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Introduction

Star trackers are increasingly used on modern day spacecraft. With the rapid advance-

ment of imaging hardware and high-speed computer processors, current trackers are small

and routinely achieve arc-second attitude accuracy.1 Typical sampling rates for these track-

ers range from 1 to 10 Hz. As computer processor technology advances these frequencies will

increase, leading to filter designs that provide even more accurate results.

The body angular velocity can be derived using a derivative approach in the attitude

kinematics model. For example, if the attitude quaternion q and it’s derivative q̇ (which is

usually approximated by a finite-difference) are known, then the angular velocity ω can be

computed from the kinematics equations, with ω = 2 ΞT (q) q̇, where Ξ(q) is a 4× 3 matrix

function of the quaternion (see Ref. [2] for more details). However, this approach requires

knowledge of the attitude, which is determined from the star reference and body measure-

ment vectors. In this note a new and simple approach to determine the angular velocity is

shown that depends only on knowledge of the body vector measurements, which are obtained

directly from the star tracker. Therefore, angular velocities can still be determined in the

event of star pattern recognition anomalies, which may be used to control the spacecraft in

the event of gyro failures.

Angular Velocity Determination

In this section a least-squares approach is used to determine the angular velocity from star

tracker body measurements alone. Consider the following unit-vector measurement model
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at time tk:

b̃i(k) = A(k) ri + vi(k) (1)

where b̃i(k) is the ith body measurement vector, A(k) is the proper-orthogonal attitude

matrix, ri is the star reference vector, and vi(k) is the measurement noise which is given by

a zero-mean Gaussian white-noise process. Shuster3 has shown an analysis of the probability

density function for the measurement error involving unit-vector observations. A significant

conclusion is that from a practical standpoint, the probability density on the sphere is

indistinguishable from the corresponding density on the tangent plane, so that the unit

vector can in fact be used in standard forms with σ2
i I3×3, where I3×3 is a 3 × 3 identity

matrix, as the measurement noise covariance. Also, we note that the inertially-fixed star

reference vector ri is time-independent, neglecting effects such as proper motion and velocity

aberration.

Taking the difference between successive measurements of Eq. (1) gives

b̃i(k + 1)− b̃i(k) = [A(k + 1)− A(k)] ri + vi(k + 1)− vi(k) (2)

We assume that the body angular velocity ω is constant between tk and tk+1, and ignore

terms higher than first order in ω ∆t, where ∆t ≡ tk+1 − tk is the sampling interval. With

these assumptions the following first-order approximation can be used:2

A(k + 1) ≈ {I −∆t [ω(k)×]} A(k) (3)

where [ω(k)×] is the cross-product matrix, given by

[ω(k)×] =




0 −ω3(k) ω2(k)

ω3(k) 0 −ω1(k)

−ω2(k) ω1(k) 0




(4)
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Substituting Eq. (3) into Eq. (2) gives

b̃i(k + 1)− b̃i(k) = −∆t [ω(k)×] A(k) ri + vi(k + 1)− vi(k) (5)

Our goal is to determine an angular velocity estimate independent of attitude and the ref-

erence vectors. This is accomplished by solving Eq. (1) in terms of A(k) ri and substituting

the resultant into Eq. (5), which yields

1

∆t
[b̃i(k + 1)− b̃i(k)] = [b̃i(k)×] ω(k) + wi(k) (6)

where wi(k) is the new effective measurement noise vector given by

wi(k) ≡ [ω(k)×]vi(k) +
1

∆t
[vi(k + 1)− vi(k)] (7)

Note that ∆t will have finite values, since discrete-time measurements are assumed.

The new measurement noise wi(k) in Eq. (6) is now a function of the angular velocity

vector. Assuming a stationary noise process for vi, the following covariance expression can

be derived:

E
{
wi(k)wT

i (k)
}

= σ2
i [ω(k)×] [ω(k)×]T +

2σ2
i

∆t2
I3×3 (8)

where E { } denotes expectation. If the bandwidth of the attitude variations (i.e., the

frequency content) is well below the Nyquist frequency, with a safety factor of 10, then

||ω(k)||∆t < π/10 for all k. This condition obviously holds when the spacecraft is rotating

slowly compared to the sampling rate, which is required by the assumptions made leading to

Eq. (6). Since the 2-norm gives ||[ω(k)×]|| = ||ω(k)||, then the following inequality is true:

||σ2
i [ω(k)×] [ω(k)×]T || < π2σ2

i

100 ∆t2
<<

2 σ2
i

∆t2
(9)

Using Eq. (9), then the last term in Eq. (8) dominates the first term on the right hand side,
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which can effectively be ignored.

Equation (6) can now be cast into a linear least-squares form for all measurement vectors,

which leads to

ω̂(k) =
1

∆t

{
n∑

i=1

σ̄−2
i [b̃i(k)×]T [b̃i(k)×]

}−1 n∑
i=1

σ̄−2
i [b̃i(k)×]T b̃i(k + 1) (10)

where ω̂(k) is the estimate of ω(k), and σ̄2
i ≡ 2σ2

i /∆t2 is the effective measurement error

variance. Only knowledge of the body vector measurements, sampling interval and measure-

ment covariance is required to derive an angular velocity estimate. Therefore, the attitude

and star reference vectors are not required to be known. Hence, stars do not need to be

identified to determine the angular velocity. However, knowledge of the same star mea-

surement b̃i at times tk+1 and tk is required to estimate ω at time tk. This time delay is

an unfortunate result of the finite difference, but becomes less significant as the sampling

interval decreases. Note that this condition still exists when a finite-difference approach is

used from a kinematics model with a known attitude to estimate the angular velocity.

We now derive the estimate-error covariance. Multiplying both sides of Eq. (6) by ∆t,

and substituting the resultant for b̃i(k + 1) into Eq. (10) leads to

ω̂(k)− ω(k) =

{
n∑

i=1

σ̄−2
i [b̃i(k)×]T [b̃i(k)×]

}−1 n∑
i=1

[b̃i(k)×]T σ̄−2
i wi(k) (11)

Note that Eq. (11) involves the measurements b̃i(k) themselves. The actual covariance

should be computed by replacing b̃i(k) with A(k) ri + vi(k) from Eq. (1). However, using a

similar analysis as the one shown in Ref. [3] indicates that the errors produced by ignoring

this replacement are higher order in nature and thus are negligible. Therefore, the predicted

error-covariance (i.e., the best available estimate of the error-covariance) is simply given by

Pk ≡ E
{
[ω̂(k)− ω(k)] [ω̂(k)− ω(k)]T

}
=

{
n∑

i=1

σ̄−2
i [b̃i(k)×]T [b̃i(k)×]

}−1

(12)
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At least 2 non-collinear body vectors are required for observability (i.e., for the inverse in

Eq. (12) to exist). The error-covariance still depends on the sampling interval due to σ̄2
i .

Also, if σ̄2
i is replaced by σ2

i this yields the attitude error-covariance, which can be derived

from maximum likelihood.3 This shows an interesting similarity between the angular velocity

estimation algorithm presented here and standard attitude determination algorithms.

Equation (10) is based upon a first-order difference approximation. This approach is

accurate only when Eq. (3) is a valid approximation. Other approximations can be used,

which may give better accuracies for high angular velocities (i.e., when the bandwidth of the

attitude variations is near the Nyquist frequency). However, some of these approximations

may actually give worse results than the first-order difference approximation for motions well

below the Nyquist frequency (as will be shown). Two other approximations will be considered

here: a central difference approximation and a second-order difference approximation.4 The

derivations for each is similar to the first-order difference approximation, so these derivations

are omitted for brevity.

Using a central difference the angular velocity estimate can be shown to be given by

ω̂(k) =
1

2 ∆t

{
n∑

i=1

σ̄−2
i [b̃i(k)×]T [b̃i(k)×]

}−1 n∑
i=1

σ̄−2
i [b̃i(k)×]T [b̃i(k + 1)− b̃i(k − 1)] (13)

where σ̄2
i ≡ σ2

i /∆t2. The error-covariance derivation leads to the same expression given in

Eq. (12) with σ̄2
i = (1/∆t2)σ2

i . Using a second-order difference the angular velocity estimate

can be shown to be given by

ω̂(k) =
1

2 ∆t

{
n∑

i=1

σ̄−2
i [b̃i(k)×]T [b̃i(k)×]

}−1 n∑
i=1

σ̄−2
i [b̃i(k)×]T [4 b̃i(k + 1)− b̃i(k + 2)] (14)

where σ̄2
i ≡ [(13σ2

i )/(2 ∆t2)] is the measurement error covariance. The error-covariance

derivation leads to the same expression given in Eq. (12) with σ̄2
i = [13/(2 ∆t2)]σ2

i .

The central difference approach gives a lower standard deviation in the estimate noise
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(by a factor of
√

2/2) than the first-order difference approach; however, the central differ-

ence requires storage of b̃i at times tk and tk−1, which increases the computational burden

(especially when tracking the stars). The second-order algorithm provides a higher-order ap-

proximation, compared to the first-order approach, which may lead to more accurate results

for higher body angular velocities (i.e., the estimate errors may remain within their respec-

tive 3 sigma bounds). But this comes at the price of an increased standard deviation in the

estimate noise (by a factor of
√

13/2). Also, the second-order algorithm requires two time

steps ahead to estimate the angular velocity at the current time. The first-order algorithm

requires only one-time step ahead. For these reasons this algorithm should be used when

possible, under the Nyquist limit assumption.

It is imperative that the angular estimate calculations using Eqs. (10), (13) or (14) be

done with the same star reference at different sampling periods, since the reference vector is

assumed to be constant. Care must be given to the available stars, keeping track of ones that

enter or leave the field-of-view (FOV). If a star leaves the FOV at time tk+1, then this star

should not be used to compute the finite difference. This can be easily employed using simple

tracking logic, such as computing inner star angles between successive body measurements

(see Ref. [5] for details).

Simulation Example

Simulation results are shown using a 2 star tracker configuration with actual star reference

vectors to determine the angular velocity of a rotating spacecraft in a low Earth equatorial

orbit. Each star tracker is assumed to sense up to 10 stars in a 8◦ × 8◦ FOV. The catalog

contains stars that can be sensed up to a magnitude of 6.0 (larger magnitudes indicate

dimmer stars). The spacecraft is assumed to be nearly Earth-pointing with an body angular

velocity rotation given by

ω(t) =

[
0.0001 sin(0.01t) 0.0011 0.0001 cos(0.01t)

]T

rad/sec (15)
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Each star tracker is pointed away from the Earth with one star tracker pointed 45 degrees

in the North direction and the other is pointed 45 degrees in the South direction. Therefore,

the star tracker boresights are 90 degrees apart. The sampling interval for each tracker is

given by ∆t = 0.1 seconds. Also, a standard deviation of 0.001π/180 radians has been used

to generate each synthetic body measurement set.

A plot of the available stars from both trackers over a 40 minute simulation is shown in

Figure 1. The minimum number of available stars is 9 with a maximum of 20. In general,

as the number of available stars decreases the estimation accuracy degrades, although this

also depends on the angle separation between stars. For the simulation run the first-order

difference has been used to determine the angular velocity, given by Eq. (10). A plot of

the X-axis errors, with 3 sigma bounds computed from Eq. (12), is shown in Figure 2.

Clearly, the computed 3 sigma boundaries do indeed bound the estimation errors. Also, as

the number of available stars decreases the 3 sigma bounds and actual errors increase as

expected. The computed angular velocities at each time are given by the top plot of Figure

3. These velocities are filtered using a simple α-filter,6 with a gain set to α = 0.1. The results

are shown by the bottom plot of Figure 3. This simple filter increases the accuracy by an

order of magnitude, without adding significant delay into the system. Furthermore, as the

sampling frequency increases, through judicious filtering these star tracker derived velocities

may eventually compete with the accuracy of modern day gyros. For this simulation, when

the sampling frequency is given by 500 Hz, the filtered velocities achieve an accuracy of

about 0.05 µrad/sec.

Conclusions

In this note a new approach was shown to determine the angular velocity vector directly

from star tracker measurements. The main advantage of this approach is that it requires no

information of the star reference vectors or the attitude. Algorithms based on various differ-

ence approximations were developed. The estimate error-covariances for each approximation

have also been shown. Each approximation requires a time delay in the angular velocity esti-

J. L. Crassidis 7 of 12



mate, which becomes less significant as the sampling interval decreases. Simulations results

used a realistic star tracker configuration. Results indicated that very accurate angular ve-

locity estimation is possible when combined with a simple filter. Also, the computational

burdensome of the angular velocity estimator combined with a simple filter is far less than

a Kalman filter, but a Kalman filter using a complete dynamics model may produce even

more accurate results.
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