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We propose a new hamiltonian intended to mimic low-spin to high-spin transition in
spin-crossover solids, that displays a vibrational-entropy-driven first order phase transition.
The present model is based on the existence of anharmonic intersite coupling (dependent
on the electronic state of the sites) which alters the stiffness of the vibrations in the high
temperature phase (high spin). The present exactly solvable model, studied at one dimension,
clearly demonstrates the existence of a first-order transition accompanied with hetero-phase
fluctuations around the transition temperature at higher dimensions.

§1. Introduction

The thermally induced spin crossover (SC) transition between the low spin (LS)
and the high spin (HS) states of Fe(II) complexes with suitable ligands, which are
examples of molecular bistable solids, have been studied1)–4) for many years. Their
bistability, originating from intra-molecular vibronic coupling, can be enhanced by
inter-molecular interactions. At the solid state, the elastic interactions constitute
the basic mechanism from which the richness of the behavior of these systems is
originated. They lead to rather abrupt thermal spin transitions, and in many cases
even to hysteresis behavior denoting a first-order phase transition or two-step tran-
sition,5)–7) instead of a gradual transition corresponding to the simple Boltzmann
distribution between two states, which are generally obtained in highly diluted crys-
tals (i.e. non cooperative systems).

From the experimental point of view, extensive research efforts have been di-
rected these last decades toward linear polymeric Fe(II) SC chains.8)–11) Different
behavior has been observed on this class of low dimensional materials: first-order
transition, two-step transition and specific response of the high spin (HS) fraction
under pressure.10) The relaxation of the photoexcited HS fraction in 1-D systems
was also studied;11) it shows a non-linear relaxation due to cooperative effects.

From the theoretical point of view, many works have been devoted to clarify
the nature of the interaction. As a part of these works, the SC transitions were
microscopically modeled using Ising-like models7),12)–14) or domain models based
on cooperative regular solutions.15),16) Recently, we have studied17) the relation
between these two classes of models and derived the analytical expressions between
their parameters, proving that they are isomorphic. In the Ising-like model, the
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SC phenomenon is described by the hamiltonian of interacting two-level units, the
energy levels of which have different energies and degeneracies. The low-spin (LS)
and HS states are then respectively associated with the degenerated eigenvalues of
a fictitious Ising spin σ = −1, +1. Accounting for the isomorphism13),18) between
the Ising-like model and the Ising model under temperature-dependent field, the
hamiltonian which describes the SC phenomena involves two terms: (i) interaction
energy −J

∑
〈i,j〉 σiσj and (ii) the temperature-dependent energy

∑
i(∆−kT ln g)σi.

The parameter ∆ is the ligand field energy between the two-levels, and g is their
degeneracy ratio. It is related to the molar entropy change upon ∆S = R ln g. In
the case of iron II, the LS state has a spin S = 0 and the HS state S = 2, leading
to a degeneracy ratio of (2S + 1)× 3 = 15, where 3 is the orbital contribution. This
degeneracy ratio, combined with the interaction, acts as a motor of the first-order
transition. The HS fraction nHS , measured experimentally, is expressed in the Ising-
like model as a simple function of the average value of the ‘fictitious magnetization’:
nHS = (1 + 〈σ〉)/2.

In this model, the interaction is introduced as in magnetism. However, we know
from the experiments that there is no magnetic order in SC solids. Therefore, J is
essentially a phenomenological parameter which does not help directly to understand
the elastic nature of the transition in SC solids, even if it is able to produce it. In
addition, the two-level scheme represents a drastic simplification of the complete
vibronic level scheme of the molecule. It is worth noting, that all the tentative to go
beyond the Ising-like model have used either the phenomelogical interaction form19)

or the spin formulation as in 20).
In the present study we prospect, for the first time in the field of SC, a one-

dimensional model including explicitly the on-site potentials of the spin-crossover
molecules, coupled by an elastic interaction. Thus, the model accounts for the intra-
molecular information coming from the molecules, which interact via phonon field.
This elastic interaction incorporates two terms coming from harmonic and anhar-
monic contributions of the lattice. The latter leads, as a consequence, the change
in the vibrational entropy which drives the first order transition. Indeed, the elastic
strength coupling two atoms is taken as dependent on their vibrational states. Such
problem is exactly solvable at one dimension in the classical limit.

The present manuscript is organized as follows. Section 2 is devoted to the
presentation of the hamiltonian of the molecule and the local interaction potential
energy between the sites. In §3, we solve exactly the statistical problem using the
transfer integral technique21) and we study the equilibrium properties of the present
model. We conclude in §4.

§2. The model

Consider the following hamiltonian for 1D SC lattice with sites labelled by index
i:

H =
∑

i

[
p2

i

2m
+ Vintra(ui)

]
+

∑
〈i,j〉

Vinter (ui, uj) , (1)
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where Vintra(ui) is the on-site potential of the spin-crossover unit; p2
i

2m is its kinetic
energy and Vinter (ui, uj) is the potential energy accounting for the elastic interaction
between the sites i and j.

The symbol 〈i, j〉 denotes neighbor pairs. The constant ui can be viewed as the
lattice distortion at site i. It can be related to the metal-ligand distortion of the
molecule located at site i.

2.1. The on-site potential

The potential energy of one particle results from the following on-site hamilto-
nian Hi:

Hi =
p2

i

2m
+

1
2
k (ui − u0)

2 +
[ −δeff + �(ui − u0) J

J δeff − �(ui − u0)

]
, (2)

where the matrix hamiltonian is written in the basis of the electronic LS and HS
states. δeff = δ − 1/2kBT ln g is the well known effective ligand field energy ac-
counting for the energy gap δ and the effective electronic degeneracy ratio g.13),14)

The parameter � represents the vibronic interaction responsible for the two different
equilibrium positions of the HS and LS states. J is an off-diagonal element resulting
from high order spin-orbit coupling22),23) which mixes the HS and LS states.

Solving the one particle hamiltonian in the Born-Oppenheimer approach, we
deduce that the potential energy Vos(ui) of the fundamental state, is given by

Vintra(ui) =
1
2
k(ui − u0)2 −

√
(δeff − �(ui − u0))

2 + J2. (3)
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Fig. 1. The true on-site potential Vos energy as function of the deformation ui on site i resulting

from Eq. 3. The parameter values are: k = 1, δ = 0.1, g = 1, � = 1, J = 0.1, u0 = 1/2.
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Vintra(ui) has two minima, the lowest one corresponds to the LS state and the highest
to the HS state, as represented in Fig. 1. We have chosen the parameters of the model
(i.e. δ, g,J, k, �, u0) so as to have the two minima of the potential energy at u = 0
(resp. u = 1) for the LS state (resp. the HS state), as shown in Fig. 1. Moreover, we
set k = 1 and the electronic degeneracy ratio g = 1 for all the calculation performed
in this work. Using the following values for the reduced parameters δ = 0.1, � = 1,
and J = 0.1, u0 = 1/2, we found the reduced energy barrier height to ≈ 0.271, which
fixes the energy scale and the transition temperature. All the previous parameter
values are kept as constant in all the calculations presented in this work. At low
temperatures, the system is localized on u = 0 corresponding to the LS state; at high
temperature it will oscillate around u = 1. The thermodynamic properties of these
non-interacting double wells lead to trivial results: a simple Bolzmann population
of the HS spin state and a Schottky anomaly on the specific heat. These types of
behavior are similar to the well known results on two levels system.

2.2. The interaction energy

The interaction energy between the SC units is mapped here through an elastic
force,20),24) it is written under the following general form:

Vinter(ui, ui+1) = Vhar (ui, ui+1) + Vanh (ui, ui+1) =
1
2
Ci,i+1 (ui+1 − ui)

2 . (4)

It accounts for the intersite coupling (or intermolecular interactions) and contains
harmonic and anharmonic contributions. Here Ci,i+1 is the local elastic constant
between the sites i and i + 1. Due to the fact that the atoms or the molecules
located on the sites i and i + 1 may have different electronic states, namely HS or
LS, it becomes clear that, from a general point of view, the elastic strength Ci,i+1 may
depend on the electronic states of the atoms on these sites and on their vibrational
states as well.

Therefore, the interaction energy of Eq. (4) must incorporate (i) the usual har-
monic interaction between degrees of freedom

Vhar (ui, ui+1) =
1
2
K (ui+1 − ui)

2 (5)

and (ii) an anharmonic contribution, Vanh (ui, ui+1) , accounting for the change in
effective restoring forces between molecules at the transition. The latter cannot
be here reasonably treated as a perturbation, in the case of SC systems, as it is
frequently found in the literature.25)

Indeed, for the SC phenomenon, it is well known from the experimental litera-
ture1),23),26) that the lattice is more rigid in the low temperature phase (LS) than
that at high temperature (HS). This behaviour is essentially due to the size change
of the SC molecule during the transition, which is included in our two-wells po-
tential of Fig. 1. Consequently, since the lattice is expanding during the thermal
transition, it becomes natural to consider that the elastic force constants depend
on the deformations of the molecules. Quite recently, Nasser20) has suggested the
same idea of phonon coupling one-dimensional SC units, in which the elastic force
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depends on the electronic states of the neighbours. However, in this treatment, each
spin-crossover molecule is represented by an Ising fictitious spin leading to neglect
the intramolecular properties of the molecules. In addition, the treatment has been
performed in mean-field approximation, in spite of the one-dimensional character of
the model, leading to show the existence of a first-order transition between the LS
and HS states. An extension of this treatment including short-range correlations,
and respecting its one-dimensional character is in press.27)

So, let us denote by CHH , CHL (or CLH) and CLL the elastic constants respec-
tively associated with the electronic configurations HS-HS, HS-LS (or LS-HS) and
LS-LS of our model. Then it follows immediately that CHH < CLL. We are now
concerned by the analytical form of the non-harmonic contribution of the elastic
force, i.e. Ci,i+1 as a function of the deformations ui and ui+1 of the connected
molecules. In the following, we suggest to write the deformation dependence of the
local anharmonic elastic constants CAnh

i,i+1 under the simplest form

CAnh
i,i+1 =

α

2

[
(ui − 1)2 + (ui+1 − 1)2

]
. (6)

Thus, the total interaction energy can be written

Vinter(ui, ui+1) =
1
2

(ui+1 − ui)
2
[
K +

α

2

(
(ui − 1)2 + (ui+1 − 1)2

)]
. (7)

In Eq. (7), the parameter α is the coupling strength related to the anharmonic part
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Fig. 2. The total potential energy of two interacting molecules (i, j) as a function of their respective

deformations ui, uj . The four minima correspond to the four equilibrium states HS-HS (HH),

HS-LS (HL), LS-HS (LH) and LS-LS (LL). Parameter values are: K = 200, α = K, k = 1,

δ = 0.1, g = 1, � = 1, J = 0.1, u0 = 1/2.



210 K. Boukheddaden

of the lattice. In the present case, the anharmonic coupling is introduced through
a quartic contribution in the potential energy. Then the total potential energy
Vtot (ui, ui+1) of two interacting molecules located at sites i and i + 1 writes:

Vtot (ui, ui+1) = Vintra(ui) + Vintra(ui+1) + Vinter(ui, ui+1). (8)

Vtot (ui, ui+1) which includes harmonic and anharmonic contributions, is represented
for K = 200 and α = K in Fig. 2. It has four minima, corresponding to the four
states HS-HS (ui = 1, ui+1 = 1), HS-LS, LS-HS (two-degenerated states) and LS-LS
(ui = 0, ui+1 = 0).

The coupling for the special case α = 0, which corresponds to consider that
CHH = CLL = CHL, is purely harmonic. It is worth noting that most standard
models for SC systems only include harmonic coupling.25) The coupling strength is
identical in both low- and high-temperature phases and thus the dispersion of these
modes is identical. To show the influence of the anharmonic term on the effective
coupling, note that at high temperatures (i.e. HS state) we have 〈u〉 ≈ 1, which gives
an effective coupling C = CHH ≈ K. At low temperatures (i.e. LS state) we obtain
〈u〉 ≈ 0, therefore the effective coupling is C = CLL ≈ K+α with CHH < CLL. Thus,
the low temperature phase has stiffer vibrations than the high temperature phase by a
factor of

√
(K + α)/K. This entropy difference plays an important role in “driving”

the transition. In the absence of anharmonic contribution (i.e. α = 0), there is a
change of the system behavior as the temperature is varied when the thermal energy
is of the same order as the energy difference between the stable and metastable wells.
The temperature range over which the change occurs is broad (see Figs. 3(a) and (b)).
Considering the anharmonic contribution (CLL �= CHH), the vibrational entropy of
the low temperature phase is lowered, and thus this enhanced difference in the free
energies as a function of temperature sharpens the transition. The present exact
calculations clearly demonstrate that this new contribution provides a modification
to the harmonically coupled Hamiltonian that displays these effects.

At one dimension, the classical partition function may be solved exactly using
transfer integral (TI) technique.21),28)–30) It is straightforward that there is no true
transition in one dimension, due to the domain wall entropy; however the exact
calculations demonstrate the effect of the effective coupling on the thermodynamic
quantities. The partition function may be written Z = ZpZu, where Zp is the one
dimension free-particle partition function

Zp =
[∫

e−p2/2mkBT dp

]N

= (2πmkBT )N/2 . (9)

This term gives the usual contribution to the specific heat of 1
2kBT and has no

interesting behavior. In contrast, the configuration partition function Zu related
with the potential energy leads to nontrivial behavior. Zu can be written

Zu =
∫ N∏

i=1

exp{−β[Vintra(ui) + Vinter(ui, ui+1)]}dui. (10)



Anharmonic Model for Phonon-Induced First-Order Transition 211

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

H
ig

h
 S

p
in

 F
ra

c
ti
o
n
 n

H
S

reduced temperature T

(a)

(b)(c)(d)

Fig. 3. Thermal dependence of the mean deformation 〈u〉 for the same harmonic coupling K = 200

and different anharmonic elastic strengths. From right to left (curves (a) to (d)): α/K =

0, 0.4, 0.7, 1. Note that the increase of the anharmonic contribution lowers the transition tem-

perature and drives the “first-order” transition (see text). The parameter values are: k = 1,

δ = 0.1, g = 1, � = 1, J = 0.1, u0 = 1/2.

In this work, and as a first attempt, we determine exactly the thermodynamical
properties of our atomic chain in the frame of the classical statistical mechanics. At
this end we must calculate exactly the partition function Zu.

§3. Transfer-integral method

The transfer integral (TI) formalism21),28),29) provides an elegant technique for
calculating thermodynamic quantities exactly for our linear chain of non-linear cou-
pled oscillators. We consider here a closed linear chain of N atoms with boundary
conditions, i.e. uN+1 = u1. For such a system the configurational partition function
is written

Zu =
∫

duN+1

∫
duNT (uN , uN+1) · · ·

∫
du1T (u1, u2) δ (u1, uN+1) , (11)

where the matrix T (ui, uj) is given by

T (ui, uj) = exp
{
−β

[
1
2
Vintra(ui) +

1
2
Vintra(uj) + Vinter(ui, uj)

]}

= exp(−βU(ui, uj)), (12)

where the effective potential energy U(ui, uj) has a similar shape to that of Fig. 2.
The δ function enforces periodic boundary conditions. The transfer matrix T (ui, uj)
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is symmetric, real and positive, with eigenfunctions Φn satisfying∫
dujT (ui, uj) Φn(uj) = λnΦn(ui), n = 0, 1, 2, · · ·

= exp(−βεn)Φn(ui), (13)

where λn = exp(−βεn) is the eigenvalue associated with the eigenfunction Φn. Since
T (ui, uj) is a positive matrix, then following Frobenius theorem T (ui, uj) has a
positive eigenvalue λ0 so that

λ0 > |λ1| > · · · > |λi| , (14)

where |λi| is the modulus of the eigenvalue λi which can be a complex variable in the
general case where the matrix T (ui, uj) is nonsymmetric. Further, the eigenvalues
are chosen to satisfy the orthogonality relation

δ (ui, uj) =
∑

n

Φ�
n(ui)Φn(uj). (15)

Using this identity and the relations (11) – (13), the partition function can be written
as

Zu =
∞∑

n=0

λN
n . (16)

It is worth noting that in the thermodynamical limit, i.e. with N → ∞, only the
dominant eigenvalue remains, leading to

lim
N→∞

Zu = λN
0 = exp (−Nβε0) (17)

which gives for the free energy per atom

F/N = −kBT

N
lnZuZp = ε0 − 1

2β
ln 2mπ/β with β =

1
kBT

. (18)

In a similar way, using now Dirac notation, we may write the statistical average
value of any function f(ui) through the following formula:

〈f(ui)〉 =
1
Z

∑
n

〈
Φ�

n

∣∣TNf
∣∣Φn

〉
. (19)

In the thermodynamic limit, Eq. (19) becomes

lim
N→∞

〈f(ui)〉 =
〈
Φ�

0

∣∣TNf
∣∣Φ0

〉
=

∫
dui |Φ0(ui)|2 f(ui). (20)

In practice, to find the transfer matrix eigenvalues and corresponding eigenvectors,
we first discretize the states. It follows that the intra- and inter-molecular potentials
must be discretized, which transforms the equation (13) to the following:

M∑
i=1

M∑
j=1

∆ui∆ujT (ui, uj) Φn(uj)Φn(ui) = λn = exp(−βεn) . (21)

The problem is now reduced into a calculation of eigenvalues and eigenvectors of a
real and symmetric matrix, which can be solved numerically.
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§4. Results

We have solved numerically the eigenvalues problem of Eq. (21). For that rea-
son, we typically discretized the potential U (ui, uj) into 1000 states; increasing the
number of states up to 2000 did not appreciably alter the results.

Following the experimental data of X-rays measurements,31)–33) showing that the
HS fraction is proportional to the thermal mean-value of the metal-ligand distance, it
becomes reasonable to consider here that the HS spin fraction, nHS , as proportional
to the average value 〈u〉 of the deformation.

In the general case where the electronic degeneracy g is taken as different from
1, the two minima of the intramolecular potential of Fig. 1 become temperature
dependent. Therefore, the HS fraction can be defined as

nHS =
〈u〉 − uLS

uHS − uLS
, (22)

where uLS (resp. uHS) is the average value of the deformation u at low temperature
(resp. high temperature) in the low spin (resp. high spin) state.

For the present calculations, we have considered g = 1 and u0 = 1/2, so as to
have uLS = 0 and uHS = 1 at all temperatures. Using the spectrum of eigenvalues
and eigenvectors, we derive easily the expression of nHS in the thermodynamical
limit, i.e. N → ∞, as given by

nHS ∝ 〈u〉 =
∫

duu |Φ0(u)|2 , (23)

where Φ0(u) is the eigenfunction of the fundamental state. In Fig. 4, we show the
thermal behaviour of the mean value of the deformation 〈u〉 for the following cases:

non-interacting case (a) K = 200, α/K = 0;
quasi-harmonic cases: (b) K = 200, α/K = 0.4; and (c) K = 200, α/K = 0.7;
anharmonic case (d) K = 200 with α/K = 1.
In the harmonic limit (K = 200, α = 0), for which the lattice has a uniform

elastic force constant, the thermal transition occurs smoothly over a large interval
of temperature (see Figs. 3(a) and (b)), due to Boltzmann population. It appears
from our results that the transition temperature is sizeably lowered when we increase
the anharmonic coupling. In addition, the anharmonic intersite coupling causes a
sharp change in the deformation over a very small temperature range (Figs. 3(c)
and (d)), indicative of a first-order phase transition driven by phonons. To confirm
the previous results, we have calculated the heat capacity per particle at constant
volume (length), given by

Cv = −T
∂2(F/N)

∂T 2
. (24)

The heat capacity for two cases is shown in Fig. 4. With a small anharmonic
contribution (α/K = 0.4), a small and broad peak (dashed curve) in the heat capac-
ity is seen. This peak is related to the Shotky anomaly. In the strong anharmonic
case where α/K = 1, represented by the solid curve, the peak becomes very nar-
row, with a very high value of Cv at the transition. This indicates the existence
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Fig. 4. The specific heat vs temperature of quasi-harmonic α/K = 0.4 (dashed curve) and the

anharmonic α/K = 1 (solid curve) cases. The heat capacity of the harmonic weakly coupled

system shows a Shottky anomaly, while that of the strong anharmonic coupled system shows a

very narrow peak, with a large maximum around the transition temperature T1/2 = 0.69. The

other parameter values are k = 1, δ = 0.1, g = 1, � = 1, J = 0.1, u0 = 1/2.

of a true first-order transition at higher dimensions, where the heat capacity would
have a divergence (δ-function) at the transition. Also, we note that the peak occurs
at lower temperature; this clearly demonstrates that phonons increase the stability
of the HT phase. We also found that the anharmonic coupling drastically changes
the entropy over a small temperature range around the transition temperature. In
addition, the change in entropy (∆S) for the anharmonic (α/K = 1) case is clearly
increased relative to the harmonic (α = 0) limit. This also demonstrates that the
anharmonic contribution does stabilize the high temperature phase by lowering the
low-temperature phase vibrational entropy.

The above equilibrium properties show that the spin-crossover transition can be
reasonably described as a vibrational-entropy-driven first-order transition. It is also
possible to use TI calculations to show the existence of heterophase fluctuations at
temperatures around the transition temperature Teq. From Eq. (20), we deduce that
at the thermodynamical limit, the probability of finding a particle in the range u to
u + du is given by

P (u)du = |Φ0(u)|2 du. (25)

Figure 5 shows the probability distribution P (u) for temperatures T = 0.695 (in full
line) and T = 0.685 (in dashed line) just above and below the transition temperature;
the peak of the specific heat occurs at T = T1/2 = 0.69. Figure 5 clearly shows that
near the transition, when non-linear excitations are important, there are long-lived
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heterophase fluctuations.30),34) Indeed, the probability distribution P (u) shows two
distinct peaks with opposite contributions: above the transition temperature, for
T = 0.695, the probability density peaks near u = 1; however there is a distinct peak
near u = 0. These peaks demonstrate the existence of dynamical fluctuations. For
a temperature T = 0.685 slightly below the transition temperature, the situation is
reversed: the maximum contribution in P (u) occurs near u = 0 and a second peak
survives near u = 1.

§5. Conclusion

We have presented an exact examination of the thermodynamics of a simple
one-dimensional model which mimics the change in phonon frequency of molecular
SC solids. Such a model may be also extended to describe other systems in which
the transition is driven by phonons, even with more complicated intra-molecular
potential energy form.

The present model clearly shows that it reproduces the “first-order phase tran-
sition”, observed in many SC systems, when adequate anharmonic contributions are
included. Therefore, the SC transition is described here as a vibrational-entropy-
driven first-order transition. The main difference when we compare this model with
the usual Ising-like models,12),35) lies in the fact that here the intermolecular cou-
pling is temperature dependent, through the change of the energy of the phonon
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spectrum. Consequently, the interaction energies are different in the HS and LS
states, whereas they are the same in the Ising models.

An important equilibrium property, exactly obtained within the transfer integral
technique, is the probability distribution function P (u). In an extremely narrow
regime around the transition temperature, we found evidence of an anharmonic
behaviour, i.e. heterophase fluctuations corresponding to excitations connecting the
LS and the HS phases. As a first attempt to understand these excitations, we have
planned to perform molecular dynamics simulations and to extract the dynamic
structure factor for this system. The extension of the model in order to produce
double step transitions,5),6),12),36) which needs long range-order, is also in progress.
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