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Abstract

Anhydrobiotic chironomid larvae can withstand prolonged complete desiccation as well as other external stresses including
ionizing radiation. To understand the cross-tolerance mechanism, we have analyzed the structural changes in the nuclear
DNA using transmission electron microscopy and DNA comet assays in relation to anhydrobiosis and radiation. We found
that dehydration causes alterations in chromatin structure and a severe fragmentation of nuclear DNA in the cells of the
larvae despite successful anhydrobiosis. Furthermore, while the larvae had restored physiological activity within an hour
following rehydration, nuclear DNA restoration typically took 72 to 96 h. The DNA fragmentation level and the recovery of
DNA integrity in the rehydrated larvae after anhydrobiosis were similar to those of hydrated larvae irradiated with 70 Gy of
high-linear energy transfer (LET) ions (4He). In contrast, low-LET radiation (gamma-rays) of the same dose caused less initial
damage to the larvae, and DNA was completely repaired within within 24 h. The expression of genes encoding the DNA
repair enzymes occurred upon entering anhydrobiosis and exposure to high- and low-LET radiations, indicative of DNA
damage that includes double-strand breaks and their subsequent repair. The expression of antioxidant enzymes-coding
genes was also elevated in the anhydrobiotic and the gamma-ray-irradiated larvae that probably functions to reduce the
negative effect of reactive oxygen species upon exposure to these stresses. Indeed the mature antioxidant proteins
accumulated in the dry larvae and the total activity of antioxidants increased by a 3–4 fold in association with anhydrobiosis.
We conclude that one of the factors explaining the relationship between radioresistance and the ability to undergo
anhydrobiosis in the sleeping chironomid could be an adaptation to desiccation-inflicted nuclear DNA damage. There were
also similarities in the molecular response of the larvae to damage caused by desiccation and ionizing radiation.
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Introduction

Extreme environments force organisms to develop or adopt

effective mechanisms of cellular and molecular protection. Anhy-

drobiosis, the ability of organisms to survive in the dry state, is one of

the most advanced strategies among hypometabolic states [1,2].

While the cells of other organisms subjected to dehydration exhibit

massive damage to their organelles and membranes, anhydrobiotic

organisms can effectively counteract the negative effects of water

deprivation [3,4,5]. Although the molecular mechanisms underpin-

ning anhydrobiosis are not yet completely understood, it is generally

accepted that they involve two broad functions: effective preserva-

tion of cells and biomolecules under dry conditions; and recovery

and alleviation of the negative effects, both direct and indirect, of

water loss on biomolecules upon post dry-state rehydration [3,6].

In addition, being anhydrobiotic confers cross-tolerance to

various other extreme environmental stressors, including different

types of radiation [7,8,9,10,11,12,13]. It has long been recognized

that this is possibly due to the protective mechanisms associated

with anhydrobiosis, including the physical protection (i.e. free

radical partial scavenging and radiation shielding) of cells by

sugars, LEA proteins and other protectants against direct

irradiation or its side effects [7,14,15,16,17,18]. Indeed, at least

for microorganisms and cultured cells, it has been shown that

coating with sugars, such as trehalose, increases survival after long-

term exposure to UV and ionizing irradiation [19,20,21].

The enhanced protection and repair of DNA might also be

responsible for the cross-tolerance to ionizing radiation [2,7,10,13,

22,23]. In plant seeds and desiccation-resistant bacteria, repair

of fragmented DNA is an indispensable step in revival after
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anhydrobiosis [24,25,26]. In multicellular animals, the effect of

anhydrobiosis on DNA is controversial. While prolonged dehy-

dration affects the nucleic acids of anhydrobionts and plant seeds

in a duration-dependent manner, anhydrobiosis does not cause

any serious DNA damage in the anhydrobiotic nematodes,

crustaceans and tardigrades with the exception of bdelloid rotifers

in which the DNA fragmentation effect of desiccation is suggested

to occur [8,22,27,28,29,30].

The sleeping chironomid Polypedilum vanderplanki, which inhabit

the semi-arid area in Africa, is the only insect with the ability to

resist almost complete dehydration during its larval stage and to

reversibly revive within an hour of re-hydration [31]. Since the

artificial rearing method for this species was established [31], a

significant progress has been made to understand its structural

protective mechanisms during anhydrobiosis at cellular and

molecular levels. During dehydration, trehalose and LEA proteins

increase in quantity [31,32,33], replacing the water in cells and

forming glasses to preserve the cell structure in the dry state [34].

Concurrently, the expression of genes encoding heat shock

proteins (i.e., chaperones) is increased, resulting in the protection

of other proteins from denaturation caused by dehydration [35].

In a series of irradiation studies [7,16,36], it has been

demonstrated that dried larvae show higher tolerance to both

high-LET (directly causing DNA breaks) and low-LET (causing

increase of reactive oxygen species (ROS) in the irradiated tissues)

irradiation, measured by short-term survival compared with

physiologically active larvae. Furthermore, this enhanced radiation

tolerance is observed in both desiccating larvae, and larvae

immediately after rehydration [16], suggesting that radiotolerance

mechanisms are in place during both the induction and the

recovery phase of anhydrobiosis.

The aim of the present study is to evaluate and compare the effects

of anhydrobiosis, gamma-ray and heavy-ion irradiation on the

nuclear DNA and the gene expression of the larvae of P. vanderplanki.

We demonstrate that larval DNA becomes fragmented both upon

anhydrobiosis and irradiation, which is later repaired through

rehydration or recovery from irradiation. Thus, the DNA repair

ability associated with anhydrobiotic potential seems to correlate

with radiotolerance of the chironomid larvae. In addition, analyses of

gene expression and antioxidant activity suggest the importance of

ROS removal and DNA repair systems to protect biomolecules from

damages associated with water loss and gamma-rays.

Results

DNA fragmentation caused by irradiation and
anhydrobiosis
DNA breaks in fat body cells have been visualized and

quantified using a comet assay method up to 168 h after exposure

of the larvae to 70 Gy from two types of radiation (gamma-rays

and heavy ions) and also during the recovery of dry larvae after re-

hydration (Fig. 1A). Although some cells from non-irradiated

hydrated larvae exhibited detectable levels of DNA fragmentation,

probably reflecting naturally occurring breakage during the cell

cycle or effects of experimental procedures, the mean level of

background DNA fragmentation (% of DNA in the tail of a comet)

in a pool of these control cells never exceeded 5–7% (Fig. 1B).

Irradiated larvae showed significantly higher levels of DNA

fragmentation ranging from 15% to 50% depending on the type of

radiation used (Fig. 1A, B). Comparative analysis of DNA recovery

kinetics shows that it took up to 168 h for the larvae irradiated

with heavy ions to recover nuclear DNA integrity to the control

baseline level, whereas DNA of gamma-ray irradiated larvae was

repaired within 24 h (Fig. 1A, B).

Non-irradiated dried larvae after rehydration also contained

cells with severely damaged DNA, with a level of fragmentation

comparable to the larvae exposed to 70 Gy 4He ions. In the

anhydrobiotic larvae, however, DNA damage decreased to the

background level within 96 h after rehydration, much quicker

than in 4He ion-irradiated samples. While entering into the

anhydrobiotic state always caused DNA damage in the larvae, no

further significant increase in the level of nuclear DNA damage

was found, even when the dry larvae were kept at room

temperature for 14 months.

In both 4He ion-irradiated and post-anhydrobiosis larvae, no

significant recovery of DNA was observed within 24 h (Fig. 1B).

Despite this prolonged and severe fragmentation of DNA however,

no large scale cell death was observed in either group.

Ultrastructure of cells of hydrated and dry larvae
Two types of cells in dry larvae were used for analysis of the

state of chromatin: one comprises small cells with large nuclei

occupying more than 50% of the total cell area and which form

compact clusters (Fig. 2A, B), and the other consists of large cells

with dense cytoplasm and which are abundant in the body

(Fig. 2C, D). The latter category represents fat body cells and the

former might be non-differentiated cells of hematopoietic organs

or imaginal pads. These cells in fat body of the larvae have been

shown earlier to be capable of surviving complete desiccation even

if dissected from the larvae, which makes this cell type a

convenient model for studies of anhydrobiosis [37,38].

The clustered, non-differentiated cells of dehydrated and

hydrated larvae showed no apparent difference in the size ratio

of the nucleus to the cytoplasm. However, entry into anhydrobiosis

resulted in deformation of the nuclear shape, and the formation of

multiple invaginations (Fig. 2A, arrows), most probably reflecting

general shrinkage of the cells upon dehydration and replacement

of water with trehalose and other protectants (Fig. 2A, B). In fat

body cells, in contrast, the total area of cytoplasm in anhydrobiotic

larvae greatly decreased in comparison to the hydrated condition

(Fig. 2D), while the nuclear shape and size did not exhibit obvious

changes (Fig. 2C, D).

In both cell types, the nuclei of hydrated cells contained

osmiophilic and widely dispersed chromatin (n, Fig. 2B, D).

However, the nucleoplasm, particularly the dispersed chromatin,

exhibited clear segregation and condensation patterns in dry cells

(Fig. 2A, C). In Polypedilum larvae, even after 14 months of dry

preservation, no further differences related to the duration of

anhydrobiosis in morphology of cells and organelles were

observed. The larvae which have been left for at least 24 h

following complete rehydration still exhibited the condensation of

chromatin in its nuclei, similar to that of larvae in the dry state.

Antioxidant activity during anhydrobiosis cycle in the larvae
We observed an initial elevation of total antioxidant activity

(ROS-scavenging capacity) in the larvae subjected to dehydration

for 16 h (D-16 h stage), which reached its maximum in completely

dehydrated larvae at D-48 h (3–4 fold increase compared with

unstressed wet larvae) (Fig. 3). Upon rehydration, high level of

total antioxidant activity continued to be observable in the larvae

for the first 12 h minimum (R-12 h), and was followed by the

reduction to the same level as the non-stressed larvae at R-24 h.

Identifying the presence of mature glutathione
peroxidase protein in desiccated larvae
In order to isolate the essence of the antioxidant activity, a

candidate spot was identified on 2D gel prepared using total protein
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crude from desiccated larvae (Fig. 4). The amino-acid sequence of

the protein’s N-terminus was found to be TELKQGNPDQ, which

corresponds to the amino acids 30–39 of the protein product of

glutathione peroxidase coding gene (HQ331115) and represents a

mature enzyme (lacking signal peptide). No corresponding spot was

detectable on the 2D electrophoresis gel prepared from hydrated

active larvae thus we concluded that mature glutathione peroxidase

accumulated in the anhydrobiotic larvae (Fig. 4, left panel).

Gene expression in dehydrating, rehydrated, and
irradiated larvae

Antioxidants. Three major components of the ROS

elimination system (catalase (HM062769), Cu/Zn-superoxide

dismutase (HM062770) and glutathione peroxidase (HQ331115))

are found to be abundant in the EST database prepared from

larvae entering anhydrobiosis [32,39]. Quantitative RT-PCR

showed a high level of expression for all of these genes in the

drying larvae by the D-8h stage, reaching a peak of an 8–10 fold

increase of mRNA level at the D-24h and D-48h stages (Fig. 5A).

During rehydration, there was no additional increase in the

expression of these genes, but differences in their expression

profiles were apparent: for the SOD encoding gene (Sod), mRNA

levels immediately fell to control levels seen in hydrated larvae and

maintained these levels throughout all stages of rehydration (R-1h

to R-48h), while the expression of both catalase (Cat) and

peroxidase (Per) encoding genes returned to the level of control

hydrated larvae only at stage R-12h (Fig. 5A). The two types of

radiation (4He ions and gamma-rays) resulted in different

expression profiles of antioxidant-encoding genes. While no

significant changes in expression of any of the three genes were

Figure 1. Time course of DNA repair in the fat body cells of hydrated larvae after 4He+ ion and gamma-ray irradiation and larvae
rehydrated after three months of anhydrobiosis. (A) Typical comet images of nuclear DNA from fat body cells of larvae over a 96 h time course
of recovery after irradiation by gamma rays (G-70 Gy) and 4He+ ions (He-70 Gy) to hydrated larvae, respectively and anhydrobiosis (dry: dehydrated
larvae). The line marked ‘‘0 Gy’’ corresponds to nuclear DNA from intact hydrated larvae. Bar = 5 mm. (B) Proportion of DNA in the comet tail in the fat
body cells of larvae irradiated by gamma rays or 4He+ ions, or following rehydration after anhydrobiosis. Error bars represent mean value 695% CI.
doi:10.1371/journal.pone.0014008.g001
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observed in 4He-irradiated larvae (Fig. 5B), gamma-ray irradiation

resulted in an increased expression of all three genes within the

first few hours after irradiation before control levels were resumed

(Fig. 5C).

DNA repair enzymes. We have analyzed the expression of

two genes involved in DNA damage recognition and repair: Rad23

(HM062772), whose protein plays a central role in proteosomal

degradation of misfolded proteins but is also involved in both

DNA excision repair and different types of DNA damage

recognition [40]; and Rad51 (HM062773), whose protein

participates in a common DNA damage response pathway

associated with the activation of homologous recombination and

double-strand break (DSB) repair [41].

An increase in Rad23 expression is observed in both 4He-

irradiated and gamma-ray irradiated larvae (Fig. 5E, F). Heavy-

ion irradiation resulted in an 8-fold increase of the Rad23 mRNA

expression in the larvae within an hour of irradiation, and the

increased level of expression was maintained for at least 48 h

(Fig. 5E). A transient up-regulation of Rad23 was detectable in the

larvae 3 h after gamma-ray irradiation, with mRNA levels

decreasing to the control level during the next 24 h (Fig. 5F).

Significant up-regulation of the Rad23 gene was also found in

dehydrating larvae beginning at the D-8h stage, and reaching a

maximum value of 7-8-fold up-regulation at D-16h and -24h.

Little or no expression of the gene was detected immediately after

rehydration, but within a few hours (R-3h) the level of mRNA

returned to the average control value (Fig. 5D).

Expression of the Rad51 gene was up-regulated by more than

25-fold in the larvae within 1 h following heavy-ion irradiation

and was maintained at a high level for at least 48 h (Fig. 5E).

Similarly, an increase in Rad51 mRNA level was induced by

gamma-rays by 3 h after irradiation and remained high (more

than 20-fold higher compared to control hydrated larvae) until at

least the 12 h stage before returning to the control levels (Fig. 5F).

Rad51 gene expression showed a significant increase during

anhydrobiosis, but unlike Rad23, the increase in Rad51 gene

expression did not begin until rehydration. Maximal expression of

Rad51 was observed in the larvae after 3 h of rehydration following

which expression gradually decreases and finally returns to a level

comparable to control wet larvae at the R-48h stage (Fig. 5D).

Figure 2. Ultrastructure of nuclei (n) of two cell types from dry and hydrated larvae. A: Cells of non-differentiated cell mass in a dry larva.
B: Cells of non-differentiated cell mass in a hydrated larva. C: Fat body cells from a dried larva. D: Whole fat body cell from a hydrated larva. In the dry
state, chromatin in the nuclei of both cell types showed clear segregation patterns. The chromatin of the cells from hydrated larvae is osmiophilic and
widely distributed. n – nuclei. Bar = 1 mm; white arrows indicate location of invaginations in the membranes of the nuclei (A), white arrowheads
indicate cell membrane of fat body cells (C, D).
doi:10.1371/journal.pone.0014008.g002
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Discussion

Anhydrobiotic chironomid larvae can withstand an exposure to

various external stresses, including high dose radiation [2,7,36,42].

The molecular mechanisms which allow the chironomid larvae to

survive an almost complete dehydration share some common

features with those of other anhydrobionts. These are: (i) the

replacement of structural water with compatible solutes such as

disaccharides; (ii) the formation of stable glasses from highly

hydrophilic proteins which prevent the biomolecules from

irreversible aggregation [1,5,12,21,43]. However, water replace-

ment and vitrification alone do not fully explain the cross-

tolerance to different types of ionizing radiation. In the present

study, we demonstrated that P. vanderplanki also has a remarkable

resilience against DNA breaks caused by desiccation and two types

of radiation.

We found that despite the presence of trehalose and other

protectants associated with anhydrobiosis [32,34], there were

severe damages to nuclear DNA in the cells of anhydrobiotic

larvae (Fig. 2). Simultaneously, antioxidant activity increased upon

Figure 3. Relative antioxidant activity during dehydration/rehydration cycle, recalculated from ROS-scavenging ability of a P.
vanderplanki larva during the course of dehydration and rehydration after anhydrobiosis. Error bars represent mean value 695% CI for
three replicates. cont. – control hydrated larvae. n –samples with crude from larvae not added.
doi:10.1371/journal.pone.0014008.g003

Figure 4. Accumulation of mature glutathione peroxidase in the desiccated larvae of the sleeping chironomid. In a fragment of 2D
electrophoresis image of total proteins from wet (left image) and dry (right image) larvae the spot corresponding to the glutathione peroxidase is
marked and estimated molecular weight, isoelectric point and read sequence of the protein are provided.
doi:10.1371/journal.pone.0014008.g004
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dehydration (Fig. 3), which is probably attributed to the elevation

of ROS levels in the larvae. As suggested for other anhydrobionts

by several authors [3,44], the ROS generated during dehydration

of cells may be the major cause of DNA fragmentation, and this is

also likely to be true for P. vanderplanki. Slow dehydration provides

an optimal condition to enter anhydrobiosis successfully [33], thus,

in this case larvae are subjected to prolonged periods of

‘‘intermediate’’ water concentrations. However, we suppose that

all metabolic processes, including respiration, nucleic acid

synthesis and accumulation of protectants need to take place

continuously until the intracellular matrix vitrifies [45,46]. This

state of water deficit is dangerous for the cells as it is associated

with over-production of ROS [3,17,44].

An initial increase in the expression of genes involved in the

oxidative stress response was observed in the desiccated larvae,

followed by the elevation of total oxidants activity and the

accumulation of mature antioxidants. These changes are likely to

be due to an increase in ROS concentration triggered by the onset

of desiccation (Fig. 3; Fig. 5A; Fig. 4). The antioxidants-coding

genes were induced by low-LET (gamma-rays) radiation, which

causes excessive ROS production, but not by high-LET radiation,

which mainly exerts direct effects on biomolecules (Fig. 5 B, C). A

gradual decrease of both the expression of these genes and the

antioxidant activity in rehydrated larvae (Fig. 5A) would suggest that

the consequences of ROS activity are neutralized, at least at the

early stage of rehydration by the antioxidants synthesized before

entering the dry state. This stays in agreement with the results from

the analysis of EST databases prepared from anhydrobiotic larvae,

which showed that the elevation in the expression of other

antioxidants and heat shock protein-coding genes is tightly linked

with anhydrobiosis in the larva [35,39]. This accumulation of

antioxidants, which maintains its activity even in the dry larvae

might be one of the key factors ensuring the survival of P. vanderplanki

in dry state, as it does in anhydrobiosis-capable cyanobacteria, plant

seeds, resurrection plant tissues and nematodes [47,48].

Nevertheless, the changes in chromatin ultrastructure (Fig. 2)

and the occurrence of DNA breaks in the dried larvae (Fig. 1)

suggest that, despite the activation of ROS-elimination systems

(Fig. 3), the oxidative stress due to desiccation is not completely

neutralized. Similar patterns of nuclei were observed in the fat

body cells of the gall fly Eufrosta after high pressure freezing [49],

and segregation of chromatin was taken to indicate DNA damage

[50,51,52]. Furthermore, the presence of DNA breaks, and not

that of ROS, is likely to be responsible for the induction of genes

(Rad23 and Rad51) directly involved in different types of DNA

repair, as both genes were up-regulated by desiccation and both

high- and low-LET radiation (Fig. 4D, E, F).

Although the process leading to the general recovery of nuclear

DNA integrity in rehydrated larvae is still unclear, there are at

least two possibilities: (i) fragmented DNA is restored by DNA

repair systems; or (ii) damaged cells are eliminated by apoptosis

while the remaining intact cells proliferate. The latter hypothesis

seems less plausible, since we found continuous and gradual

decrease in ‘‘comet tails’’ of damaged cells, suggesting that DNA

reparation is taking place in either the rehydrated or the irradiated

larvae (Fig. 2). The occurrence of rapid DNA repair that has been

suggested by many authors to be a specific feature of anhydro-

biotic organisms [1,8,10,22,29,53] was not observed in the cells we

studied. Instead, it took more than 48 h to complete DNA

recovery in the larvae reviving after anhydrobiosis and even longer

in larvae irradiated with 4He ions (Fig. 1). Typically, the repair of

DSB in living cells takes less than 24 h and, in many cases, excess

DNA damage in higher eukaryotes, including insects, triggers

necrotic or apoptotic processes [54,55,56]. We still do not know

how the larvae prevent cells with damaged DNA from committing

apoptosis over such an extended period of time. Further

cytological and biochemical studies must be carried out to resolve

this issue since some observations suggest that there might be a

specific regulation of apoptosis in anhydrobionts [57,58,59].

Recent studies have focused on survival rates after anhydrobiosis

and showed that not all larvae are able to revive from the dry state;

several physiological factors, including the rate of dehydration,

determine the viability of the anhydrobiotic larvae [33]. Clearly

water replacement and vitrification are indispensable for successful

Figure 5. Relative mRNA expression profiles for selected genes encoding antioxidants (A, B and C) and DNA repair enzymes (D, E, F)
in anhydrobiotic (A, D), heavy ion beam- (B, E) and gamma rays- (C, F) irradiated larvae. Values for the mRNA level of each gene were
corrected for expression level of EF1-alpha, and the relative level of expression changes for each gene was calculated using that of control hydrated
larvae as standard (value = 1). Error bars represent mean value 695% CI for three replicates. cont. – control hydrated larvae.
doi:10.1371/journal.pone.0014008.g005
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induction of anhydrobiosis [5,34]. Nevertheless, our present data

suggest that such protective mechanisms are insufficient for the

maintenance of structural integrity of DNA in dry cells, and DNA

repair after rehydration is another key for successful anhydrobiosis.

Concerning this point, genetic adaptations to anhydrobiosis in the

sleeping chironomid show some functional analogies with those of

the radiotolerant bacteria Deinococcus radiodurans [23,60], in which

both desiccation and irradiation cause severe DNA damage,

followed by prolonged DNA recovery period associated with delay

in cell cycle (while doubling time under normal conditions is 1.5–

3 h) [23,60]. At the same time there are clear differences in these

two phenomena, i.e., DNA reparation machinery and oxidative

stress-response are different in eukaryotes and prokaryotes, genome

organization in insects is much more complex and there is cell and

tissue specification [61,62,63,64]. In addition, recent studies have

suggested that DNA breaks take place in other anhydrobionts such

as bdelloid rotifers [30,65]. Therefore, this convergent character-

istics, as well as molecular protection by glasses, must be taken into

account for future development of biotechnology, i.e., dried cell

preservation.

The anhydrobiotic chironomid larvae presumably experience

nuclear DNA fragmentation with each cycle of desiccation and

rehydration, and must have overcome this threat efficiently to

survive the drought season. It is likely that an initial increase in the

expression of genes coding for antioxidants and DNA repair

enzymes as well as the increase in antioxidant activity are rather

typical reactions of common insects to desiccation stress

[66,67,68,69]. During the course of evolution, P. vanderplanki might

have intensified this response, concomitantly with the acquisition of

an ability to preserve the viability of cells beyond the dehydration

threshold at which other insects would die. This anhydrobiosis-

related evolution of augmented antioxidant protective mechanisms

and DNA repair machinery is also most likely responsible for the

remarkable cross-resistance of P. vanderplanki larvae in both dry and

hydrated forms to the different types of ionizing radiation.

Materials and Methods

Insect rearing
P. vanderplanki were reared on a 1% agar diet containing 2%

commercial milk under controlled light (13 h light: 11 h dark) and

temperature (27–28uC) conditions according to previous report

[31]. Final instar larvae of approximately 1 mg wet body weight

were used for all experiments. The procedure of desiccation to

induce anhydrobiosis has been described [70]. Briefly, the larvae

were placed on filter paper with 0.44 ml of distilled water in a glass

Petri dish (diameter 65 mm, height 20 mm), which was set in a

desiccator (20620620 cm) with 1 kg of silica gel. For rehydration,

dry larvae were placed in dishes with 27–28uC distilled water.

Larvae for RNA expression analysis and antioxidants activity assay

were sampled according to the time (in hours) passed from the

beginning of desiccation (D) and rehydration (R), correspondingly.

Irradiation
For gamma-ray irradiation, approximately 100 hydrated larvae

were placed in a plastic vial (Sumilon MS-4503, Sumitomo

Bakelite Co., Tokyo, Japan) with 1 ml water. The samples were

irradiated with 70 Gy of gamma-rays from a 60Co source at 60

Gy/min [16]; 70 Gy is the half-inhibition gamma-ray dose for

adult emergence in hydrated larvae [16].

For heavy-ion irradiation, hydrated larvae were placed on the

bottom of a plastic Petri dish (diameter 50 mm, height 10 mm).

The dish was covered with polyimide film and sealed with

Parafilm (Alcan Packaging, Chicago, IL) to avoid drying. The

samples were exposed to 70 Gy of a 50 MeV 4He (LET‘=16.2

keV/mm) ion beam delivered from the azimuthally varying-field

(AVF) cyclotron at the Takasaki Ion accelerators for Advanced

Radiation Application (TIARA) facility of the Japan Atomic

Energy Agency (JAEA) [16,36].

Control samples were sham irradiated and manipulated in

parallel with the test samples. Both irradiated and non-irradiated

larvae were supplied with distilled water.

Source of clones
All clones of target genes used in this study were obtained by

analysis of the Pv-EST database [32,39]. The full-length cDNAs

were subcloned into pCR4Blunt-TOPO vector (Invitrogen, Carls-

bad, CA) and the resulting plasmids were used as templates for the

calibration controls of real-time PCR reactions. DNA sequences

were analyzed with Vector NTI 10.3 software (Invitrogen).

Quantitative real-time PCR
Total RNA from hydrated, dehydrating, rehydrated, and

irradiated larvae was extracted using Trizol (Invitrogen) and the

RNeasy Mini Kit (Qiagen, Hilden, Germany), and reverse

transcribed using Ready-To-GoTM T-Prime First-Strand Kit (GE

Healthcare Bio-Sciences, Piscataway, NJ). The RNA samples from

dehydrating and rehydrating larvae were named ‘‘D’’ and ‘‘R’’,

respectively, and numbers correspond to the hours of treatment.

Real-time PCR was performed using a LightCycler H 2.0 Real-

Time PCR apparatus (Roche Diagnostics, Basel, Switzerland) with

SYBRH Green PCR Master Mix (TaKaRa, Ohtsu, Japan).

Amplifications were performed using 16SYBR Green PCR mix

(TaKaRa) and 10 pmol of each primer. P. vanderplanki EF1-alpha

cDNA served as an internal standard for data normalization and

quantification. The expression of each gene was tested in triplicate

in each of three biologically independent experiments. The cycling

conditions were: 15 min activation at 95uC, 45 cycles of 10 s at

95uC, 20 s at 60uC, 25 s at 72uC.Melting curves from 60uC to 99uC,

rising by 1uC at each step, and pausing 5 s after each step, and the

accompanying software were used for qPCR data normalization

and quantification. The genes, GenBank accession numbers,

amplicon sizes and primers are shown in Table S1.

Antioxidant activity (ROS-scavenging) assay
The antioxidant activity was investigated in the larvae during

dehydration or rehydration, using an antioxidant activity assay kit

(AB-2970 CLETA-S; Atto, Tokyo, Japan). Briefly, hypoxanthine-

xanthine oxidase systems were used as the source of ROS.

Chemiluminescence generation by the reaction between superoxide

generator and a luminous substance, MPEC, and its decay in the

presence of the crude from a homogenized single larva with assay

buffer was measured. Relative antioxidant-scavenging capacity in a

single larva was calculated according to manufacturer’s manual.

2D electrophoresis, image analysis, and protein
sequencing
Active (wet) and desiccated (dry) larvae were homogenized in T-

PER lysis buffer (Pierce Biotechnology, Rockford, IL) with

Complete protease inhibitor cocktail (Roche, Basel, Switzerland).

Obtained crude protein samples (100 mg) were cleaned by 2-D

Clean Up kit (GE Healthcare Bioscience), and applied to 11 cm

IPG strips (pH 4–7, Bio-Rad, Hercules, CA) for passive overnight

rehydration according to the manufacturer’s instructions. The IPG

strips were then subjected to isoelectric focusing using a

PROTEAN IEF Cell (Bio-Rad). Focusing was performed for

38,000 V-hour. After isoelectric focusing, the IPG strips were
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equilibrated for 15 min in equilibration buffer I [6 M urea, 2%

(w/v) SDS, 0.05 M Tris-HCl (pH 8.8), 20% (v/v) glycerol and 2%

(w/v) dithiothreitol (DTT)] followed by 15 min in buffer II (same

as buffer I but containing 2.5% iodoacetamide instead of DTT).

For the second dimension, IPG strips were placed across a 17%

acrylamide Gel for PROTEAN II D xi cell (Bio-Rad), then

overlayed with agarose. Electrophoresis was run with a constant

voltage, 140V, for 2 h in Tris-glycine buffer (25 mM Tris,

192 mM glycine, 0.1c SDS. pH 8.3). Gels were stained with

Coomassie brilliant blue (CBB) G-250 solution for 30 min and

washed in water and further distained by acetic acid-methanol

solution two times, 30 min each. To obtain image files, stained gels

were scanned with a high-resolution scanner (GT-X800, Epson,

Tokyo, Japan). Protein spots were matched automatically by 2D

Platinum� (GE Healthcare). Spot intensities were normalized to

make the total density in each gel image equal, and analysis was

performed using quantitative and qualitative modes. A spot was

detected when its intensity was X?-fold or more above the

background. The gels were blotted to PVDF membrane and

stained with CBB R-250 and after destaining, the selected protein

bands were cut out and used directly for sequencing by the Edman

degradation method using a HP 241 Protein Sequencer according

to the manufacturer’s instructions.

Comet Assay
Alkaline electrophoresis was performed using the CometAs-

sayTM Kit (Trevigen, Gaithersburg, MD). Larvae were dissected

and the fat body was extracted. Fat body cells were mixed with

95 ml of 1% low melting point agarose and spread on two slides

previously coated with 1.5% normal agarose. After solidification

by cooling, the slides were immersed in fresh lysis solution plus

10% DMSO for at least 45 min. The slides were incubated in

alkaline buffer solution (300 mM NaOH and 1 mM EDTA,

pH 12.6) for 25 min. The cells were subjected to electrophoresis

for 25 min at 300 mA and 25 V, and then neutralized with

400 mM Tris-Cl, pH 7.5, in three successive washes of 5 min

each. The DNA was then stained with ethidium bromide (2 mg/

ml). Images of 100 randomly selected cells (from each of three

replicate slides) were analyzed from each individual. Occasional

dead cells, overlapping cells and cells on the edge of gels were

avoided. Percentages of DNA in a comet ‘‘head’’ (intact DNA) and

comet ‘‘tail’’ (damaged fragmented DNA) were determined by

CometScore PC software (TriTek Corp, Sumerduck, VA).

Transmission electron microscopy (TEM)
Dried and hydrated larvae were fixed in 2.5% glutaraldehyde in

50 mM phosphate buffer, pH 7.4 for 2 h at 4uC. The tissues were

post-fixed in 2% osmium tetroxide in the same buffer for 1 h at

4uC. Dehydration of the tissues was conducted using an ethanol

series of increasing concentration. Subsequently, the tissue pieces

were embedded in a mixture of epoxy resins and were allowed to

polymerize in a thermostat. The sections were contrasted by Na-

uranyl acetate and Pb-citrate and observed with a JEM 100CX

transmission electron microscope using the manufacturer’s

instructions. All cells and tissues of the larvae were identified

according to their ultrastructure [71].

Statistical analysis
Results of gene expression and the level of DNA damage are

reported as means 695% CI (confidence index, with P,0.05).

The statistical evaluation was performed using a two-tailed

Student t-test (Prism version 5, GraphPad Software, San Diego,

CA).

Supporting Information

Table S1 Primer pairs used for quantitative real-time PCR in

this study.

Found at: doi:10.1371/journal.pone.0014008.s001 (0.04 MB

DOC)
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