
INCIDENCE
We have seen that a solution for obtaining angularly tol-
erant resonances is to excite two counterpropagating
modes that strongly interact with each other so that the
resulting mode exhibits a flat dispersion relation. This
happens naturally under normal incidence, where the
same mode is excited along two opposite directions. Now,
planar waveguides can also support several modes. Thus
it is possible to excite two counterpropagating modes un-
der oblique incidence if the grating period and angle of in-
cidence satisfy [see Fig. 3(a)]

a 1 K ' am2~l0!, a 2 K ' 2am1~l0!, (2)

where am1(l) and am2(l) are the wave vectors of two
different modes of the planar waveguide. The angle of
incidence depends solely on the difference between the ef-
fective index of the modes amj 5 2pneff j /l ( j 5 1, 2):

sin~u! 5 @neff1~l0! 2 neff2~l0!#/2. (3)

When the two modes are TE and TM polarized, this
configuration allows the existence at the angle of inci-
dence given by Eq. (3) of a resonance peak about l0 that is
Fig. 2. (a) Left, different examples of the geometry of a MBG waveguide plus grating coupler. In the bi-atom grating, the pattern
consists of two ridges with different widths centered about one fourth and three fourths of the period. Right, representation in the
Fourier space of the phase-matching condition when two modes are excited under normal incidence. (b) Dispersion relation in the vi-
cinity of the second-order stop band. (c) Reflectivity of the bi-atom grating as a function of the wavelength at normal incidence. (d)
Reflectivity of the bi-atom as a function of the incident angle for a wavelength corresponding to the maximum of reflectivity (l
5 1572.3 nm).
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Fig. 3. Geometry of the bi-atom grating whose reflectivity spectra are plotted in Figs. 2(c) and 2(d). The substrate and superstrate are
the same as in Fig. 1; the planar waveguide is a multilayer with refractive indices 2.07, 1.47, 2.07 and thicknesses 79.1, 263.5, 62.5 nm
from bottom to top. The bi-atom grating is defined by a 5 241.25 nm, b 5 281.25 nm, d 5 1047.5 nm, h 5 382.6 nm, n 5 2.07. The
Fourier coefficients of the relative permittivity of the grating are e1 5 0.093 and e2 5 1.037.

Fig. 4. (a) Top, illumination configuration and bottom, representation in the Fourier space of the phase-matching condition when two
different modes are excited at a given wavelength under oblique incidence. (b) Top, dispersion relation when the waveguide supports
two TE modes in the limit h tends to 0. Bottom, zoom-in of the mini-stop band when the TE1 branch intersects the TE2 branch obtained
by calculating the reflectivity of the grating as a function of the angle of incidence and wavelength. (c) Reflectivity of the grating as a
function of the wavelength for u 5 5 deg. (d) Reflectivity of the grating as a function of the angle of incidence for a wavelength corre-
sponding to the maximum of reflectivity (l 5 1555 nm).
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Fig. 5. Geometry of the bi-atom grating whose reflectivity spectra are plotted in Figs. 4(c) and 4(d). The substrate and superstrate are
the same as in Fig. 1; the planar waveguide is a multilayer with refraction indices 2.07, 1.47, 2.07 and thicknesses 346.3, 217.9, 309.8 nm
from top to bottom. The bi-atom grating is defined by a 5 225.5 nm, b 5 185.5 nm, d 5 902 nm, h 5 100 nm, n 5 2.07. The effective
indices of the TE1 and TE2 modes of the imperturbed structure are, respectively, 1.6236 and 1.8120.
independent of the incident polarization.15 In our case,
on the contrary, the modes must have the same polariza-
tion to be able to interact mutually. As in the normal-
incidence case, e1 is responsible for the coupling of the in-
cident beam into the modes, while e2 determines the
mutual interaction of the modes. Hence a structure simi-
lar to that presented in Fig. 2 except that the waveguide
now supports two TE modes will have an angularly toler-
ant resonance peak under oblique incidence. In Fig. 4(a)
we consider a bi-atom RGF supporting two TE modes (in-
dicated by mode 1 and mode 2 on the plot) such that the
mutual excitation of the modes along two opposite direc-
tions occurs for an incident angle close to 5 deg. In Fig.
4(b) we present a contour map of the reflection as a func-
tion of the wavelength and incident angle, which gives a
good representation of the relation dispersion. As ex-
pected, we observe the opening of a gap and the flattening
of the dispersion relation, outside the edge of the Bril-
louin zone, about the intersection point of the branches of
the reference modes. Contrary to what happens in nor-
mal incidence, there exists a resonance peak at both
band-edge frequencies. Indeed, when the system func-
tions under oblique incidence, the modes and the incident
wave do not have any symmetry mismatch that would for-
bid their coupling.9 Yet, in our configuration, the chosen
angle of incidence being close to zero, one of the reso-
nances remains much narrower than the other. In Fig.
4(c) we plot the reflectivity of the RGF as a function of the
wavelength and the incident angle about the edge point of
the dispersion relation.

The optogeometrical characteristics of the bi-atom grat-
ing are plotted on Fig. 5. The shape of the resonance
with respect to the wavelength is similar to that obtained
with a classic single-mode configuration [Fig. 1(c)], while
that with respect to the incident angle is similar to that
obtained under normal incidence [Fig. 2(d)]. The ratio
Du/Dl of the double-mode structure has increased by a
factor of 17 compared with that of the single-mode struc-
ture [Figs. 1(c) and 1(d)]. We have thus designed a RGF
that functions under oblique incidence with an angular
tolerance that is compatible with the use of standard col-
limated beams. It is worth noting that our solution does
not resort to extreme optimization of the periodic struc-
ture. If small errors on the structure parameters are
committed, the angular-tolerance resonance will still ex-
ist, though at a different wavelength and angle of inci-
dence. An error of 1 nm on the period of the structure,
the etching depth, and the ridge width, will shift the cen-
tral wavelength of the filter approximately 1, 0.05, and
0.07 nm, respectively. The incident angle remains re-
markably stable near 5 deg with a variation of 0.01, and
the widths of the reflectivity peak versus the wavelength
and incident angle are not affected. Thus fabrication er-
rors, especially on the period, have consequences essen-
tially on the central wavelength of the filter. In cases
where several filters with the same bandpass and differ-
ent wavelengths are required, this problem is not insur-
mountable.

4. CONCLUSION
Resonant gratings are a powerful tool for filtering appli-
cations, but the resonance peak obtained by exciting one
single mode does not possess all of the properties required
for a useful device. In this paper we have shown that un-
der oblique incidence, the excitation of two different inter-
acting counterpropagating modes produces an angularly
tolerant resonance. We have given an explanation of this
behavior by studying the formation of local mode band-
gaps outside the edge of the Brillouin zone in a periodi-
cally perturbed multimode waveguide. In our opinion,
the full potential of resonant gratings when several
modes are excited remains to be discovered.
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