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Abstract

Empirical study of cublc and quartic vibrational force con-
stants for diatomic molecules shows them to be approximately
exponential functions of internuclear distance. A famlly of curves
1s obtained, determined by the location of the bonded atoms in rows
of the periodic table. Displacements between succegsive curves
correspond closely to those in Badger's rule for quadratic force
constants (for which the parameters are redetermined to accord with
all data now available)., Constants for excited electronic and ionioc
states appear on practically the same curves as those for the
ground states. Predletions based on the dlatomic correlations agree
with the avallable cubic constants for bond stretching in polyatomic
molecules, regardless of the type of bonding involved. Some impli-~

catlions of these regularities are discussed.

*

Presented in part at the Symposium on Molecular Structure and
Spectroscopy, Columbus, Ohlo, June, 1960. Support recelved from
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Molecular vibrations must be taken into account in the inter-
pretation of many types of experiments. Often the anharmonicity of
the vibrations is an important consideration. For example; in most
molecular structure determinations the dominant vibrational correc-
tions arise from anharmonic terms in the potential function. It has
been ahown1 that within a practical approximation the difference
between the average molecular configuration derived from electron
diffraction experiments2 and the equilibrium configuration is due
solely to the cubic potential terms. The cublic terms also give the
largest of the corrections needed to derive equilibrium moments of
inertia from observed spectroscoplc rotational consstan‘l:s.:5 In a
large class of isotope effects, especlally where hydrogen is involved,
anharmonicity plays an important role. Some examples that have been
discussed theoretically are various magnetic 1nteraotions,4 including
second moment55 and chemical shifts6 of nuclear magnetic resonance
lines; and optical activity7 of compounds of the type RR'CHD. Aside
from diatomics, however, very little 1s known about the anharmonicity
of ﬁolecular potential functions. Consequently; it has usually been
the practice either to ignore the effects of anharmonlcity or to rely
on rather c¢rude approximations.

Several types of empirical formulas have been proposed to
desoribe the variation of harmonic bond stretching force constants
with bond length and with chemical properties of the bonded atoms,
and thege often gilve satisfactory results for polyatomic as well as

diatomic molecules. One of the simplest is Badger's rule,8

F, = 1.86 (re—du)“3 (1)



in which rq is the equilibrium bond length and the constant diJ is
fixed for bonds between atoms from rows i and J of the periodic table.
We have examined the available data and find that cublc and quartio
force constants for diatomic molecules can also be represented as
functions of bond length and position in the periodic table (see

Fig. 1) and that anharmonic bond stretching constants for a number of
polyatomic moleculegs can be predicted within experimental error by
the same functions. This paper gilves the relatlons obtained and a

qualitative discussion of the origin of the observed regularities.

Analysis of Diatomic Data

A table9 of quadratic, cubic, and quartic force censtants for
dilatomic moleculec and ions wes calculated from spectroscopic data,

uging the relations:

F, = 5.889 x 1077 yu? (2)
Fy = - a)(Fy/r,) (3)
Fy = az(Fz/rg) (4)
where
- a; = 1 + (aw/68F) (5)
ap = (5/4)a - (2/3)(0gx,/B,) - (6)

Here the potentlal function is written as
2 3 4
2v(r) = Folr-r ) + Po(r-r )” + F4(r—re) 4 een

The other notation and units (given under Table I) are standard. For

hydride molecules additional terms>® were included in Eqgs. (5) and



{6). Most of the spectroscopic parameters were taken from Herzberg's
tabulation,ll but an attempt was made to include all new and revised
parameters published up to December, 1960.

The accumulation of data since 1935 has enabled Badger's corre-
lation to be extended to about twice as many families of molecules,
and the parameters for most of the others have been reviaed. Table

I 1iets the values of a4 and d1J which gave the best fit to straight

1lines,

The accuracy of the correlation is discussed in detail in reference
9 and remains about as good as that found by Badger. The parameter
aiJ might be regarded as a standard bond length (F2 =1 at ry, = aij)
and did‘as a distance of closegt approagh (F2 »> o at re'= dij)'
- Included for comparison in Table I are the parameters did derived
from the original verslon of Badger's rule;, in which aij - cfli‘j was
assigned the constant value (1.86)]‘/3 = 1,233 although this is the
commonly used form of the rule, it does not allow a satisfactory fit
to data for the heavier molecules, as Badger pointed out¢8 It was
algo found that the data that have become available for a number of
molecules containing transition metals bonded to hydrogen or first
row atoms required parameters considerably different from the usual
ones, &8 indicated in Table I.

As 1llustrated in Fig. 1, the correlations obtalned for cubilc
and quartic constants are about as good as those for the quadratic
constants. For some of the families of molecules, the semilogrithmic

graphs show noticeable curvature, but for convenience a simple



exponential function,

(-1)"%_ = 1o~ Teg Py (8)

(n = 2,3,4) was fitted to all the data. Table II 1lists the parameters
obtalned. The experimental uncertainty in many of the anharmonic
constants is several percent; data for which the uncertainty is
greater than 25% were excluded.

For quadratic constants, the overall agreement with Eq. (8) was
somevwhat more satisfactory than Badger's rule except for light
molecules; in particular, L12 and some excited states of LiH and Hz.
For the anharmonic constants various functlons analogous to Badger's
were also tried with slilmllar results. In Fig. 1 the (solid) lines
calculated from Eq. (8) may be compared with the {dashed) curves
obtalned from the relations of Table III for the H-1 and 1-1 famililes
of molecules; which showed the most noticeable curvature; and for
the 2-2 family, which 1s practically linear.

For excited electronic states and ionle states, the anharmonic
constants as well as the quadratic constants are found to conform
fairly well to the curves established from data for the ground states,
although the scatter is considerably increased. In Fig. 1, open
cirocles indicate excited or ionilc states; to avold overcrowding the
flgure, these constants were included for hydrides only. However,
gimilar agreement is found for the other famllies of molecules. Data
for these states were included but assigned one-fourth the welght of
ground state data in determining the parameters given in Tables I-III.

As a simple rule for order-of-magnitude calculations 1t may be
noted that for about two-thirds of the known molecular states the

ratios a; and a, of Egs. (5) and (6) fell in the ranges 2 to 4 and



2z to 6, respectively. These quantities were found to be less regular

functions of internuclear distance than the force constants, however.

Polyatomic Molecules

For a few polyatomlc molecules vibration-rotation interaction
constants are available from which cubic bond stretching force con-
stante can be derived, and the results are glven in Table IV. The

1,9 A generallzed valence force

methods used are descrlbed elsewhere.
field has been assumed, 1in which the part of the potential due to the

stretching of a particular bond has the form (n = 2,3,4):

n .
2V = ZnFn(r~re) + Iinteraction terms.

Except for CO2 and Hzo, the jinteractlon terms had to be neglected in
deriving the force constants. In most cases the uncertainty thereby
introduced 1s expected to be less than that due to the experimental
error in the vibration-rotation parameters and normal coordinates
which enter into the calculations.'® As seen in Table IV the agree-
ment between the polyatomic values and those predicted from the
diatomic curves (using the polyatomic bond lengths) 1s quite satis-
factory, considering the experimental errors and theoretical approx-
imations involved. It thus seems, at least for the availlable data,
that stretching cubic constants for polyatomic molecules can be pre-
dicted from diatomic data simply by allowing for the change in bond
length. It 1s hoped that more;, accurate vibration-rotation parameters
will be forthcoming to provide additional tests.

Cubic constants for bond bending can also be obtalned from the
appropriate vibration-rotation 1lnteraction parameters; but at present
there 1s almost no reliable data avallable to test any method for

estimating them. 1>



Discussion

Some thirty empirical relations have been proposed connecting
harmonlc force constants and bond length with such properties as
bond order, electronegatlivity, dilssoclation energy, ionization
potential and number of valence electrons.14 Perhaps ten of these
are more or less equivalent in range and accuracy to Badger's rule.
As 18 clear from Flg. 1, many of these relations can be expscted to
apply also to the anharmonic constants. We have chosen to restrict
consideration to Eq. {8), because it can be applied so readily to
bonds in polyatomlc molecules.

while Eq. (8) gives a satisfactory over-all fit to the data,
other relations are somewhat better for some groups of molecules.
For example, for several families, including the hydrides and diatomic
moleculea of the alkall metals, a better correlation i1s obtalned for
the constant F2 by applylng Badger's rule to columns rather than to
rows of the periodic table; ° 17 we have round that this also holds for
F3 and Fye Theoretical considerationsla'ao suggest the use of
columns rather than rows, but in practice this is a much less con-
venient way to organlize the experimental data,

To obtain the best accuracy of prediction in any particular case,
the data employed should be restrilcted to a serles of molecules in
which the bond character 1s similar, or at least suffers no abrupt

16 It is also desirable to compare results

change along the series.
obtalned from several correlation schemes whenever this 1s feasible.
In additlion to the correlations within each family of molecules,

it willl be noted in Tables I-III that the parameters a1J and d1J



both show falrly regular trends from one family to another, consist-
ent with Badger's observation that "the dij's appear to depend on the
completeness of the inner shells of the respective atoms, and not
much on the outer shells."

A general argument can be glven to show that these regular-
ities reflect the extent to whlch the repulasive forces between the
nuclei of the bonded atoms are reduced by electronic shielding. This
has been indicated by several authors in connection with perturbation
treatments of harmonic force constants.la'zo We shall consider
briefly some qualltative aspects and examine how the situation changes
as one goes from Fz to F3 and F4.

Within the accuracy of the Born-Oppenheimer approximation;, the

vibrational potentlal function may be written as

U(r) = UN(r) + UE(r) {(9)

where Uﬁ(r) = Zazbe?/r 15 the nuclear repulsive potential and UE(r)
represents an average over the electronic kinetic and potential
energy in the fleld of the fixed nuclei.21 At the equllibrium inter-

nuclear distance there are the relations

“D, = Uy + U (10)
0 = -Uy/r + 0Uy/dr (11)
Fp = 20y/r% + 3%u /or® (12)

Fy = -20y/r° + 2% /or° (13)



-0

F, = 20/r* + (1/12)3%0, /o0t (14)

where De is the dissoclation energy and the derivatives are eval-
uated at r = re The nuclear repulsion; which 1s outwelghed by the
electronic contributions in (10), and 1s balanced by them in (11),
18 always found to dominate in the force constantsﬁ22

The various derivatives of U (at r = re) turn out to be
roughly constant for lscelectronic serles of molecules with the same
Za and Zb’ The derivatives vary regularly for molecules whose atoms
belong to the same column of the periodic aystem {(rows usually give
a fairly smooth correlation also).

Although Eqs. (9-14) hold strictly only when Z, and Z, refer
to "bare nuclei," it is of interest to examine also the results
obtained when the inner shell electrons are assumed to follow the

nuclei exactly during a vibration. Murrell has applied Eq. {12) to

some diatomic molecules; taking Za and zb as the number of electrons
outside a completed shell. He noted that (BEUE/arz)e shows a regular
variation in related groups (see hils Figs. 2 and 3) which is qual-
itatively consistent with an expresslon derlved from perturbation
theory.w’19 With this cholce of Z, and 2Z,, the derivative (BZUE/bra)e
has small positive values for the hydrides (except for LiH) and
diatomic molecules of alkall metals, while 1t remains large and neg-
atlve for other molecules.

Similar correlations appear in an analogous treatment of the
anharmonic consgtants, There 1s a systematloc trend in passing from

Fz to F3 and F4 in that the lmbalance between the nuclear and electronic

contributions steadily increases. (For F3 and F,, graphs similar to
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Murrell's Figs.2 and 3 are rotated counterclockwise.) This is
1llustrated in Table V, which 1lists for a few examples Uén)/U(n),
the ratio of the electronic contributions in Eqs. (12-14) to the
total. We shall refer to the electronlic contributlion as shilelding
when 1ts slgn 1s opposite to that of the nuclear contribution, and

as antlsghielding when its sign 1s the same. Thus, negative values

of the ratlios in Table V correspond to shlelding contributilons,

and the ratlos are alwaysz2 negative when Za and Zb refer to bare

nuclei. It is seen that the shlelding decreases as n 1s lncreased

for a given molecule or as r, 18 increased in a series of molecules.
The hydrogen halides illustrate how rapld is the onset of

antishlelding with decrease In the effectlve nuelear charges! merely

- Melamping" the two 1s electrons onto the halogen nucleus causes

“antishielding to appear in the quartic constants and even in the

cuble constant of HI.

This empirical analysis of the electronic contributions can
readily be given a qualltative theoretical basis. We shall take the
approach used by BratoZ, et al, In a united-atom treatment of harmonlc
force constants for diatomic hydrides.zo However, the concluslons
depend only upon general properties of the electronic energy function.

Since U(r) - 0 for large values of the internuclear distance,

3My/art - 3"y /et ~ o0, (15)

(n = 0,1,2,...). For r - 0, it has been shown®> that UE(r) approaches

the united atom energy and again
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while the higher derivatives in general approach finite values. At
intermediate values of r the filrst derivative must pass through at
least one maximum, since —BUE/ar repregsents an attractive force
exeréed on the nucleil. For this qualitative discussion, the simple
curve shown at the top of Filg. 2 18 chosen and the higher derivatives

24,25 The minus and plus signs indicate the

constructed graphlcally.
regions corresponding to shielding and antishilelding contributions,
respectively. At large enough r there is always shlelding, as seen
from Eq. (15). The dashed curves in Fig. 2 indicate the negative
of the corresponding derivatives of the nuclear repulsive potential.
when UE(r) is defined by Eq, (9) with Z, and 2, the full nuclear
charges, the location of the equilibrium internuclear distance 1s
far enough to the right in Fig. 2 (for instance, at point "B") to
yield only shielding contributions, as shown by Eqs. (10-14). However,
the successlve derivatives show a steady outward progression of the
boundary between the shielding and antishlelding regions. This tends
to quench the shlelding contributions, and the effect 1s accentuated
as r, increases;

The way in which antishlelding enters when the effectlve nuclear
charges are reduced may also be understood from Fig. 2. If the
electronic density 1s regarded as the sum of various orbital distri-
butions, %9 these give additive contributions in Egs. (11-14). For
each orbital the derlvative curves are expected to be qualitatively
similar to Fig. 2. Since inner shell orbitals have thelr peak density
at small r, for them the location of r_  is well to the right side of

the ocurves, as indicated by the point "C" in Fig. 2. For "larger"
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orbitals the position of r, moves to the left; thus, Ty might be near

the point "A" for the valence orbitals. Consider first the quadratic
force constant. Since the curve near "C" has practically reached

the 1imiting form of Eq. (15), the inner shell orbitals quite effect-
tively shield an equivalent amount of nuclear charge, whereas the

ourve near "A" ghows that the valence orbitals may contribute relatively
1ittle shielding. This 18 evidently the situation in the hydrides

and diatomic alkali metal molecules, whose harmonic force constants

are falirly well approximated by simply ignoring the valence orbitala.20
Although point "A" will usually not lie so far to the left in other
molecules, the valence orbitals will still shield much less than their
share of the nuclear charge. In the same way, the general shape of

the higher derivative curves near "A" is seen to account for the

tendency of the valence orbitals to become antlshielding in the anhar-

monic constants.
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Parameters for Badger's Rule,?

Table I.
— - ]
!
1 J aiJ diJ d1J
H H l1.26 0.025 0.025
H 1 1.66 0.350 0.36
H 2 1.684 0.38 0.58
H 3 1.98 0.49 0.65
H 4 2,03 0.51 0.80
H 5 2.03 0.25 0.81
1 1 1.91 0.68 ¢.68
1 2 2.28 0.74 0.92
1 S 2.35 0.85 1.02
1 4 2.33 0.68 1.12
1 5 2.50 0,97 1.22
2 2 2.41 1,18 1.18
2 3 2.52 1.02 1.28
2 4 2.61 1.28 1.40
2 5 2,60 0.84 1.24
3 3 2.58 1.41 1,35
3 4 2,686 0.86 1.48
3 5 2.75 1.14 1.55
4 4 2.85 l.62 l.62
4 5 2.76 1,25 1.51
H 3T 1.85 0.15 0.53
H 47 1.84 0.61 0.61
H 5T 1.78 0.97 0.62
1 3T 2.08 1.14 0.97
1 4T 2.34 1.17 1.08

BUnits employed in the tables and equations of thls paper are: aiJ’ diJ‘
13

Angstrom units; F,, 105 dynes om~

dynes cm~

2

5 Fy» 10

21

dynes cm~

]

1

I U, & mole'l; w_, em

e

1



Table II. Parameters for exponential functions,®?

aiJ biJ
1 J F, -Fy F, F, -Fy F,
H 1 1.54 1.58 1.57 0.64 0.46 0.43
H 2 1.80 1.85 1.77 0.69 0.59 0.47
H 3 1.98 2.01 1.81 0,95 0.74 0.80
H 4 2.08 2.07 2.04 0.96 0.74 0.66
H 5 2006 2.12 2.04 0078 0190 Ou69
1 1 1.73 1.78 1.81 047 0.39 0.36
1 e 2,02 2.10 2.06 0.53 0.48 0.41
1 3 2,15 2.26 2.08 0.60 0.55 0.34
1 4 2.56 2.41 2,18 0.76 0.57 0.32
1 5 2.47 2.48 2.54 0.87 0.68 0.68
2 4 2.40 2.48 2.35 0.7T0 0.61 0.46
2 S 2.54 2.57 2,53 0.94 0.72 0.70
2 4 2.63 2.70 2,64 0.96 0.73 0.51
2 5 2,71 2,81 2.60 1.09 1.09 1,30
3 3 2.70 2.77 2.66 0.75 0.89 1.06
k) 4 2.66 2.76 0.98 1.19
3 5 2.73 2.83 0.88 1.05
4 ] 2.85 2.95 0.94 0.70
4 5 2.84 2,93 1.09 0.78
H ST 1.82 1.92 1.04 0.86
H 4T 1.59 0.75
H 5T 1.77 O.44
1 3T 1.98 O.44
1 4T 2.15 0.52

a . - n
- “Defined bys r_ = 2y 4 biJ lag; {(-1) Fn] for n = 2,3,4,



Table III. Parameters for inverse power functions.®?
844 1J
1 J
H 1 1.66 1.68 1.61 0.30 0.32 0.28
1 1l 1.91 1.98 2.01 0.68 0.61 0.39
2 2 2.41 2.50 2.41 1.18 1.08 0.99

®Defined by: r, = dg, + (aij-diJ)[(,1)npn]~L/(n+l)

for n = 2,3,4.



Table 1IV. Cublc force constants for bend

stretching in polyatomic molecules

Bond ~F3, Cubic Constant

Bond Molecule Length Expt . Predicted
CH CH, 1.09 10 10
HON 1.06 12 12
DCN 1.06 11 12
HCCH 1.06 11 12
DCCD 1.06 11 12
ce HCCH 1.20 32 30
DCCD 1.20 33 30
CN HCN 1.16 44 39
DCN 1.16 42 39
co co, 1.16 38.5 39
ocs 1.16 36 39
cs cs, 1.55 14 14
0cs 1.55 16 14
CSe ocse 1.71 10 10
CBr BreN 1.79 6.8 7.2
oI ICN 1.99 4.9 5.5
OH H,,0 0.96 19.8 19.5
NO Né40 . 1.19 33 33
N1S§140 1.19 33 33
NN N§4o 1.13 39 46

noyt4o 1.13 44 46




Table V. Variation of electronic contributions.a

Molecule ry n=2 n=23 n=4
Za =2y = 1
Li2 2.672 0. 047 0.50 0.52
Na2 3.079 0.101 0.51 0.25
K2 3.923 0.278 0.62 0.99
LiH 1.595 -0,111 0.42 0.54
NaH 1.887 0.017 0.59 0.69
KH 2,244 0.279 0.863 0.62
RbH 2.367 0. 320 0.67 0.78
CsH 2,494 0. 367 0.71 0.89
Za e Zb = 5
N2 1.094 -2.83 ~0.33 0.29
PN 1.491 ~2.42 -0.05 0. 36
P2 1.893 ~2.03 0.01 0.47
Za = Zb = 6
02 1.207 -7.02 -1.64 -0, 38
80 1.493 ~-5.30 ~0. 90 -0.03
32 1.889 ~-3.88 ~0.54 0.24
Sez 2,157 -3.57 -0, 45 0.10
Z& = 1; Zb e T
HF 0.917 ~3.10 -0,98 -0.42
HC1 1.275 ~2.02 ~-0.28 0,18
HBr 1.414 -1.78 -0.13 0.23
HI 1.604 ~-1.63 0.086 0.45

8The tabulated quantity is (a“nE/ar“)e/(a“u/ar“)e.
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Fig. 1

Fig. 2

Captions for Flgures

Comparison of quadratic, cubic, and quartiae force
constants as functions of bond length. The straight
line relations are obtained from Table II. For some
of the families the curves (shown dot~dashed) corre-
sponding to Table III are also plotted. Empty circles
indicate excited eleotronic states or lonic states;

full ones, ground states.

Derivatives of the electronic energy as functions of
internuclear distance. The minus and plus signs
denote shielding and antishielding regions, respectively.

The ordinates of the various curves are not to the same

scale.
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B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission”" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.



