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ANHARMONIC POTENTIAL CONSTANTS AND THEIR

*DEPENDENCE UPON BOND LENGTH

UCRL 9537

Dudley R. Herschbach

Department of Chemistry and Lawrence Radiation Laboratory
University of California, Berkeley, California

and

Victor W. Laurie

Department of Chemistry, Stanford University
Stanford, California

Abstract

Empirioal study of oubic and quartio vibrational force oon­

stants for diatomic moleoules shows them to be approximately

exponential funotions of internuclear distanoe. A family or curves

is obtained, determined by the location of the bonded atoms in rows

of theperiodl0 table. Displacements between suocessive ourves

oorrespond olosely to those in Badgerts rule for quadratic force

oonstants (for which the parameters are redetermined to aocord with

all data now available). Constants for excited eleotronio and 10nio

states appear on practically the same curves as those for the

ground states. Predictions based on the diatomio oorrelations agree

with the available cubio constants for bond stretching in polyatomia

moleoules, regardless of the type of bonding involved. Some impli­

cations of these regularities are disoussed.

*Presented in part at the Symposium on Molecular Structure and
Spectrosoopy, Columbus, Ohio, June, 1960. Support received from
the Alfred P. Sloan Foundation, the U.S. Atomic Energy Commission,
and the National Science Foundation is gratefully acknowledged.
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MOlecular vibrations must be taken into account in the Inter-

pretatlon of many types of experiments. Often the anharmoniolty of

the Vibrations is an important oonsideration. For example, in most

moleoular structure determinations the dominant vibrational oorrec­

tions arise from anharmonic terms in the potential function. It has

been shownl that Within a practical approximation the differenoe

between the average molecular configuration derived from eleotron

diffraotion experimenta 2 and the equilibrium oonfiguration is due

solely to the oUbio potential terms. The cubic terms also give the

largest of the corrections needed to derive equilibrium moments of

inertia from observed spectroscopic rotational oonstants. 3 In a

large olass of isotope erfects~ espeoially where hydrogen is involved,

anharmoniolty playa an important role. Some examples that have been

disoussed theoretically are various magnetic Interaotionsg 4 inoluding

eeoondmoments5 and chemical shifts 6 of nuclear magnetio resonanOe

lines, and optical activlty7 of compounds of the type RR*CHD. Aside

from dlatom1cs, however, very little is known about the anharmonioity

of molecular potential functions. Consequently; it has usually been

the practice either to ignore the effects of anharmonloity or to rely

on rather orude approximations.

Several types of empirical formulas have been proposed to

desorlb~ the variation of harmonic bond stretching force constants

with bond length and with chemical properties of the bonded atoms,

and these often give satisfactory results for polyatom1o as well as

diatomio molecules. One or the simplest is Badgeris rule,S

(1)
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in Which r e 1.s the equilibrium bond length and the oonstant d1j is

fixed for bonds between atoms from rows i and j of the periodio table.

We have examined the available data and find that oUbio and quartio

force constants for diatomic molecules oan also be represented aa

funotions of bond length and position in the periodio table (see

Fig. 1) and that anharmonic bond stretching constants for a number of

po1yatomio molecules can be predicted within experimental error by

the eame functions. This paper gives the relations obtained and a

qualitative disoussion of the origin of the observed regularities.

Analysis of Diatomic Data

A table9 of quadrattc, cUbic" a:ld quartic force oC'nstanta for

diatomic moleculee and ions was oalculated from spectroscopio data,

using the relations:

F3 =: - al(Fz!re )

F4 =: a2(F2/r;)

Where

- a1 =: 1 + (UeWe!SB;>

a2 =: (5/4)af - (2/3)(WeXe!Be )

Here the potential function is written as

(5)

(s)

The other notation and units (given under Table I) are standard. For

hydride molecules additional terms10 were included in Eqa. (5) and
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(8). MOst of the spectroscopic parameters were taken from Herzberg's

tabUlation,ll bUt an attempt was made to include all new and revised

parameters published up to Deoember, 1960.

The aooumulation of data since 1935 haa enabled Badger's oorre­

lation to be extended to about twice as many families of molecules,

and the parameters for most of the others have been revised. Table

I lists the values of aij and dij Which gave the best fit to straight

lines,

(7)

The aoouraoy of the oorrelation is disoussed in detail in reference

9 and remains about as good as that found by Badger. The parameter

aiJ might be regarded as a standard bond length (F2 = 1 at r e = aij )

and diJ,as a distance of olosest approach (F2 ~~ at r e = dij ).
I

Included for oomparison in Table I are the parameters dij derived

from the original version of Badger's rule, in which 8 ij - dij was

assigned the oonstant value (1,86)1/3 = 1.23J although this is the

oommonly used form of the rule, it does not allow a satisfaotory fit
Q

to data tor the heavier molecules, as Badger pointed out. v It was

also found that the data that have become available for a number of

molecules containing transition metals bonded to hydrogen or first

row/atoms required param~ters considerably different from the usual

ones, as indioated in Table I.

As illustrated in Fig. 1, the correlations obtained for cubic

and quartio constants are about as good as those for the quadratic

oonstants. For some of the families of molecules, the semilogrithmic

graphs show noticeable curvature, but for convenience a simple
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exponential function,

n -(re-aiJ)/bij
(-1) Fn = 10 , (8)

(n = 2,3,4) was fitted to all the data. Table II lists the parameters

obtained. The experimental uncertainty in many of the anharmonio

oonstants is several percentl data for which the uncertainty is

greater than 25% were excluded.

For quadratic constants, the overall agreement with Eq. (8) was

somewhat more satisfaotory than Badger's rule except for light

moleoulesJ in particular, Li2 and some excited states of LiH and H2.

For the anharmonio oonstants various functions analogous to Badger's

were also tried with sImilar results. In Fig. 1 the (solid) lines

oaloulated from Eq. (8) may be compared with the (dashed) curves

obtained from the relations of Table III for the H-I and 1-1 families

of moleoules, Which showed the most noticeable curvature, and for

the 2-2 family, Which is practically linear.

For excited electronic states and ionio states, the anharmonio

oonstants as well as the quadratic constants are found to oonform

fairly well to the curves established from data for the ground states,

although the soatter is considerably increased. In Fig. 1, open

ciroles indicate exoited or 10nio statesJ to avoid overorowding the

figure, these oonstants were included for hydrides only. However,

similar agreement ie found for the other families of molecules. Data

for these states were included but assigned one-fourth the weight of

ground state data in determining the parameters given 1n Tables I-III.

As a simple rule for order-of-magnitude calculations it may be

noted that for about two-thirds of the known molecular states the

ratios a1 and a2 of Eqs. (5) and (6) fell in the ranges 2 to 4 and
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2 to 6, respectively. These quantities were found to be less regular

functions of internuclear dista.nce than the force constants, however.

Polyatomic MOlecules

For a few polyatomio molecules vibration-rotation interaction

constants are available from which cubic bond stretching force con­

stants oan be derived, and the results are given in Table IV. The

methods used are described elsewhere. I ,9 A generalized valence force

field haB been assumed, in which the part of the potential due to the

stretching of a particular bond has the form (n = 2,3,4):

2V = ~nFn(r-re)n + interaotion terms.

Exoept for CO2 and H20, the ~nteractlon terms had to be neg1eoted in

deriVing the force constants. In most cases the uncer.tainty thereby

introduoed 1s expected to be less than that due to the experimental

error 1n the vibration-rotation parameters and normal coordinates

Which enter into the calculations. 12 As seen in Table IV the agree­

ment between the polyatomic values and those predicted from the

diatomio curves (using the polyatomic bond lengths) is quite satis­

factory, considering the experimental errors and theoretical approx­

imations involved. It thus seems, at least for the available data,

that stretching cubic constants for polyatomio molecules can be pre-

dioted from diatomic data s1mply by allowing for the change in bond

length. It is hoped that more, accura.te vibration-rotatio n parameters

will be forthcoming to provide additional tests.

Cubic constants for bond bending can also be obtained from the

appropriate vibration-rotation interaction pa.rameters, but at present

there is almost no relia.ble data available to test any method for

estimating them. 13
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Discussion

Some thirty empirical relations have been proposed connecting

harmonic force constants and bond length with such properties as

bond order, electronegativity, dissociation energy, ionization

potential and number of valence electrons. 14 Perhaps ten of these

are more or leso equivalent in range and accuracy to Badger's rule.

As is olear from Fig. I, many of these relations can be expected to

apply also to the anharmonic constants. W~ have chosen to restrict

consideration to EQ. (8), beoause it can be applied so readily to

bonds 1n polyatomic moleoules.

While Eq. (8) gives a satisfactory over-all fit to the data,

other relations are someWhat better for some groups of molecules.

For example, for several families, inoluding the hydrides and diatomic

moleoules of the alkali metals, a better correlation is obtained for

the constant F2 by applying Badger's rule to columns rather than to

rowa of the periodic tableJ 15- 17 we have found that this aleo holds for

'3 and F4, Theoretioal considerations18- 20 suggest the use of

columns rather than rows, but in practice this 1s a much less Con­

venient way to organize the experimental data.

To obtain the best aocuracy of prediction in any particular case,

the data employed should be restricted to a series of molecules in

Which the bond character is similar, or at leaat Buffers no abrupt

change along the serles. 16 It is also desirable to compare results

obtained from several correlation schemes whenever this ia feasible.

In addition to the correlations Within each family of molecules,

it will be noted in Tables I-III that the parameters aiJ and diJ



-8-

both show fairly regular trends from one family to another, consist­

ent with Badger's observation that "the d1j 'S appear to depend on the

oompleteness of the inner ohella of the respective atoms~ and not

much on the outer shells."

A general argument can be given to show that these regular­

ities reflect the extent to whioh the repulsive foroes between the

nuolei of the bonded atoms are reduced by eleotronio shielding. This

has been indicated by several authors in oonnection with perturbation

treatments of harmonio foroe oonstanta. 18- 20 We shall oonsider

briefly eome qualitative aspeots and examine how the situation changes

as one goes from F2 to F3 and F4 .

Within the aocuracy of the Born-Oppenheimer approximation, the

vibratIonal potential fUnotion may be written as

(9)

where UN(r) • ZaZbe2jr is the nuolear repulsive potential and UE(r)

represents an average over the electronic kinetic and potential

energy in the field of the fixed nuclel. 21 At the equilibrium Inter-

nuolear distance there are the relations

o = -ut/r + oUFI'or

F2 = 2Ulir2 + o2uElor2

F3 = -2Ur!l"3 + ~3uJlor3

(10)

(11)

(12)

(13)
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(14)

where De is the dissociation energy and the derivatives are eval­

uated at r = r, The nuclear repulsion, which is outweighed by thee
electronic contributions in (10), and is balanced by them in (11).

is always found to dominate in the force constants. 22

The various derivatives of UE (at r = r e ) turn out to be

roughly constant for isoelectronlc series of molecules with the same

Za and Zb' The derivatives vary regularly for molecules whose atoms

belong to the same oolumn of the periodic system (rows usually give

a fairly smooth oorrelation also),

Although Eqs. (9-l4) hold strictly only when Za and Zb refer

to "bare nuclei," it is of interest to examine also the results

obtained when the inner shell electrons are assumed to follow the

nuclei exaotly during a vibration. MUrrell has applied Eq. (12) to

some diatomic molecules, taking Za and Zb as the number of eleotrons

outside a completed ahell, He noted that (d2umldr2)e shows a regular

variation in related groups (see his Figs, 2 and 3) which ia qual­

itatively consistent with an expression derived from perturbation

theOry.IS,19 With this choice of Za and Zb' the d~rivatlve (oZuEfor2)e

has small positivA values for the hydrides ~xcept for LiH) and

diatomic molecules of alkali metals, while it remains large and neg­

ative for other molecules.

Similar oorrelations appear in an analogous treatnlent of the

anharmonic constants, There is a systemati0 trend 1n passing from

F2 to F3 and F4 in that the imbalanoe between the nuclear and electronic

contributions steadily increases. (For F3 and F4# graphs similar to
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MUrrell's Figs~2 and 3 are rotated counterclockWise.) This is

illustrated in Table V, which lists for a few examples u~n)/u(n)#

the ratio of the electronic contributions in Eqs. (12-14) to the

total. We shall refer to the electronic contribution as shielding

when its sign is opposite to that of the nuclear contribution, and

as antishielding When its sign is the same. Thus, negative values

of the ratios in Table V correspond to shielding contributions,

and the ratios are always22 negative when Za and Zb refer to bare

nuclei. It is aeen that the shielding decreases as n is increased

for a given molecule or as r e is increased in a series of molecules.

The hydrogen halides illustrate how rapid is the onset of

antishlelding With decrease in the effective nuclear oharges: merely

"clampingtt the two Is electrons onto the halogen nucleus causes

antishielding to appear in the quartic constants and even in the

oUbic constant of HI.

This empirical analysis of the electronic contributions can

readily be given a qualitative theoretical basis. We ahall take the

approach used by Bratoz, et aI, in a united-atom treatment of harmonic

force constants for diatomic hydrides. 20 However, the conclusions

depend only upon general properties of the electronio energy function.

Since U(r) ~O for large values of the internuclear distance,

(15)

(n = 0,1,2, ... ). For r ~O, it has been ehown23 that UE(r) approaches

the united atom energy and again

(16)
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while the higher derivatives in general approach finite values. At

intermediate values of r the first derivative must pass through at

least one maximum, since -duEidr represents an attractive force

exerted on the nuo1ei. For this qualitative discussion, the simple

ourve ehown at the top of Fig. 2 is chosen and the higher derivatives

constructed graphioally.24,25 The minus and plus aigns indicate the

regions corresponding to shielding and antishielding contributions,

respectively. At large enough r there is always shielding, as seen

from Eq. (15), The dashed ourves in Fig. 2 indioate the negative

of the corresponding derivatives of the nuolear repulsive potential.

When uE(r) is defined by Eq. (9) with Za. and Zb the full nuolear

charges, the location of the equilibrium internuclear distance is

far enough to the right in Fig. 2 (for instance, at point "B ft
) to

yield only shielding contributions, aa shown by Eqs. (10-14). However,

the successive derivatives show a steady outward progression of the

boundary between the shielding and antishielding regions, This tends

to quench the ehie1ding oontributions, and the effect 1s aooentuated

as r e increases,

The way in which antishielding entera when the effeotive nuo1ear

oharges are reduced may also be understood from Fig. 2. If the

electronio density is regarded as the sum of various orbital distri­

butiona,20 these give additive contributions in Eqs. (11-14). For

each orbital the derivative curves are expected to be qualitatively

similar to Fig. 2. Since inner shell orbitals have their peak density

at small r, for them the location of r e is well to the right side of

the ourves, as indicated by the point "en in Fig. 2. For tflarger"
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orbitals the position of r e moves to the leftjthusj r e might be near

the point "An for the valence orbitals. Consider first the quadratio

foroe oonstant. Since the curve near "e" has practically reaohed

the limiting form of Eq. (15), the inner shell orbitals quite effeot­

tively shield an equivalent amount of nuclear charge, whereas the

ourve near "A" shows that the valenoe orbitals may oontribute relatively

little shielding. This is evidently the situation in the hydrides

and diatomio alkali metal moleoulesl whose harmonic force oonstanta

are fairly well approximated by simply ignoring the valence orbitals. 20

AlthOUgh point t~" will usually not lie so far to the left in other

moleoules, the valenoe orbitals will still shield muoh less than their

share of the nuolear charge. In the same way, the general shape of

the higher derivative ourves near t1A" is seen to account for the

tendenoy of the valenoe orbitals to become antishlelding 1n the anhar­

monio constants.

Acknowledgment
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Table IQ Parameters for Badger's Rule. a

1 J aiJ diJ d1J

H H 1.26 0.025 0.025
H 1 1.66 0.30 0.36
H 2 1.84 0.38 0.58
H 3 1.98 0.49 0.65
H 4. 2.03 0.51 0.80
H 5 2.03 0.25 0.81
1 1 1.91 0.68 0.68
1 2 2.28 0.74 0.92
1 :3 2.35 0.85 1.02
1 4. 201133 0.68 1.12
1 5 2.50 0.97 1.22
2 2 2.41 1.18 1.18
2 3 2.52 1.02 1.28
2 4. 2,.61 1.28 1.40
2 5 2.60 0.84 1.24
.3 3 2.58 1.41 1.35
.3 4. 2.66 0.86 1.48
.3 5 2. 'r5 1.14 1.55
4 4. 2.85 1.62 1.62
4. 5 2.76 1.25 1.51

H 3T 1.85 0.15 0.53
H 4T 1.84 0.61 0.61
H 5T 1.78 0.97 0.62
1 3T 2.08 1.14 0.97
1 4T 2.34 1.17 1.08

aUnits employed in the tables and equations of this paper are: r e , a
iJ

, d1J1
Angstrom units; F 2 , 105 dynes om- l J ~, g mole-I; we' em-I; F3, 1013

dynes om-2; F4, 1021 dynes em-5•
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Table II. aparametera for exponential funotions.

H 1 1.54 1.58 1.57 0.64 0.48 0.43
H 2 1.80 1.85 1.71 0.69 0.59 0.47
H 3 1.98 2.01 1.81 0.95 0.74 0.80
H 4. 2.08 2.07 2.04 0.96 0.74 0.66
H 5 2.06 2.12 2.0-.1. 0.78 0.90 0.69
1 1 1.73 1.78 1.81 0.47 0.39 0.36
1 2 2.02 2.10 2.06 0.53 0.48 0.41
1 S 2.15 2.26 2.08 0.60 0.55 0.34
1 4 2.36 2.41 2.18 0.16 0.57 0.32
1 5 2.47 2.48 2.54 0.81 0.68 0.68
2 2 2.40 2.48 2.35 0.10 0.61 0.46
2 S 2.54 2.51 2.53 0.94 0.12 0.70
2 4. 2.63 2.10 2.64 0.96 0.73 0.5,1
2 5 2.11 2.81 2.60 1.09 1.09 1. 30
3 3 2.70 2.17 2.66 0.75 0.89 1.06
3 4. 2.66 2.76 0.98 1.19
;5 5 2.13 2.83 0.88 1.05
4. " 2.85 2.95 0.94 0.70
4. 5 2.84 2.93 1.09 0.78

H 3T 1.82 1. 92 1.04 0.86
H 4T 1.59 0.15
H 5T 1.77 0.44
1 3T 1.98 0'144
1 4T 2.15 0.52

sneflned bYI r e • a1J - b
1J

log10
[(-l)nFn ] for n - 2,3,4.



Table III. Parameters for inverse power functions. a

a1j dij
1 J

F~ -F-z F4 F 2 -F3 F4... oJ

'u 1 1.66 1.68 1.61 0.30 0.32 0.28n

1 1 1.91 1.98 2.01 0.68 0.61 0.39

2 2 2.41 2.50 2.41 1.18 1.08 0.99

aDefined by: r e = dij + (a -d )[(-1)~ ]-1/(n+1)
lj 1j n

for n e 2,3,4.



Table IV. Cubic force constants for bond

stretching in polyatomlc molecules

Bond Molecule Bond -F3J Cubic Constant
Length Expt. Predioted

CH CH4 1. 09 10 10

HCN L06 12 12

DCN 1. 06 11 12

HCCH 1. 06 11 12

DeCD 1.06 11 12

CC HCCH 1. 20 32 30

DCeD 1. 20 33 30

CN HCN 1.16 44 39

DCN 1.16 42 39

CO CO2 1.16 38.5 39

OCS 1.16 36 39

CS CS2 1.55 14 14

OCS 1.55 16 14

CBe OCSe 1. 71 10 10

CBr BrCN 1. 79 6.8 7.2

or leN 1. 99 4.9 5.5

OH H2O 0.96 19.8 19.5

NO N140 1.19 33 332

N15N140 1.19 33 33

NN N140 1.13 39 462
N15N140 1.13 44 46



Table V. Variation of electronic contributions. a

Molecule r e n=2 n::: 3 n= 4

Za =to Zb == 1

Li2 2.672 0.041 0.50 0.52
Na2 3.079 0.101 0.51 0.25
Ka 3.923 0.278 0.62 0.99

LiH 1.595 -0.111 0.42 0.54
NaH 1.887 0.017 0.59 0.69
KH 2.244 0.279 0.63 0.62
RbH 2.367 0.320 0.61 0.78
CsH 2.494 0.361 0.71 0.89

Za Ii!: Zb = 5

N2 1.094 -2.83 -0.33 0.29
PN 1.491 -2.42 -0.05 0.36
Pa 1.893 -2.03 0.01 0.47

Za := Zb == 6

°2 1.207 -7.02 -1.64 -0.38
SO 1.493 -5.30 -0.90 -0.03

S2 1.889 -3.88 -0.54 0.24

Sea 2.157 -3.57 -0.45 0.10

Za= I, Zb II: 7

HF 0.917 -3.10 -0.98 -0.42
Hel 1.275 -2.02 -0.28 0.18
HBr 1.414 -1.78 -0.13 0.23
HI 1.604 -1. 63 0.06 0.45

a The tabulated quantity is (oUUEforn)e!(oUU/orn)e'
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Fig. 1

Fig. 2

Captions for Figures

Comparison of quadratic, oubic, and quartic foroe

oonstants as fUnotions of bond length. The straight

line relations are obtained from Table II. For some

of the familiee the curves (shown dot-dashed) oorre­

sponding to Table III are aleo plotted. Empty oiroles

indioate exaited eleotronio states or ionia states)

full ones~ ground states.

Derivatives of the eleotronio energy as tunotions ot

internuolear distanoe. The minus and plus signa

denote shielding and antlshieldlng regions, respeotively.

The ordinates of the various curves are not to the same

scale.
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or usefulness of the information contained in this
report, or that the use of any information, appa­

ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

E. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor­

mation, apparatus, method, or process disclosed in

this report.

As used in the above, "person ac ting on beha I f of the
Commission" includes any employee or contractor of the Com­

mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee

of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract

with the Commission, or his employment with such contractor.


