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Deep learning is revolutionizing many areas of science and technology, especially image, text, and speech

recognition. In this paper, we demonstrate how a deep neural network (NN) trained on quantum

mechanical (QM) DFT calculations can learn an accurate and transferable potential for organic

molecules. We introduce ANAKIN-ME (Accurate NeurAl networK engINe for Molecular Energies) or ANI

for short. ANI is a new method designed with the intent of developing transferable neural network

potentials that utilize a highly-modified version of the Behler and Parrinello symmetry functions to build

single-atom atomic environment vectors (AEV) as a molecular representation. AEVs provide the ability to

train neural networks to data that spans both configurational and conformational space, a feat not

previously accomplished on this scale. We utilized ANI to build a potential called ANI-1, which was

trained on a subset of the GDB databases with up to 8 heavy atoms in order to predict total energies for

organic molecules containing four atom types: H, C, N, and O. To obtain an accelerated but physically

relevant sampling of molecular potential surfaces, we also proposed a Normal Mode Sampling (NMS)

method for generating molecular conformations. Through a series of case studies, we show that ANI-1 is

chemically accurate compared to reference DFT calculations on much larger molecular systems (up to

54 atoms) than those included in the training data set.

1 Introduction

Understanding the energetics of large molecules plays a central

role in the study of chemical and biological systems. However,

because of extreme computational cost, theoretical studies

of these complex systems are oen limited to the use of app-

roximate methods, compromising accuracy in exchange for

a speedup in the calculations. One of the grand challenges in

modern theoretical chemistry is designing and implementing

approximations that expedite ab initio methods without loss of

accuracy. Popular strategies include partition of the system of

interest into fragments,1,2 linear scaling,3 semi-empirical4–6 (SE)

methods or the construction of empirical potentials that have

been parameterized to reproduce experimental or accurate ab

initio data.

In SE methods, some of the computationally expensive

integrals are replaced with empirically determined parameters.

This results in a very large speed up. However, the accuracy is

also substantially degraded compared to high level ab initio

methods due to the imposed approximations.7 Also, the

computational cost of SE methods is still very high compared to

classical force elds (FFs), potentially limiting the system size

that can be studied.

Classical force elds or empirical interatomic potentials

(EPs) simplify the description of interatomic interactions even

further by summing components of the bonded, angular,

dihedral, and non-bonded contributions tted to a simple

analytical form. EPs can be used in large-scale atomistic simu-

lations with signicantly reduced computational cost. More

accurate EPs have been long sought aer to improve statistical

sampling and accuracy of molecular dynamics (MD) andMonte-

Carlo (MC) simulations. However, EPs are generally reliable

only near equilibrium. These, typically nonreactive empirical

potentials, are widely used for drug design, condensed matter

and polymer research.8–11 Thus, such potentials are usually not

applicable for investigations of chemical reactions and transi-

tion states. One exception to this is the ReaxFF force eld,12

which is capable of studying chemical reactions and transition

states. However, ReaxFF, like most reactive force elds, must

generally be reparameterized from system to system and

therefore lacks an “out-of-the-box” level of transferability.

Furthermore, each application of FF and EP needs to be care-

fully pondered, as their accuracy varies among different

systems. In fact, performing benchmarks to determine the

optimal FF combination for the problem at hand is usually

unavoidable. Unfortunately, there are no systematic ways for

improving or estimating the transferability of EPs.
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Machine learning (ML) is emerging as a powerful approach

to construct various forms of transferable13–15 and non-trans-

ferable16,17 atomistic potentials utilizing regression algorithms.

ML methods have been successfully applied in a variety of

applications in chemistry, including the prediction of reaction

pathways,18 QM excited state energies,19 formation energies,20

atomic forces, nuclear magnetic resonance chemical shis,21

and assisting in the search of novel materials.22 ML potentials

have shown promise in predicting molecular energies with QM

accuracy with a speed up of as much as 5 orders of magnitude.

The key to transferable methods is nding a correct molecular

representation that allows and improves learning in the chosen

ML method. As discussed by Behler,23 there are three criteria

that such representations must adhere to in order to ensure

energy conservation and be useful for ML models: they must be

rotationally and translationally invariant, the exchange of two

identical atoms must yield the same result, and given a set of

atomic positions and types the representation must describe

a molecule's conformation in a unique way. Several such

representations have been developed,24–27 but true trans-

ferability and extensibility to complex chemical environments,

i.e. all degrees of freedom for arbitrary organic molecules, with

chemical accuracy has yet to be accomplished.

In 2007, Behler and Parrinello (BP) developed an approxi-

mate molecular representation, called symmetry functions

(SFs), that take advantage of chemical locality in order to make

neural network potentials25 (NNPs) transferable. These SFs have

been successfully applied to chemical reaction studies for

a single chemical system or the study of bulk systems such as

water. Bartók et al. also suggested an alternative representation

called smooth overlap of atomic positions (SOAP), where the

similarity between two neighborhood environments is directly

dened.28 Very recent work, that introduced a new method

known as deep tensor neural networks (DTNNs),15 provides

further evidence that NNPs can model a general QM molecular

potential when trained to a diverse set of molecular energies. So

far, the DTNN model was only trained to small test data sets to

show the model could predict molecular energies in specic

cases, i.e. equilibrium geometries of organic molecules or the

energy along the path of short QM molecular dynamics trajec-

tories. In our experience, training to trajectories can bias the

tness of a model to the specic trajectory used for training,

especially along short trajectories. Also, DTNN potentials were

not shown to predict energies for larger systems than those

included in the training set.

Since the introduction of BP SFs, they have been employed in

numerous studies where neural network potentials (NNPs) are

trained to molecular total energies sampled from MD data to

produce a function that can predict total energies of molecular

conformations outside of the training set. In general, the NNPs

developed in these studies are non-transferable, aside from bulk

materials25,29 and water cases.30 None of the studies that utilize

the SFs of Behler and Parrinello have presented a NNP that is

truly transferable between complex chemical environments, such

as those found in organic molecules, aside from one limited case

of all trans-alkanes31 where non-equilibrium structures and

potential surface smoothness are not considered. We suggest two

reasons for the lack of transferability of the SFs. Firstly, as orig-

inally dened, SFs lack the functional form to create recognizable

features (spatial arrangements of atoms found in common

organic molecules, e.g. a benzene ring, alkenes, functional

groups) in the molecular representation, a problem that can

prevent a neural network from learning interactions in one

molecule and then transferring its knowledge to another mole-

cule upon prediction. Secondly, the SFs have limited atomic

number differentiation, which empirically hinders training in

complex chemical environments. In general, the combination of

these reasons limits the original SFs to studies of either chemi-

cally symmetric systems with one or two atom types or very small

single molecule data sets.

In this work, we present a transferable deep learning32,33

potential that is applicable to complex and diverse molecu-

lar systems well beyond the training data set. We introduce

ANAKIN-ME (Accurate NeurAl networK engINe for Molecular

Energies) or ANI for short. ANI is a new method for developing

NNPs that utilizes a modied version of the original SFs to build

single-atom atomic environment vectors (AEVs) as a molecular

representation. AEVs solve the transferability problems that

hindered the original Behler and Parrinello SFs in complex

chemical environments. With AEVs, the next goal of ANI

becomes to sample a statistically diverse set of molecular

interactions, within a domain of interest, during the training of

an ANI class “potential” to produce a transferable NNP. This

requires a very large data set that spans molecular conforma-

tional and congurational space, simultaneously. An ANI

potential trained in this way is well suited to predict energies for

molecules within the desired training set domain (organic

molecules in this paper), which is shown to be extensible to

larger molecules than those included in the training set.

ANI uses an inherently parallel computational algorithm. It

is implemented in an in-house soware package, called Neu-

roChem, which takes advantage of the computational power of

graphics processing units (GPU) to accelerate the training,

testing, and prediction of molecular total energies via an ANI

potential. Finally, we show the accuracy of ANI-1 compared to

its reference DFT level of theory and, for context, three popular

semi-empirical QM methods, AM1, PM6, and DFTB, through

four case studies. All case studies only consider larger organic

molecules than ANI-1 was trained to predict energies for,

providing strong evidence of the transferability of ANI-1.

2 Theory and neural network
potential design
2.1 Neural network potentials

Deep learning33 is a machine learning model that uses

a network of computational neurons, which are organized in

layers. Specically, ANI uses a fully-connected neural network

(NN) model in this work. NNs are highly exible, non-linear

functions with optimizable parameters, called weights, which

are updated through the computation of analytic derivatives of

a cost function with respect to each weight. The data set used to

optimize the weights of a NN is called a training set and consists

This journal is © The Royal Society of Chemistry 2017 Chem. Sci., 2017, 8, 3192–3203 | 3193
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of inputs and a label, or reference value, for each input. Multi-

layered NNs are known as universal function approximators34

because of their ability to t to arbitrary functions. A neural

network potential35,36 (NNP) utilizes the regression capabilities

of NNs to predict molecular potential surfaces, given only

information about the structure and composition of a molecule.

Standard NNPs suffer from many problems that need to be

solved before any generalized model can be built. Firstly,

training neural networks to molecules with many degrees of

freedom (DOF) is difficult because the data requirements grow

with each DOF to obtain a good statistical sampling of the

potential energy surface. Also, the typical inputs, such as

internal coordinates or coulombmatrices, lack transferability to

different molecules since the input size to a neural network

must remain constant. Finally, the exchange of two identical

atoms in a molecule must lead to the same result.

2.2 The ANAKIN-ME model

Heavily modied Behler and Parrinello symmetry functions25

(BPSFs) and their high-dimensional neural network potential

model, depicted in Fig. 1, form a base for our ANAKIN-ME (ANI)

model. The original BPSFs are used to compute an atomic

environment vector (AEV), ~Gi
X ¼ {G1, G2, G3,.,GM}, composed

of elements, GM, which probe specic regions of an individual

atom's radial and angular chemical environment. Each ~Gi
X for

the ith atom of a molecule with atomic number X is then used as

input into a single NNP. The total energy of a molecule, ET, is

computed from the outputs, Ei, of the atomic number specic

NNPs using:

ET ¼
X

all atoms

i

Ei (1)

In this way, ET has the form of a sum over all i “atomic

contributions” to the total energy. Aside from transferability, an

added advantage of this simple summation is that it allows for

a near linear scaling in computational complexity with added

cores or GPUs, up to the number of atoms in the system of

interest.

The~Gi
X vectors are key to allowing this functional form of the

total energy to be utilized. For an atom i, ~Gi
X is designed to give

a numerical representation, accounting for both radial and

angular features, of i's local chemical environment. The local

atomic environment approximation is achieved with a piece-

wise cutoff function:

fC
�

Rij

�

¼

8

>

<

>

:

0:5 � cos

�

pRij

RC

�

þ 0:5 for Rij#RC

0:0 for Rij.RC

(2)

here, Rij is the distance between atoms i and j, while Rc is

a cutoff radius. As written, fC(Rij) is a continuous function with

continuous rst derivatives.

To probe the local radial environment for an atom i, the

following radial symmetry function, introduced by Behler and

Parrinello, produces radial elements, GR
m of ~Gi

X,

GR
m ¼

X

all atoms

jsi

e�hðRij�RsÞ
2

fC
�

Rij

�

(3)

The index m is over a set of h and Rs parameters. The

parameter h is used to change the width of the Gaussian

distribution while the purpose of Rs is to shi the center of the

peak. In an ANI potential, only a single h is used to produce thin

Gaussian peaks and multiple Rs are used to probe outward from

the atomic center. The reasoning behind this specic use of

parameters is two-fold: rstly, when probing with many small

h parameters, vector elements can grow to very large values,

which are detrimental to the training of NNPs. Secondly, using

Rs in this manner allows the probing of very specic regions of

the radial environment, which helps with transferability. GR
m, for

a set of M ¼ {m1, m2, m3,.} ¼ {(h1, Rs1), (h2, Rs2), (h3, Rs3),.}

parameters, is plotted in Fig. 2A.M consist of a constant h for all

m and multiple Rs parameters to show a visualization of how

each vector element probes its own distinct region of an atom's

radial environment.

We made two modications to the original version of Behler

and Parrinello's angular symmetry function to produce one

better suited to probing the local angular environment of

complex chemical systems. The rst addition is qs, which allows

an arbitrary number of shis in the angular environment, and

the second is a modied exponential factor that allows an Rs

parameter to be added. The Rs addition allows the angular

environment to be considered within radial shells based on the

average of the distance from the neighboring atoms. The effect

of these two changes is that AEV elements are generally smaller

because they overlap atoms in different angular regions less and

they provide a distinctive image of various molecular features,

a property that assists neural networks in learning the ener-

getics of specic bonding patterns, ring patterns, functional

groups, or other molecular features.

Given atoms i, j, and k, an angle qijk, centered on atom i, is

computed along with two distances Rij and Rik. A single element,

GAmod
m of ~Gi

X, to probe the angular environment of atom i, takes

the form of a sum over all j and k neighboring atom pairs, of the

product of a radial and an angular factor,

GAmod
m ¼ 21�z

X

all atoms

j;ksi

�

1þ cos
�

qijk � qs
��z

� exp

"

�h

�

Rij þ Rik

2
� Rs

�2
#

fC
�

Rij

�

fCðRikÞ (4)

The Gaussian factor combined with the cutoff functions, like

the radial symmetry functions, allows chemical locality to be

exploited in the angular symmetry functions. In this case, the

index m is over four separate parameters: z, qs, h, and Rs. h and

Rs serve a similar purpose as in eqn (3). Applying a qs parameter

allows probing of specic regions of the angular environment in

a similar way as is accomplished with Rs in the radial part. Also,

z changes the width of the peaks in the angular environment.

GAmod
m for several m are plotted in Fig. 2B while the original

3194 | Chem. Sci., 2017, 8, 3192–3203 This journal is © The Royal Society of Chemistry 2017
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Fig. 1 Behler and Parrinello's HDNN or HD-atomic NNP model. (A) A scheme showing the algorithmic structure of an atomic number specific

neural network potential (NNP). The input molecular coordinates, ~q, are used to generate the atomic environment vector, ~Gi
X, for atom i with

atomic number X. ~Gi
X is then fed into a neural network potential (NNP) trained specifically to predict atomic contributions, Ei

X, to the total energy,

ET. Each lk represents a hidden layer of the neural network and is composed of nodes denoted aj
k where j indexes the node. (B) The high-

dimensional atomic NNP (HD-atomic NNP) model for a water molecule. ~Gi
X is computed for each atom in the molecule then input into their

respective NNP (X) to produce each atom's Ei
X, which are summed to give ET.

Fig. 2 Examples of the symmetry functions with different parameter sets. (A) Radial symmetry functions, (B) modified angular symmetry

functions and (C) the original Behler and Parrinello angular symmetry functions. These figures all depict the use of multiple shifting parameters for

each function, while keeping the other parameters constant.

This journal is © The Royal Society of Chemistry 2017 Chem. Sci., 2017, 8, 3192–3203 | 3195
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angular function is plotted in Fig. 2C. With the original Behler

and Parrinello angular function, only two shiing values were

possible in the angular environment, 0 and p. The modied

angular function allows an arbitrary number to be chosen,

allowing for better resolution of the angular environment. As

with its radial analog, this helps to keep the elements of ~Gi
X

small for better NNP performance and allows probing of

specic regions of the angular chemical environment.

Fig. 3 Log–log plots of the training, validation, testing, and a random

GDB-10 (molecules with 10 heavy atoms from the GDB-11 database)
extensibility testing set of total energy errors vs. increasing number of

data points in the training set. The sets of points converge to the final

ANI-1 potential presented in this paper, trained on the full ANI-1 data

set.

Fig. 4 Relative energy comparisons from random conformations of a random sampling of 134 molecules from GDB-11 all with 10 heavy atoms.

There is an average of 62 conformations, and therefore energies, per molecule. Each set of energies for each molecule is shifted such that the

lowest energy is at 0. None of the molecules from this set are included in any of the ANI training sets. (A–D) Correlation plots between DFT

energies, Eref, and computed energies, Ecmp, for ANI-1 and popular semi-empirical QM methods. Each individual molecule's set of energies is
shifted such that the lowest energy is at zero. (E) RMS error (kcal mol�1) of various ANI potentials, compared to DFT, trained to an increasing data

set size. The x-axis represents the maximum size of GDB molecules included in the training set. For example, 4 represents an ANI potential

trained to a data set built from the subset of GDB-11 containing all molecules up to 4 heavy atoms.

Fig. 5 The total energies, shifted such that the lowest is zero, calcu-
lated for various C10H20 isomers, are compared between DFT with the

uB97X functional and 6-31G(d) basis set, the ANI-1 potential, AM1

semi-empirical, and PM6 semi-empirical methods.

3196 | Chem. Sci., 2017, 8, 3192–3203 This journal is © The Royal Society of Chemistry 2017
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2.2.1 Atomic number differentiated atomic environment

vector. In this work, we differentiate between atomic numbers

in the AEV by supplying a radial part for each atomic number

and an angular part for each atomic number pair in the local

chemical environment. The original BPSFs treat all atoms

identically in the summation over all atoms, and thus indi-

vidual atomic number specic NNPs are unable to distin-

guish between a carbon, hydrogen, or any other atom type at

some distance. Through empirical evidence, provided in

Table S4 of the ESI,† we have found that discriminating

between atomic numbers allows for training to much lower

error on diverse multi-molecule training sets and permits

better transferability.

For AEVs built from N atom types, this leads to N radial sub-

AEVs and N(N + 1)/2 angular sub-AEVs. ESI Fig. S1† gives an

example of an atomic number differentiated AEV for the carbon

atom in formic acid with only 8 radial symmetry functions and

8 angular symmetry functions. The gure shows an overlay of

two AEVs each representing a different C–O–H angle with the

rest of the structure frozen. From this gure, it is easy to identify

the different features which represent formic acid and it also

provides clear information on the conformation of the mole-

cule. It is this clearly dened “ngerprint” that allows the

modied symmetry functions to perform well in such diverse

chemical environments.

2.3 Normal mode sampling

The ANI method requires many training and testing data

points, (~q, ET), where ~q is some energy minimized or non-

minimized molecular coordinates, a conformation, from

a diverse set of molecules and ET is the single point energy

calculated at a desired QM level of theory. To obtain an

accelerated but physically relevant sampling of molecular

potential surfaces, we propose the Normal Mode Sampling

(NMS) method to generate structures for which single point

energies can be computed. A method akin to our version of

normal mode sampling has successfully been employed in

generating non-equilibrium structures in order to obtain

a data set of atomic forces for training a ML model.37 The end

goal of NMS is to generate a set of data points on the

potential surface, or a window, around a minima energy

structure of a molecule out to some maximum energy. Using

the proposed NMS gives some condence that interactions to

a specic temperature are accounted for in a trained ANI

potential.

To carry out normal mode sampling on an energy minimized

molecule of Na atoms, rst a set of Nf normal mode coordinates,

Q ¼ {q1, q2, q3,.qNf
}, is computed at the desired ab initio

level of theory, where Nf ¼ 3Na � 5 for linear molecules and

Nf ¼ 3Na � 6 for all others. The corresponding force constants,

Fig. 6 (A–C) These three triangle plots, which are on the same scale shown to the right, show energy differences, DE, between random energy

minimized conformers of the molecule retinol. The structural differences between these conformers include many dihedral rotations. (A) shows
the conformers DE calculated with DFT, (B) ANI-1, and (C) DFTB. (D) shows the absolute value of the difference between (A) and (B), |DDE|, while

(E) shows the same between (A) and (C). DE and |DDE| have their own scale shown to the right of the plots. All plots of a specific type use the same

color scaling for easy comparison.

This journal is © The Royal Society of Chemistry 2017 Chem. Sci., 2017, 8, 3192–3203 | 3197
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K¼ {K1, K2, K3,.,KNf
}, are obtained alongside Q. Then a set of Nf

uniformly distributed pseudo-random numbers, ci, are gener-

ated such that
X

Nf

i

ci is in the range [0, 1]. Next, a displacement,

Ri, for each normal mode coordinate is computed by setting

a harmonic potential equal to the ci scaled average energy of the

system of particles at some temperature, T. Solving for the

displacement gives:

Ri ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ciNakbT

Ki

s

(5)

where kb is Boltzmann's constant. The sign of Ri is determined

randomly from a Bernoulli distribution where p ¼ 0.5 to ensure

that both sides of the harmonic potential are sampled equally.

The displacement is then used to scale each normalized normal

mode coordinate by qRi ¼ Riqi. Next, a new conformation of the

molecule is generated by displacing the energy minimized

coordinates by QR, the superposition of all qRi . Finally, a single

point energy at the desired level of theory is calculated using the

newly displaced coordinates as input.

The choice of temperature is dependent on the intended use

of the ANI potential being trained. However, it should be noted

that this method of sampling the potential surface of amolecule

is simply an approximation for generating structures. In prac-

tice, NMS works best when generating windows of the potential

surface of many molecules to be used in the training of the

same ANI potential. The reasoning behind this is as follows: if

any interactions are missed or not sampled well by NMS, it is

possible that other molecules in the data set contain the same

or similar interactions. Therefore, the accuracy of using such

a sampling method is dependent on not only the number of

points per window but also the number of distinct molecules

included in the data set.

Fig. 7 Each subplot shows a one-dimensional potential surface scan generated from DFT, the ANI-1 potential, and two popular semi-empirical
methods, DFTB and PM6. The atoms used to produce the scan coordinate are labeled in the images of the molecules in every sub-plot. Each

figure also lists the RMSE, in the legend, for each method compared to the DFT potential surface.
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3 Methods
3.1 Data selection

The accuracy of any empirical potential, especially an ANI

potential, is highly dependent on the amount, quality of, and

types of interactions included in the data used to train the

model. For instance, a data set generated from high level

CCSD(T) ab initio theory, for every possible combination of all

atom types and a full sampling of congurations in three-

dimensional space would be ideal for training an ANI potential.

However, this is not possible due to time and other practicality

considerations. Therefore, we limit the scope of this study to

a specic class of systems, namely organic molecules with four

atom types: H, C, N, and O. We also restrict our data set to near

equilibrium conformations, since a full sampling of each

structure's potential surface increases the number of data

points required for training to a near intractable level. Data sets

have been developed38 with a similar search of chemical space,

however, these data sets only cover congurational space and

not conformational space, which is a requirement for training

an ANI class potential. In this work, we choose uB97X,39 the

hybrid meta-GGA DFT functional, with the 6-31G(d) basis set as

reference QM data. The uB97X functional provides excellent

accuracy for molecular structures, stability, bond energies and

reaction barriers. Everything described in this article can be

repeated at any other level of QM theory if wanted.

3.2 The GDB-11 database

A good starting point to build a training data set for organic

molecules is the GDB-11 database.40,41 The GDB-11 database is

built from all possible molecules containing up to 11 atoms of

the atomic numbers C, N, O, and F and is ltered by chemical

stability and synthetic feasibility considerations, as well as

simple valency rules. Molecules in GDB-11 are supplied in the

form of SMILES strings,42 which we converted to 3D structures

using the RDKit soware package.43

The ANI-1 data set employed in this work, was generated

from a subset of the GDB-11 database containing molecules

without the uorine atom. This leaves only molecules with H, C,

N, and O aer hydrogens are added with RDKit. Also, given the

sheer number of molecules (40.3 million) in the GDB-11 data-

base, as of the time of this article, only reference data for

molecules up to 8 atoms of C, N, and O have been computed. In

total, 57 951 molecules are included in our current data set, the

ANI-1 data set. A breakdown of how many molecules are

included from each GDB-11 subset is given in ESI Table S1.† All

energies are computed with neutral molecules in the singlet

spin state.

3.3 ANI-1 data set generation

From a proper database of molecules within a chemical domain

of interest, a data set must be generated that includes sampling

of each molecule's potential surface around its equilibrium

structure. We do this in the spirit of work carried out by many

others16,35,36,44 who tted neural networks to single molecule

potential surfaces. Given simple physical considerations, the

sampling of the potential surface can be limited to a window of

relevant energies. Sampling can be carried out using quantum

mechanical (QM) molecular dynamics (MD) simulation as

suggested by others.45 However, QM MD is inefficient for

producing a small data set from sampling of a large window of

a potential surface, which is desirable for the ANI method. The

reason for this is that congurationally diverse data sets overlap

interactions throughout the data set, so larger molecules

require far less data points (�200) than smaller ones. Because of

this, utilizing MD would follow a well-dened trajectory along

the potential surface and would lead to sampling biased to the

specic trajectory. Thus, a very long trajectory is required to

overcome this bias. It is for this reason that sampling of a more

stochastic nature is required for the ANI method.

In this work, we propose a Normal Mode Sampling (NMS)

method that works by calculating the normal modes of a mole-

cule, then randomly perturbing the equilibrium structure along

these normal modes out to a maximum energy (see Section 2.3

for details on NMS). The ANI-1 data set was generated by

applying NMS to every molecule with 8 or less heavy atoms in

the GDB-11 database. Using the wB97X39 DFT functional with

the 6-31G(d) basis set in the Gaussian 09 electronic structure

package,46 the following steps are followed to generate the data

set:

(1) Convert SMILES strings to 3D structures and add hydro-

gens to ll valence orbitals.

(2) Optimize each molecule in the database using tight

convergence criteria.

(3) Generate normal modes for each optimized molecule

with an ultra-ne DFT grid.

(4) Use the NMS method to generate K structures for each

molecule in the database. The exact number of structures per

molecule is determined using K ¼ S(3N � 6). S is an empirically

determined value dependent on the number of heavy atoms in

the molecule and N is the total number of atoms in the mole-

cule, including hydrogens.

(5) Calculate single point energies for each of the generated

structures.

Using this procedure to generate the ANI-1 data set results in

molecular energies for a total of �17.2 million conformations

generated from �58k small molecules. For each molecule's

individual set of random conformations, 80% is used for

training, while 10% is used for each validation and testing of

the ANI-1 model.

For practical considerations, the value S from step 3 is large

(about 500) for very small molecules and is gradually reduced as

the number of heavy atoms, and molecule diversity, grows.

Table S1 in the ESI† shows the parameters used in the

production of the ANI-1 data set, including the S values used for

each GDB-11 database subset as well as the per atom test set

RMSE of an ANI potential vs. DFT for each subset.

3.4 Training the ANI-1 potential

All ANI potential training, validating, and predicting is done with

an in-house C/C++ and CUDA GPU accelerated soware package

that we call NeuroChem (C++ interface) and pyNeuroChem

This journal is © The Royal Society of Chemistry 2017 Chem. Sci., 2017, 8, 3192–3203 | 3199
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(Python interface). Where applicable, the neural network algo-

rithm is encoded as either matrix–matrix, matrix–vector, or

vector–vector operations using CUBLAS.47 The atomic environ-

ment vectors are computed through a separate in-house built

library called AEVLib, which is also GPU accelerated.

Finding a good set of atomic environment vector (~G)

parameters to compute molecular representations plays a major

role in how well the ANI-1 potential trains and performs. Too

many~G parameters will lead to networks that are very large, and

thus hard to train. Too few parameters result in low resolution

of the local chemical environment, which is detrimental to

transferability and training in general. For the ANI-1 potential,

32 evenly spaced radial shiing parameters are used for the

radial part of ~G and a total of 8 radial and 8 angular shiing

parameters are used for the angular part. The specic AEV

parameters were chosen with a few goals in mind: to minimize

the size of the AEV, to maximize the resolution of the local

atomic environments, and to cover all space within the cutoff

radius provided. Keeping these goals in mind the choice of

parameters can be automated to simply chose multiple Rs and

qs parameters equally spaced and setting the h and z parameters

such that one function overlaps with its neighboring function

slightly, as shown in Fig. 2A and B. With four atom types, this

leads to a total of 768 elements in ~G. The cutoff radii of 4.6 Å for

the radial and 3.1 Å for the angular symmetry functions were

chosen based on the distribution of atomic distances and an

assumption that angular environments are less sampled in the

ANI-1 data set, empirical testing veried this to be the case.

The choice of network architecture also plays a major role in

how well a potential performs. Too small of a network reduces

the exibility of the function which can hinder performance

and too large can lead to bad generalization across structures

due to overtraining, especially on small data sets. With larger

data sets, a bigger and more exible network can be used to

yield better results. We empirically tested many network archi-

tectures. Generally, 3 to 4 hidden layer networks with between

32 and 128 nodes per layer performed the best. The best ANI

potential (ANI-1), employed in this work, was trained to 80% of

the 17 + M data points, and has the following pyramidal

architecture: 768 : 128 : 128 : 64 : 1. That is, 768 input values

followed by a 128-node hidden layer followed by another hidden

layer with 128 nodes, a 64-node hidden layer, and nally a single

output node for a total of 124 033 optimizable parameters per

each individual atomic number neural network potential. All

hidden layer nodes use a Gaussian activation function48 while

the output node uses a linear activation function. The weights

are randomly initialized from a normal distribution in the range

(�1/d, 1/d), where d is the number of inputs into the node. The

neural network bias parameters are all initialized to zero.

To train the weights, the program randomly samples struc-

tures from the training set in a mini-batch of 1024 molecules.

Next a cost derivative w.r.t. each weight is calculated through

back-propagation from the exponential cost function:49

C
�

~E
ANI
�

¼ s exp

 

1

s

X

j

�

EANI
j � EDFT

j

�2

!

(6)

~EANI is a vector of the energy outputs, EANIj , from the ANI

network for the jth set of coordinates. EDFTj is the corresponding

DFT reference energy. The parameter s is set to 0.5 for best

performance. This cost function was chosen because of its

robustness in handling outliers in data sets, a property that

achieves 2 to 4 times lower error upon training an ANI potential.

The network weights are optimized via the ADAM update

method.50 An initial learning rate of 0.001 is used with the other

ADAM parameters set to b1 ¼ 0.9, b2 ¼ 0.999, and 3¼ 1.0� 10�8,

as recommended by the ADAM authors. To avoid node satura-

tion the incoming weight vector to each node in the network

is constrained by the max norm regularization method51 to

a maximum length of 3.0. The mini-batch update is repeated

over the full training set until a training epoch is completed.

Training epochs are iterated until the validation set stops

improving in accuracy for 100 epochs. The optimization process

is carried out 6 times using an order of magnitude smaller

learning rate each time. The nal tness of the training, vali-

dation, and test sets in the case of the ANI-1 potential are 1.2,

1.3, and 1.3 root mean squared error (RMSE) in kcal mol�1,

respectively.

4 Results and discussion

The nal ANI potential for the domain of organic molecules

containing the atoms H, C, N, and O, is trained on a data set

containing over 80% of the 17.2 million data points in the ANI-1

data set. This data set, produced by applying normal mode

sampling (NMS, developed in the present work) to more than

56k distinct small molecules from the GDB-8 database, spans

the congurational as well as conformational space of organic

molecules. Such vast data is required to ensure the sampling of

relevant interactions needed to produce a very high dimen-

sional potential surface. Fig. 3 stands as evidence to the

necessity of this vast amount of training data. More important

than the low errors to the training, validation, and test sets, it

shows that the extensibility of ANI potentials increase with data

set size, and does not plateau up to the current data set size.

We performed extensive benchmark and case studies to

estimate the accuracy of the ANI-1 potential compared to DFT

reference calculations. As baselines, in the rst test case we

compare ANI-1 to a sorted coulomb matrix13 (CM) molecular

representation with a multilayer perceptron (MLP) neural

network model, baseline 1, and to an ANI type neural network

model trained where the AEVs are not type differentiated,

baseline 2. MLP's were chosen in baseline 1 because of their

ability to train to very large data sets via batched learning. Table

S4 in the ESI† provides details of these baselines for comparison

to the ANI method.

To highlight the true transferability of the ANI-1 potential, all

molecules considered in the following test cases contain greater

than eight heavy atoms. The atom counts for these test systems

range from 10 to 24 heavy atoms up to a total of 53 atoms.

Firstly, we analyzed ANI-1's overall performance, goodness of t,

and transferability to non-minimized structures with a total of

8245 conformations generated using NMS on 134 randomly

selected molecules from GDB-11, each with 10 heavy atoms. In

3200 | Chem. Sci., 2017, 8, 3192–3203 This journal is © The Royal Society of Chemistry 2017
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the second case study, we look at the accuracy of ANI-1 in pre-

dicting the relative energies of DFT energy minimized C10H20

isomers with respect to the lowest energy isomer. Thirdly,

energy differences are compared for energy minimized con-

formers of the drug molecule retinol. And nally, four rigid

scans, a bond stretch, an angle bend, and two dihedral rotations

on relatively large drug molecules are carried out on ANI-1 and

compared with reference DFT results. For comparison, we also

show the performance of popular DFTB, PM6, and AM1 semi-

empirical methods in all the test cases presented.

4.1 Statistical tness

To show the overall accuracy and transferability of the ANI-1

potential, Fig. 4 plots the energy correlation of relative energies

for a subset of molecules from the GDB-11 database. Speci-

cally, the sampling includes 8245 total NMS generated confor-

mations and their respective energies from 134 randomly

selected molecules with 10 heavy atoms. This gives a set of 62

conformations, on average, per molecule. Each molecule's test

set is shied such that the lowest energy is zero in order to

compare relative energies. An absolute energy comparison of

this test set, between ANI-1 and DFT, is provided in ESI Table

S2.†

Fig. 4A is a correlation plot of the computed ANI-1 energies,

Ecmp, vs. the DFT reference energies, Eref. The ANI-1 potential

achieves an RMSE of only 1.8 kcal mol�1 over the entire random

sampling. Fig. 4B–D provides the same comparison but for

popular semi-empirical methods to the DFT reference energies.

If only relative energies within 30.0 kcal mol�1 of the minimum

energy are considered, the ANI-1, DFTB, PM6, and AM1

methods obtain an RMSE of 0.6, 2.4, 3.6, and 4.2 kcal mol�1,

respectively. ESI Table S3† lists the total energy and relative

energy error of the ANI-1 potential as an energy cap, Ecap, is

lowered until nally only minimum energy structures are

considered.

Fig. 4E shows how the RMSE of an ANI potential to reference

DFT decreases as the number of distinct molecules grows in the

training set. From this plot, it is clear that the addition of more

data leads to better ts, with the largest and most diverse data

set achieving an RMSE of just 1.8 kcal mol�1. Inclusion of

molecules with 7 heavy atoms, mostly mono-substituted

aromatic compounds, yields a dramatic reduction of the RMSE.

This gure, along with Fig. 3, stands as evidence that increasing

the size and diversity of an ANI training set leads to better

tness and transferability, meaning future parameterization

will yield even better results.

The total energies produced by ANI-1, baseline 1, and base-

line 2 for the GDB-10 test set are also compared. ANI-1, when

trained on the full ANI-1 training set, achieves a total energy

RMSE of 1.9 kcal mol�1 while baseline 1 and baseline 2 achieve

a RMSE of 493.7 kcal mol�1 and 6.6 kcal mol�1, respectively.

While the baselines perform better on the ANI-1 test set, as seen

in ESI Fig. S4,† their performance on the GDB-10 test set shows

that both suffer from an inability to extend their learned

interactions to larger molecules. For baseline 1, this is caused

by the coulomb matrix having elements which remain

a constant zero throughout training, yet when a larger molecule

is tested on it, those elements have non-zero values. These

non-zero values are then fed into untrained network parame-

ters, which yields arbitrary results. For baseline 2, the problem

comes from the fact that the AEVs have an inability to differ-

entiate between atom types, creating confusion during the

learning process.

4.2 Structural and geometric isomers

This case study looks at relative stabilities of structural and

geometric isomers with the empirical formula C10H20. All

isomers were optimized at the chosen DFT level of theory.

Structures of all isomers included in this case study are shown

in ESI Fig. S2.† Fig. 5 gives a visual comparison of the ANI-1

potential and different semi-empirical methods to DFT calcu-

lated energies of the isomers. The energies are ordered from the

lowest to the highest for clarity. The x-axis shows the isomer

index number, which matches to the molecule index in ESI

Fig. S2.†

Fig. 5 shows that the ANI-1 potential properly predicts the

minimum energy structure and continues to match the energies

of the ring containing structures, indices 1–4 on the x-axis, with

a very low error and with proper ordering. Also, when moving

from the ringed structures to the linear alkenes, index 4 to 5, the

ANI-1 potential approximates the DFT energy difference

between these two classes of molecules very well. The linear

alkanes, indices 5–13, t very well to the DFT energies. Overall

the ANI-1 potential achieves an RMSE of 0.2 kcal mol�1. In

contrast, both DFTB and PM6 methods incorrectly predict

the relative stability of ring containing structures. Energies

of isomers 5–13 are systematically underestimated by about

6–7 kcal mol�1.

4.3 Conformers of retinol

Eight conformers of the molecule retinol were generated using

the RDKit package and then optimized to their respective DFT

energy minima. In this case study, Fig. 6, the energy difference,

DE, and |DDE| are plotted to show how well the ANI-1 potential

performs at predicting energy differences when large confor-

mational changes, i.e. many dihedral rotations over the entire

molecule occur. The |DDE| plots represent the absolute value of

the differences between the elements of the DFT plot and the

elements of the other method's DE plots. All DE plots are on the

same scale, shown to the right of the gures, and the same is

true for the |DDE| plots.

Fig. 6A shows DE between each retinol conformer for DFT

while B shows the same for ANI-1 and C for DFTB. Aside from

some minor shading differences, the comparison of A and B

clearly shows how well the ANI-1 energy differences match that

of the DFT calculations. Fig. 6D and E contain |DDE| plots

corresponding to A vs. B and A vs. C, respectively, and shows

that the ANI-1 potential can predict DFT energy differences of

these large structural changes to a very low error. In total, ANI-1

and DFTB achieve a RMSE to the DFT DE of 0.6 kcal mol�1 and

1.2 kcal mol�1, respectively. However, DFTB severely over esti-

mates energies of conformers 2 and 7.

This journal is © The Royal Society of Chemistry 2017 Chem. Sci., 2017, 8, 3192–3203 | 3201
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4.4 Potential surface accuracy

So far, all test cases have only considered large structural

changes or unordered NMS generated structures. However, to

be useful in molecular dynamics simulations, the ANI-1

potential must not only have a low error, but must also produce

a very smooth physically meaningful surface. To provide

evidence that ANI-1 satises these requirements, unrelaxed

scans were conducted on different drug molecules and are

plotted in Fig. 7.

Fig. 7A shows a bond stretch, from 1.2 Å to 1.8 Å, of the N–C

bond (labeled 1 and 2) in the analgesic drug molecule fen-

tanyl.52 The bond equilibrium distance was calculated sepa-

rately for each method and was found to be 1.3 Å for DFT, 1.4 Å

for ANI-1, 1.4 Å for DFTB, and 1.4 Å for PM6. Fig. 7B presents an

angle bend, from 90.0� to 135.0�, for the C–C–C angle labeled

1–2–3 in the structure of fentanyl included within the plot. As

with the bond stretch, the ANI-1 potential produces an angle

bend potential surface with a very low RMSE of only 0.4 kcal

mol�1 while maintaining a very smooth curvature for accurate

force calculations. ANI-1 produces an angle bend potential with

an equilibrium angle�1.0� from the DFT equilibrium. PM6 and

DFTB produce equilibrium structures at �1.1� and �0.8�,

respectively, from the DFT calculation.

Finally, Fig. 7C and D depict rotations of the dihedral angles

labeled in the two gures. Fig. 7C shows a C–C–C–C dihedral

rotation potential in the molecule 4-cyclohexyl-1-butanol, while

Fig. 7D is for an N–C–C–C dihedral angle in the drug molecule

called lisdexamfetamine.53 The ANI-1 potential manages to

capture all minima to within 3.0� of the DFT potentials for both

plots, which is better or comparable to the semi-empirical

methods. As expected both semi-empirical methods severely

underestimate dihedral rotation barriers, and in the case of

lisdexamfetamine give an unrealistic shape of potential surface.

Again, both gures not only t well to the potential surface but

model it very well by reproducing the shape and smoothness of

the surface. This fact shows that the ANI-1 potential does produce

a smooth potential, one that could provide forces, for use in

molecular dynamics simulations or optimization problems.

Conclusions

In this work we present the rst truly transferable neural

network potential (NNP) for organic molecules based on a deep

learning architecture and with heavy modications to the

HDNN method of Behler and Parrinello.25 Our NNP, presented

as the ANI-1 potential, was trained on a data set, which spans

conformational and congurational space, built from small

organic molecules of up to 8 heavy atoms. We show its appli-

cability to much larger systems of 10–24 heavy atoms inclu-

ding well known drug molecules and a random selection of

134 molecules from the GDB-11 database containing 10 heavy

atoms. ANI-1 shows exceptional predictive power on the

10-heavy atom test set, with RMSE versus DFT relative energies

as low as 0.6 kcal mol�1 when only considering molecular

conformations that are within 30.0 kcal mol�1 of the energy

minimum for each molecule. While the ANI-1 potential

specically targets organic molecules with the atoms H, C, N,

and O, the ANI method can be used to build potentials for other

classes of molecules and even crystals. ANI-1 was specically

trained to DFT energies, but could be extended to high level ab

initio QM methods and larger basis sets given enough compu-

tational resources.

As the results clearly show, the ANI method is a potential

game-changer for molecular simulation. Even the current

version, ANI-1, is more accurate vs. the reference DFT level of

theory in the provided test cases than DFTB, and PM6, two of

the most widely used semi-empirical QM methods. Besides

being accurate, a single point energy, and eventually forces, can

be calculated as many as six orders of magnitude faster than

through DFT. Empirical evidence shows the computational

scaling per atom of the method is roughly equivalent to a clas-

sical force eld for very large molecules.

The accuracy of the ANI method is heavily dependent on the

data used during training. Thus, continuing to augment the ANI-1

data set with newmolecules and including more atomic numbers

will improve the accuracy of the trained ANI potential further as

well as extend the method to new chemical environments.

Acknowledgements

J. S. S. acknowledges the University of Florida for funding

through the Graduate School Fellowship (GSF). A. E. R. thanks

NIH award GM110077. O. I. acknowledges support from

DOD-ONR (N00014-16-1-2311) and the Eshelman Institute for

Innovation award. Part of this research was performed while

O. I. was visiting the Institute for Pure and Applied Mathe-

matics (IPAM), which is supported by the National Science

Foundation (NSF). The authors acknowledge the Extreme

Science and Engineering Discovery Environment (XSEDE)

award DMR110088, which is supported by National Science

Foundation grant number ACI-1053575. We gratefully

acknowledge the support of the U.S. Department of Energy

through the LANL/LDRD Program for this work. We gratefully

acknowledge the support and hardware donation of NVIDIA

Corporation and personally Mark Berger.

Notes and references

1 K. Kitaura, E. Ikeo, T. Asada, T. Nakano and M. Uebayasi,

Chem. Phys. Lett., 1999, 313, 701–706.

2 D. G. Fedorov, T. Nagata and K. Kitaura, Phys. Chem. Chem.

Phys., 2012, 14, 7562.

3 C. Ochsenfeld, J. Kussmann and D. S. Lambrecht, in Reviews

in Computational Chemistry, John Wiley & Sons, Inc., 2007,

pp. 1–82.

4 M. Elstner, Theor. Chem. Acc., 2006, 116, 316–325.

5 J. J. P. Stewart, J. Mol. Model., 2009, 15, 765–805.

6 M. J. S. Dewar, J. Am. Chem. Soc., 1985, 107, 3902.

7 W. Thiel, Perspectives on Semiempirical Molecular Orbital

Theory, John Wiley & Sons, Inc., 2007.

8 T. A. Halgren, J. Comput. Chem., 1996, 17, 490–519.

9 H. Sun, J. Phys. Chem. B, 1998, 102, 7338–7364.

3202 | Chem. Sci., 2017, 8, 3192–3203 This journal is © The Royal Society of Chemistry 2017

Chemical Science Edge Article

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 0

8
 F

eb
ru

ar
y
 2

0
1
7
. 
D

o
w

n
lo

ad
ed

 o
n
 8

/2
6
/2

0
2
2
 6

:3
2
:2

8
 A

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
-N

o
n
C

o
m

m
er

ci
al

 3
.0

 U
n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/C6SC05720A


10 V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg and

C. Simmerling, Proteins: Struct., Funct., Genet., 2006, 65,

712–725.

11 J. A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom,

K. E. Hauser and C. Simmerling, J. Chem. Theory Comput.,

2015, 11, 3696–3713.

12 A. C. T. van Duin, S. Dasgupta, F. Lorant and W. A. Goddard

III, J. Phys. Chem. A, 2001, 105, 9396–9409.

13 M. Rupp, A. Tkatchenko, K.-R. Muller and O. A. von

Lilienfeld, Phys. Rev. Lett., 2012, 108, 58301.

14 S. Manzhos and T. Carrington, J. Chem. Phys., 2006, 125, 84109.
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