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Anharmonic Frequency Analysis

By A. K. Paul

Abstract. A new numerical method of frequency analysis is described, designed mainly to

search for discrete frequencies in a time series. An integral transform is applied twice to the

data for different reference times. A complex amplitude within a selected narrow frequency

band is obtained for each transform. The frequency is then determined from the phase

change of the complex amplitude over the difference of the two reference times. Very high

precision is obtained, which is demonstrated in two examples.

1. Introduction. We consider a real time function X{i) and assume that it can

be described either by a set of discrete frequencies and their complex amplitudes

(at a given reference time) or by a continuous complex amplitude density function

over some frequency range or a combination of both. The term frequency analysis

is used here for a process which determines the frequencies, amplitudes and phases

of the spectral components of the time function.

There are three classical methods available which perform frequency analysis

under specific conditions: the Fourier series, the Fourier integral and Prony's method.

Each is restricted in its application, depending on the properties of the time function.

Since all three methods are well known and described in standard textbooks, we

will only repeat some of their essential properties.

(a) Fourier series. If X{f) is periodic with a period T, it can be described by a

constant term and a finite or infinite set of harmonic frequencies, where the basic

frequency is equal to the reciprocal of the period T and all other frequencies are

integer multiples of the basic frequency. The complex amplitude is obtained by the

well-known integral transform of X(t) over the interval T. The integration extends

only over the (finite) time interval T, since X{f) is periodic, and no additional in-

formation is introduced into the process, if the integral transform were to be ex-

tended over several periods. On the other hand, when a time function X(t) is given

only for a time interval T and this integral transform is applied, it is automatically

assumed that the time function is periodic with the period T, and no additional

information is obtained by an extrapolation. Therefore, for example, the Fourier

series has no real application in prediction problems.

(b) Fourier integral. Here, a frequency continuum is provided for the analysis.

The integral transform now determines the amplitude density as a function of fre-

quency. The time function is aperiodic and must not contain discrete frequencies

with finite amplitudes (equivalent to infinite amplitude density), otherwise the trans-

form is not convergent. The integration has to be performed over the infinite time

range from — °° to +00, unless the time function is zero outside a certain time
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interval T.rOn the other hand, if X(t) is only known within a time interval T and

this transform is applied, it is automatically assumed that X{t) is zero outside the

interval T. Again, nothing can be learned in this case by an extrapolation.

(c) Prony's method. This process [1], [2] is quite different from the two mentioned

before. It is applicable if X(t) contains only discrete frequencies and their number

is finite. The method leads to an algebraic equation of degree 2N with TV pairs of

conjugate complex roots, if N frequencies are present in the time function. The

solution of the algebraic equation may result in real or complex frequencies. If a

pair of roots is located inside the unit circle of the complex plane, the amplitude

of the corresponding frequency is exponentially decreasing with time; if a pair of

roots is located on the unit circle, the amplitude is constant, and if the roots are

outside the unit circle, the amplitude is exponentially increasing with time. In contrast

to the Fourier series, this method determines the inherent frequencies and their

amplitudes rather than merely the amplitudes for a given set of frequencies; further-

more, the ratio of any pair of frequencies may be rational or irrational. Any small

time interval is sufficient for this type of analysis, if X(t) is given with sufficient pre-

cision within this interval.

Prony's method is only of practical value if the number of frequencies contained

in X(t) is relatively small, since it involves the inversion of a IN by 2N matrix for

the determination of the coefficients for the algebraic equation, the solution of the

algebraic equation of degree 2N, and again a matrix inversion for the determination

of the amplitudes.

We will show in the next chapter that, if we limit the problem of frequency analysis

to real frequencies, it can be solved essentially by one process covering all the pos-

sibilities of the three methods discussed above.

2. The Basic Transform. We define a transform function P, depending on

time / and two parameters, the frequencies ft and ju by

1
(2.1) P(t; ft, /,) = — (exp(i2r/,r) - exp(i27r/,f)).

ITT l

where we assume that

(2.2) A/ = /, -    > 0.

We see that P is continuous, even for t = 0, since it can be written

2
(2.3) P = — sin(xA//) exp(iV(2/,- + A/)<),

TTt

and therefore

(2.4) lim P = 2A/.
1-0

We now define an integral transformation applied to a real function of time X(t) by

P(.t;1,.U)X(t) dt,

which we shall call the /^-transform.
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We consider first the case where the transform is applied'to

(2.6) Xi(t) = a cos 27r/if + b sin 2x/,r,

and we obtain (see Appendix A)

nxx, /,-, m = o        if u < i„

= Ua + ib)   if   U = 1„

(2.7) = a + ib       if   /, < /, < /,,

= i(a + ib)   if   /, = /,,

= 0 if  A > ft,

or, using the symbol AM,,, (2.7) is conveniently written as

(2.8) T(X,; fj, U) = A,.i.«(ö + tb).

Now, we apply the transform to X^t) given by

(2.9) XN(0 = Z {«* cos 2rfkt + o* sin 2x/*f}, > /»,
t-i

and obtain

N

(2-10) r(*„; fm /,) = X A,.».,(a» + ibk).
k-l

If /,■ and /, are properly chosen so that

(2.11) Af < min        — jk\,      k = 1, 2, • •• , N - 1,

each frequency can be isolated. This means that, if the result of the transform is

not zero, we obtain the complex amplitude of one frequency jk to

(2.12) ak + ibt = c* exp(iV>t),

and the upper and lower limits /, and /,■ for the unknown frequency /» are known.

It is important to notice that, if fk is equal to the upper or lower limit, we obtain

only half of the actual amplitude, but still the correct phase <pk.

We next apply the transform to Xs(t + At):

Xy(t + Ar) = zZ \<>k cos 2x/*(f + Ar) 4- bk sin 2*/,(f + Ar)}
(2.13) t_1

AT

= 23 («* cos 2irjkt + b'k sin 2wfkt)

and obtain

(2.14) r = E A,.».,(fli +

As can be easily verified, we now have

(2.15) fli + m = exp(^),
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(2.19) T{XC; /,-, /,) =  /    (A(w) + iB(w)) df.

with

(2.16) v'k = <pk - 2irfkAr

and we obtain the exact frequency

(2.17) U = {Vk - vD/2,tAt.

If X(t) has a continuous spectrum given by

(2.18) X£t) =  f   M(co) coscof + 5(w)sinco/) <//,
J 0

where a> = 2ir/, the transform leads to

r
Dividing (2.19) by A/ = /, — /,-, we obtain the average complex amplitude density

over the interval /, ^ / ^ /j and it can be easily verified that in the limit as A/ —> 0

we obtain the Fourier integral. We see now that our transform can be considered as

the integral of the Fourier integral over the frequency interval A/. It may be worth

mentioning here that, if X(j) contains discrete frequencies, our transform converges,

while the Fourier integral does not. In other words, discrete frequencies appear as

integrable singularities in the Fourier integral.

3. The Transform of Discrete Data. In practice, we always have a finite time

interval over which X(t) has been observed. Even if recordings are taken continuously,

only discrete data can be handled by a numerical method. We assume from here

on that the data to be analyzed are available at equal time intervals At for a certain

period of time and that At was properly chosen so that no aliasing can occur. We

then approximate the integration by a summation and introduce at the same time

normalized frequencies by

(3.1) 5 = A/ - Ar

and

(3.2) ß = (/,- + A//2)Ar,      0 = ß ^ 0.5.

The upper limit for ß is the normalized Nyquist frequency. (Later, we will formally

extend the range of ß up to 1, so that the algorithm of the "Fast Fourier Transform"

[3] can be used in the computation of the transform.) The transform of Section 2

then gives

(3.3) TK(X; ß, 5) = - £ \ suuVfcS) exp(i2i*j8) JT»,
t *r-> k

where the term for k = 0 is 2bX0, and 2K + 1 data are used. Since the transform has

to be applied again for a later data epoch, more than 2K A- 1 data must be available.

It should be mentioned that the transform (3.3) is an approximation of the original

transform for two reasons:

(1) The integration is replaced by a summation.

(2) We have a finite series instead of an infinite one.

While the original transform produces a rectangular gate of unit height and width A/
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in the frequency domain, it is only approximated by the finite series (3.3). This affects

mainly the frequency resolution.

If we search for discrete frequencies, the actual analysis consists of two steps.

First, we scan systematically through the normalized frequency range, 0 g ß g |,

in steps of 8, repeat the transform for a later time and obtain a first estimate of the

complex amplitude and the frequency in each band. Corrected values are obtained

in a second step, if we set the gate individually for each frequency, where a large

amplitude was obtained, so that the frequency is approximately in the center of the

gate. We see that in this case the rectangular shape of the gate is not essential. If it is

replaced by a cosine shape given by

g(ß) = 0, in 0 = ß = ß. - 8,

(3.4) = i (l + cos x ^y^) .   in ß. - 8 = ß ^ ße + 8,

= 0, in ß. + 8 = ß = i,

where ßc is the center of the gate, the convergence of the transform can be improved*

For a cosine gate the transform is given by

(3.5) TC(X; ß, 8) = ± £ , .f" 2*kJ , exP(i2*kß)Xt,
x kT-K k(l — 48 k )

where again the term for A: = 0 is 25^0.

The scanning process mentioned above is simplified if (3.5) is modified in the

following way. We first introduce
•

(3.6) ß = ß0+ m8,      m = 0, 1, • • • . M - 1 and 5 = 1/Af,

where ß0 may be any fraction of 8. We then obtain

„ ~      1 sin 2wk8 ,.. „      /.„ km\
(3-7)      r- = ;5Hi -45V)«p<'2*ft,)*«p('2-wr

The term ß0 permits us to shift all the gates by a fraction of the "bandwidth" 8,

if this is desirable.

If we now set

(38)    y* = - . ,fm 2l%, X„ exV(i2Tkß0),      -K = k= -1,   I *-k & JT.
■jt A:(l — 45 a:)

(3.9) Y0 = 25A-0,

we have

(3.10) T„ = 2Z Yk exp(i2xÄ:r«/M).
-K

We must point out that M and K are mutually independent; M determines the

bandwidth, while 2K + 1 is the number of data to be transformed. Usually, M is

smaller than K as will be discussed later.

Since the exponential function in (3.10) is periodic in k with the period M, we set

(3.11) k = r-M + s,      s *= 0, 1, ••• , M — 1,   LT ^ r g L+,
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where L and V are integers defined by

(3.12) -K/M - 1 < L~ $ -K/M

and

(3.13) K/M - 1 < L+ g tf/Af.

Introducing now Z, by

we obtain

T-L-

M-l I \

(3.14) Tm = gz..exp(/2r^j.

If M is properly chosen, e.g., M = 2", where /> is an integer, the algorithm of the

"Fast Fourier Transform" [3] can be used to perform the transform (3.14).

If X(t) is represented by an amplitude density function, the first step, the scanning

process, is usually sufficient. It is easy to see how a continuous spectrum can be

distinguished from a line spectrum. If sufficient resolution is obtainable, the amplitude

of a discrete frequency does not change with decreasing bandwidth, while for a

continuous spectrum the ratio of amplitude and bandwidth should remain constant

if the bandwidth is reduced.

4. Examples. As a test, the method was applied to tidal data. The frequencies

of the tides are very well known from astronomical observations. Two years (1951-

1952) of bi-hourly measurements of tides at San Francisco were analyzed; the results

are listed in Table 1. The first column shows the theoretical frequencies in degrees

per hour as listed by Schureman [4]. The second and third columns show the results

of our analysis, the amplitudes and frequencies, respectively. The frequency dif-

ferences between the theoretical values and those determined in the analysis are

listed in columns 4 and 5 in different units, degrees per hour and cycles per year.

The largest difference found is 0.05 cycles per year. For comparison, the difference

between two consecutive frequencies provided by a Fourier series analysis of two

years of data amounts to 0.5 cycles per year, ten times larger than the largest dif-

ference found in the analysis above.

The second example is directly related to Prony's method. There, a polynomial

equation is derived from the time series, and the roots of the polynomial equation

determine the frequencies. By the inverse process, a time series can be produced

from a polynomial and the frequency analysis of this time series determines the

roots of the polynomial equation, provided that those roots are located on the unit

circle of the complex plane or that the polynomial can be properly transformed.

In other words, if it is known that all the roots of a polynomial equation are located

on a curve which can be mapped by a proper transform onto the unit circle, then

the roots of this polynomial equation can be found by the frequency analysis of the

corresponding time series.
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Table 1

Analysis of Tides, San Francisco 1951-1952

Table

Frequency

Deg/Hour

Ampi.

Feet

Results

Frequency

Deg/Hour

Frequency

Differences
Deg/Hour C/Year

1.0980331
13.3986609
13.9430356
14.9589314
15.0410686
15.5854433
16.1391017
27.8953548
27.9682084
28.4397295
28.5125831
28.9841042
29.5284789
30.0000000
30.0821373
30.6265120
42.9271398
44.0251729
45.0410686
45.1232058
57.4238337
57.9682084
58.9841042
59.0662415
71.3668693
71.9112440
73.0092770
74.0251728

0.058
0.156
0.900
0.380
1.344
0.089
0.066
0.043
0.029
0.378
0.074
1.778
0.053
0.431
0.159
0.016
0.063
0.081
0.014
0.014
0.029
0.086
0.039
0.036
0.013
0.022
0.023
0.009

1.0994840

13.3984707
13.9426864
14.9591985
15.0412392
15.5860805
16.1406875
27.8945316
27.9662659
28.4396179
28.5133208
28.9840174
29.5288241
29.9997015
30.0824543
30.6282672
42.9257891
44.0251719
45.0415260
45.1232532
57.4242372
57.9683389
58.9834004
59.0663642
71.3671729
71.9118317
73.0072166
74.0247541

0.001451
0.000190
0.000349
0.000267
0.000171
0.000637
0.001586
0.000823
0.001943
0.000112
0.000738
0.000087
0.000345
0.000298
0.000317
0.001755
0.001351
0.000001
0.000457
0.000047
0.000403
0.000130
0.000704
0.000123
0.000303
0.000588
0.002060
0.000419

0.03534
0.00463
0.00850
0.00650
0.00415
0.01552
0.03861
0.02004
0.04730
0.00271
0.01796
0.00211
0.00841
0.00727
0.00772
0.04274
0.03289
0.00002
0.01114
0.00115
0.00983
0.00318
0.01714
0.00299
0.00739
0.01431
0.05017
0.01020

The roots of the Legendre polynomials Ln(x), for example, are located on the

real axis between +1 and — 1, symmetrically around zero. Introducing

(4.1) x = «1 - />/(! + y),

Ln(x) is now transformed into a polynomial MJy) and its roots appear now as con-

jugate complex pairs on the unit circle. We applied this method to the Legendre

polynomial of 16th degree. The resulting polynomial Ml6(y) was normalized so

that the coefficient of the highest power was unity. The time series was produced

using the recurrence relation
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(4.2) xn =

starting with 16 arbitrarily chosen numbers X0, Xu • ■ ■ , X1IS. A total of 2200 data

were produced this way. This time series was then analyzed. The results are given

in Table 2 showing the "frequencies", the roots derived from the frequencies and

Table 2

Frequency

Calculated

Root

Calculated

Root

Exact

Root

Difference

0.030152905
0.087374490
0.136714302
0.176171855
0.205930889
0.227113810
0.240929873
0.248304135

0.095012511
0.281603551
0.458016778
0.617876244
0.755404410
0.865631202
0.944575025
0.989400934

0.095012510
0.281603551
0.458016778
0.617876244
0.755404408
0.865631202
0.944575023
0.989400935

0.000000001
0.000000000
0.000000000

-0.000000000

0.000000002
0.000000000
0.000000002

-0.000000001

the roots listed in Tables of Functions and Zeros of Functions [5] in the columns

1, 2, and 3, respectively. The differences between columns 2 and 3 are listed in column

4, the maximum error amounts to 2 X 10~9.

5. Discussion of the Numerical Application. Some comments on practical as-

pects may explain more details of the method. At the same time, we will attempt

to demonstrate that the method is very flexible, but also quite complex in the sense

that questions regarding the best choice of bandwidth 8, time interval Ar between

two transforms, and error estimates of amplitude, phase and frequency, cannot

easily be answered. Usually, those questions must be studied individually for a given

time series, and the answers will depend mainly on the length of the time series,

the frequency distribution in the spectrum, the amplitude ratio of neighboring fre-

quencies and the noise level. Therefore, the following discussion will be restricted

to some general considerations.

We assume that Nt is the total number of data points available and use, instead

of the time interval At between two transforms, the corresponding number of data

points AK given by

(5.1) AK = At/Ar.

Since we need 2K + 1 data points for one transform, we have the relation

(5.2) 2K + 1 + AK S N,.

As mentioned before, the original discrete transform is an infinite series, and we

expect that the approximation by a finite series will become better, the larger the

number K. More careful investigation of (3.3) and (3.5) shows that the convergence

depends in first order on the product K- 8. This, together with (5.2), means that a
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compromise must be sought between the convergence, the interval between two

transforms and the bandwidth.

With the finite series (3.3) or (3.5), we obtain an approximation of the desired

shape of the gate, but also "sidelobes" in the remaining frequency range. The mag-

nitude of those sidelobes decreases with increasing K- 5 and also with increasing

frequency difference from the gate. Those sidelobes can introduce interference errors,

for example, if the gate is set for a frequency with a relatively small amplitude and

a strong line is in one of the neighboring sidelobes. (In many cases, the method

permits us to eliminate this interference to a high degree by changing the bandwidth

or shifting the gate, so that a zero between two sidelobes falls on such a strong line,

if its frequency was already determined.) An estimate of the interference error may

be difficult, especially, if several frequencies with different amplitudes are close

together.

Generally, a wide bandwidth is desirable to keep interference low; on the other

hand, the bandwidth must be small enough to separate the frequencies present in

the record. This holds first of all for the scanning process when we start the analysis

of a time series and nothing is known about its frequency distribution. Here, a

reasonable compromise can be made by using a minimum bandwidth defined by

the relation

(3.3) X^Snbafqs«^*^ o <        i ,w A    , > ,\ ^

While the errors of amplitude and phase depend essentially on K- 5 and on the

noise level, the error of the frequencies depends largely on AK. If we can assume

that the magnitude of the phase error remains within certain limits as a function

of time, then the error of the frequency will decrease with increasing AK. If AK

corresponds to many periods of a given frequency, the transform may be repeated

several times in smaller steps in order to avoid possible uncertainties about the

number of full phase rotations. Repeating the transform several times also permits

us to test the stability of a line in time. A systematic variation of the amplitude,

for instance, may indicate that the gate includes more than one line and the spectrum

is not sufficiently resolved with the bandwidth used.

The choice of the parameters 5, K and AA' also depends to some extent on the

problem to be solved. The first example given above, the analysis of tides, was used

as a test on the frequencies. Since the frequencies are known from astronomical

observations with high accuracy, the main emphasis of tidal analysis is usually on

an accurate determination of amplitude and phase for each frequency, e.g., for

prediction purposes. Therefore, AK can be small to minimize interference errors

in phase and amplitude. In the second example, we have the opposite situation.

Amplitude and phase are of no interest; only the accuracy of the frequencies is

important, which requires a relatively large AK.

In conclusion, it should be mentioned that there is no need to have the length

of the time series equal to a joint multiple of the periods present. Some minimum

length is required only for the resolution.

Appendix. The proof for (2.7) and (2.14) can be obtained in the following way.

If we introduce (2.6) into (2.5), we have
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(A 1)      T = f    — [exp(/27r/,f) — exp(i2ir/,/)](a cos 2x/i/ + b sin 2x/if) dt
j_„ iirt

(A .2)

■ ̂ -^ f  7 (sin 2t(/i + /.)' - sin 2tt(/, + /,)/) A

+ ^±J* f  I (sin 2x(/, -       - sin 2x(/,- - /,)/) A.
7t       J0 f

The first integral in (A.2) is always zero. For the second integral we have to distinguish

the five possibilities of (2.7). We set

2*(/, - U)t = y

and

2HU - U)t = x.

For /, < /, < ji, we have v > 0 and x > 0, and the second integral is again zero.

For /i = /,• <     we have y > 0 and x = 0 and therefore

a + ib f" sin .y ,      a + i'6
rfy = -(A.3) T = f/o      > 2

For /, < /! < /,, we have y > 0 and x < 0. Replacing x by — x, we obtain

;* « ~     a + ib /     sin y [a sin *    \ ...

For //</(= /i, we have y = 0 and x < 0. Again replacing x by — x, we have

(A.5) r-±±Ä f!!uAt.!iS1
it     j0     a: 2

and finally, for /,• < /, < /i, we have y < 0 and x < 0 and the integral is zero.

For a continuous spectrum, we introduce (2.18) into (2.5) and obtain

f+" 1
T(Xe) = /     — [exp(;2x/,0 - exp(i2x/,0]

(A.6) J" mt

■ \   {Aiw) cos at + B(u) sin o>i) doi dt
Jo

By changing the order of integration, we have

T(Xe) = f   A(w) [    t~ [exp(/2x/,f) — exp(i2x/,/)] cos tor dt doi
(A.7) h mt

+ /   B(w) /    — [exp(<2x/,0 — exp(f2ir/,-0] sin tor dr <&o.
j0 j-= ixr

Now using the results of the first part of this Appendix, we see that we obtain (2.19).
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