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abstract: Animal coloration patterns, from zebra stripes to bird egg

speckles, are remarkably varied. With research on the perception,

function, and evolution of animal patterns growing rapidly, we re-

quire a convenient framework for quantifying their diversity, partic-

ularly in the contexts of camouflage, mimicry, mate choice, and indi-

vidual recognition. Ideally, patterns should be defined by their locations

in a low-dimensional pattern space that represents their appearance to

their natural receivers, much as color is represented by color spaces.

This synthesis explores the extent to which animal patterns, like colors,

can be described by a few perceptual dimensions in a pattern space.We

begin by reviewing biological spatial vision, focusing on early stages

during which neurons act as spatial filters or detect simple features

such as edges. We show how two methods from computational vi-

sion—spatial filtering and feature detection—offer qualitatively dis-

tinct measures of animal coloration patterns. Spatial filters provide a

measure of the image statistics, captured by the spatial frequency power

spectrum. Image statistics give a robust but incomplete representation

of the appearance of patterns, whereas feature detectors are essential

for sensing and recognizing physical objects, such as distinctive mark-

ings and animal bodies. Finally, we discuss how pattern space analyses

can lead to new insights into signal design and macroevolution of an-

imal phenotypes. Overall, pattern spaces open up new possibilities for

exploring how receiver vision may shape the evolution of animal pat-

tern signals.

Keywords: animal coloration patterns, animal spatial vision, Fourier

transform, camouflage, communication, sensory ecology.

Introduction

Complex spatial patterns are often the most striking aspects
of animal phenotypes. Indeed, many species’ common names
refer to pattern. Consider, for example, the variable checker-
spot butterfly (Euphydryas chalcedona), the two-striped gar-

ter snake (Thamnophis hammondii), the speckled tanager
(Tangara guttata), the side-blotched lizard (Uta spp.), and
the chessboard blenny (Starksia sluiteri). The staggering di-
versity of patterned pelages, plumages, skins, and integu-
ments is probably generated by a limited variety of develop-
mental mechanisms (Maini 2004; Mills and Patterson 2009;
Mallarino et al. 2016).Many selective forces shape this diver-
sity, but where patterns function in communication and
camouflage, they evolve in response to the vision of the sig-
nal receiver—which may be a conspecific, a predator, or a
prey item.
Although animal patterns have long intrigued evolution-

ary biologists (Wallace 1878; Darwin 1888), a strong theo-
retical framework to describe them remains elusive. Visual
stimuli are often considered to have three components: spec-
tral (color), spatial (pattern), and temporal (motion). Quanti-
fying two-dimensional spatial patterns is often more difficult
thanmeasuring spectral or temporal components (Rosenthal
2007; Osorio and Cuthill 2013) because spatial patterns typ-
ically reveal additional detail with increasing resolution,mak-
ing “texture” challenging to define (Tuceryan and Jain 1993).
Nonetheless, over the past decade, the widespread use of dig-
ital imaging to study animal phenotypes (Stevens et al. 2007;
Troscianko and Stevens 2015) has led to a proliferation of
quantitative methods for analyzing spatial patterns (Rosen-
thal 2007; Allen and Higham 2013; Troscianko et al. 2017;
Pike 2018).
The uptick in research on animal coloration patterns

presents challenges and opportunities. The range of ap-
proaches raises the questions of how these different meth-
ods work and which are the most suitable for characterizing
patterns. Inmany contexts (e.g., camouflage, signaling), it is
desirable to analyze patterns in a way that is appropriate for
the animal viewer, as is now the norm in color research
(Kemp et al. 2015; Renoult et al. 2017). A critical question
emerges: to what extent can we specify a relatively small
number of measures that describes the visual appearance
of a coloration pattern to its natural receiver? These mea-
sures would define a low-dimensional perceptual space in
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which coloration patterns could be represented; this is a
pattern space (terms in italics appear in the glossary in the
appendix; see also fig. 1), analogous to a color space (Kelber
et al. 2003; Kemp et al. 2015; Renoult et al. 2017). A color
space is a graphical representation of visual stimuli, in-
formed by the color vision system of the animal viewer
(Kelber et al. 2003; Renoult et al. 2017). A few parameters
(e.g., the sensitivities of the color cone photoreceptors of
the relevant species) specify simple color spaces that pro-
vide a powerful means of studying color traits. Color spaces
have paved the way for major advances in animal commu-
nication research (Chittka and Brockmann 2005; Endler
and Mielke 2005; Stoddard and Prum 2008; Schaefer and
Ruxton 2015). A pattern space could enable similar prog-
ress, allowing visual ecologists to describe and compare an-
imal patterns in a way that is relevant to sensory experience.
Ultimately, pattern spaces could generate predictions about
animal behavior and offer insights into signal design, devel-
opment, and macroevolution.

But is a pattern space possible? Whereas color spaces are
based on photoreceptor spectral sensitivities, we knowmuch
less about neural processes, which are essential to spatial vi-

sion. For spatial vision, the best-known systems are the cat
and primate retinocortical pathways, where—as we will see—
there has been a fruitful interaction among physiological,
psychophysical, and computational approaches. However,
even in these well-studied cases, there is much to learn.
Nonetheless, the common observation that patterns directed
at nonhuman receivers are often effective to our eyes (as
camouflage or as conspicuous signals) implies that many
features of animal spatial vision are conserved (see also
Giurfa et al. 1997; Stevens 2007; Soto and Wasserman 2011;
Cronin et al. 2014). Therefore, building a pattern space rel-
evant to animal vision may be an achievable and worthwhile
goal.
This synthesis explores four questions: (1) What is a pat-

tern space, and why do we need one? (2) What principles of
biological spatial vision could underpin a pattern space?
(3) How can we construct a pattern space? (4) What new
possibilities does a pattern space make possible? To begin,
in the next section we introduce a phenotypic space of pat-
terns (see “A Perceptual Space for Animal Coloration Pat-
terns”). Because a pattern space ideally is informed by the
basic principles of spatial vision, we review these concepts

Figure 1: Hypothetical pattern space for animal coloration patterns. A, The axes, each representing a pattern parameter P, depend on the
parameters of interest. A phenotypic pattern space can have n dimensions; six dimensions are represented here. A low-dimensional pattern
space might include only metrics derived from first- and second-order image statistics, or additional metrics based on edge and feature
detectors might be included. Animal patterns can be studied at multiple scales: regions of interest (ROIs), the entire body, or the body in
the natural environment. B, Once animal patterns are mapped in a phenotypic space, the effects of environment, including microhabitat,
and phylogeny on morphospace occupancy can be explored. Each dot represents an animal phenotype in the pattern morphospace. Photos:
plains zebra (Equus quagga), credit: D. Rubenstein; burrowing owl (Athene cunicularia), credit: M. Stoddard.
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(see “Biological Spatial Vision: A Brief Overview”). Next,
we propose a multistage approach to building a quantitative
pattern space (see “Building a Pattern Space Informed by
Receiver Vision”). Finally, we examine the ways in which
such a space can open new avenues of research (see “New
Frontiers in Pattern Space”).

A Perceptual Space for Animal Coloration Patterns

What is a pattern space? Ideally, we would like to represent
patterns in a low-dimensional perceptual space (fig. 1) that
specifies their visual appearance with a small number ofmea-
sures that corresponds (or can be related) to visual mecha-
nisms. This pattern space would allow quantitative descrip-
tion of patterns as seen by other animals. It would provide
a comparison with the backgrounds against which animal
patterns are viewed and an understanding of the adaptive
landscape in which they evolve. Although this objective may
seem abstract, color spaces are common in psychophysics
(Kuehni 2001) and now in visual ecology (Renoult et al.
2017), and the same principles are applied to other aspects
of perception (Zaidi et al. 2013). Encouragingly, complex
patterns such as monkey faces have been described in
morphospaces (Allen and Higham 2015), suggesting that
pattern spaces can capture visually meaningful variation.

It is helpful to begin with a comparison to color vision
(Kemp et al. 2015). One can measure reflectance spectra
of objects of interest to an animal and then model photore-
ceptor excitations to them (Kelber et al. 2003). These ex-
citations can be represented in a color space whose dimen-
sionality is given by the number of spectral receptors (e.g.,
the color cones; Kelber et al. 2003; Endler and Mielke 2005;
Stoddard and Prum 2008). Color spaces are useful for three
main reasons: (1) they specify the spectral information that
is encoded by the eye; (2) they are low dimensional, reducing
spectral data to a small number of measures; and (3) because
most reflectance spectra vary smoothly with wavelength, the
color space of a tri- or tetrachromatic eye represents nearly
all spectral information available in the physical stimulus
(Maloney 1986; Vorobyev et al. 1997; Nascimento et al.
2002). Thus, a color space can be a physiologically mean-
ingful, convenient, and nearly complete representation of
spectral information.

The obstacles to finding a satisfactory pattern space are
evident in light of the merits of color spaces: (1) The large
number of photoreceptors in any eye, and hence pixels in
the visual image, means that the receptor space has high di-
mensionality, so any conveniently low-dimensional mea-
sure of patternwill have to refer to its representation by neu-
rons in the brain rather than the photoreceptors. However,
unlike photoreceptor spectral sensitivities, the response prop-
erties of visual neurons are poorly known. (2) The number
of these spatial mechanisms is unknown and may be large.

(3) Whereas reflectance spectra vary smoothly with wave-
length, it is physically possible for any pixel in an image to
have a value uncorrelated with its neighbors (as in spatial
white noise; see “Building a Pattern Space Informed by Receiver
Vision”). Hence, increasing image quality normally yields addi-
tional detail, which suggests that patterns cannot always be ob-
viously reduced to a few dimensions (Tuceryan and Jain 1993).
Despite these three obstacles, the problem is not hope-

less because natural images are not random but have a def-
inite statistical structure (Ruderman and Bialek 1994; Ol-
shausen and Field 1996; Ruderman 1997; Simoncelli and
Olshausen 2001). Moreover, there is much interest in find-
ing measures of the visual appearance of natural patterns,
not only for biologists and psychologists but also for ap-
plications such as computer graphics and image data com-
pression (Jain and Farrokhnia 1991; Portilla and Simoncelli
2000). Ideally, a pattern space should encode features that
relate in some way to the viewer’s perceptual experience.
We will fall short of this ideal, since little is known about
spatial vision in many species and we do not yet have an ad-
equate understanding—in any visual system—of how the
eyes and brains process patterns. That said, we should at-
tempt to measure patterns in a way that is underpinned by
the principles of biological vision. In the next section (“Bio-
logical Spatial Vision: A Brief Overview”), we provide an
overview of our current understanding of how humans and
other animals perceive spatial patterns.
Having defined a pattern space, how can it be used?What

kind of new conceptual questions will a pattern space make
possible? Imagine a clade of patterned animals: felid cats,
coral snakes, leaf-mimic katydids, pheasants, poison dart
frogs, or bird eggs, to name a few. Now imagine mapping
the patterns in a simple pattern space (fig. 1), with relevance
to the spatial vision of a chosen signal receiver—a mate, a
competitor, a predator. The first questions you might ask
are: What pattern information is available to that signal re-
ceiver, and what might this reveal about signal design? The
second question is: Can the pattern space generate useful
predictions about the viewer’s behavior? The third question
is: What are the limits of patterning in this clade, and what
imposes those limits: developmental constraint or natu-
ral and sexual selection? The final question is: Comparing
across diverse taxa, are there universal features of patterned
signals—for camouflage, mate choice, mimicry, or individ-
ual recognition? We later expand on these questions (see
“New Frontiers in Pattern Space”).
As a hypothetical example, consider the remarkably di-

verse patterns (and colors) of different morphs of the poi-
son dart frog Dendrobates pumilio, whose dorsal patterns
are variably speckled, spotted, and solid (Siddiqi 2004; Wang
and Shaffer 2008). First, plotting these patterns in a pattern
space (fig. 1) with dimensions informed by frog or bird spa-
tial vision could reveal differences in the information avail-
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able to conspecifics and predators. Next, the pattern space
could suggest that certain patterns are always found on red
or orange morphs but never yellow or green morphs, lead-
ing to the hypothesis that the pattern has an aposematic
function. This could be tested in the wild with experimental
models, to determine whether avian predators more strongly
avoid certain patterns. Then, the pattern space may show
that the frogs have evolved speckles and spots but never
squiggles or blotches, and exploring the reasons for this (e.g.,
natural selection, developmental constraint) could be fruit-
ful. Finally, a broader analysis of all frog patterns may sug-
gest that certain patterns (with certain values in the pattern
space) are particularly effective for aposematism. Expand-
ing the analysis to another clade—coral snakes (Kikuchi and
Pfennig 2010; Davis Rabosky et al. 2016), for example—could
reveal the extent to which aposematic patterns share com-
mon attributes.

It is easy to imagine how similar questions could be asked
in other systems: in tiger moths, for example, a pattern space
could be used to investigate trade-offs between aposematism,
sexual displays, and camouflage (Nokelainen et al. 2011).
Modeling the appearance of tiger moth color patterns from
different viewing distances (resolutions) could, for example,
reveal whether there are distance-dependent effects: perhaps
some aspects of the pattern provide camouflage at a distance
but are most effective for warning coloration and mating
signals at close range, an idea that has received recent theo-
retical and experimental support using artificial prey (Bar-
nett and Cuthill 2014).

Biological Spatial Vision: A Brief Overview

Since the 1940s, the study and interpretation of biological
vision have been closely linked to progress in image pro-
cessing, robotics, and artificial intelligence (Campbell and
Robson 1968; Marr 1982; Wandell 1995; Yamins and Di-
Carlo 2016b). This link between physiology and engineer-
ing has the major advantage of producing well-specified
models of visual processing that can be implemented with
image-processing software but carries the risk that we then
assume that the model is, in fact, the biological reality. The
following account therefore first introduces biological vi-
sion and then explains how visual processing is modeled.
This provides an understanding of current simulations of
animal pattern perception, how they can be interpreted,
and how they might be used to answer new questions.

Vision is commonly treated as a hierarchical process,
where an optical image is sampled by an array of photo-
receptors and then transformed by a series of neural stages.
The initial stages are often modeled as linear filtering (or
convolution) with tuned filters, and they are readily simu-
lated using conventional image processing (box 1; fig. 2).
The filter outputs provide well-defined measures that cap-

ture much visually relevant information about patterns (or
visual textures; Bergen and Adelson 1988), but they do not
directly identify objects in a scene. Subsequent (or parallel)
neural processing is thought to use the filter outputs to locate
local features, especially edges, which are then integrated
across the image to locate objects. In general, these subse-
quent stages are much less easily defined as direct operations
on the image; instead, they are characterized by their perfor-
mance on a given task such as object recognition. As we will
see later (“Building a Pattern Space Informed by Receiver Vi-
sion”), these two processes—spatial frequency analysis and
edge and feature detection—can be approximated by two
complementary forms of analysis involving (1) the power
spectrum and image statistics and (2) algorithms for detect-
ing features (including simple edges and complex objects).
We now explore the stages of biological visual processing
in more detail.

Visual Acuity and Contrast Sensitivity

The first job of the eye is to focus patterns of light in the en-
vironment (an image) on an array of photoreceptors in the
retina (Land and Nilsson 2012). The spatial detail, or reso-
lution, of this image is generally limited by the angular sep-
aration of the photoreceptors (e.g., rods and cones) in visual
space (Land and Nilsson 2012). For example, humans and
eagles have similar photoreceptor densities, but eagle eyes
can resolve finer patterns because their deep foveas increase
the effective focal length of the eye, thereby magnifying the
retinal image (Reymond 1985).Visual acuity is a behavioral
measure of spatial resolution, which can be defined as the
finest pattern of equally spaced black and white lines—
known as a grating—that is distinguishable from a uniform
gray field. Acuity is often measured in cycles per degree
(cpd), the number of pairs of black and white lines that fill
a 17 angle of the visual space. For comparison, a thumb at
arm’s length subtends about 17. Acuity is closely related
to the quality of the retinal image (Uhlrich et al. 1981).
Across animal species, visual acuity varies strikingly.Whereas
humans can resolve 60–70 cpd, the Australian wedge-tailed
eagle (Aquila audax) resolves about 140 cpd, cats resolve
about 10 cpd, and bees resolve about 0.5 cpd (Reymond
1985; Land and Nilsson 2012). In all of these animals, and es-
pecially humans and eagles, acuity falls markedly from the
area of highest acuity to the visual periphery.
Visual acuity measures the finest pattern that can be dis-

cerned, but it does not reveal how sensitive the visual sys-
tem is to different spatial frequencies (see box 1). Contrast
sensitivity provides this overall measure of spatial frequency
tuning; it is defined as the lowest-contrast grating that can
be detected at a particular spatial frequency (see box 1). The
eye’s overall response to contrast is commonly described by
itsmodulation transfer function (MTF), which can be calculated
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Box 1: Fourier transform and spatial filtering of images

Fourier analysis. Fourier analysis (fig. 2) and related methods of spatial frequency analysis are widely used in
image processing and provide a theoretical framework for much of visual psychophysics and neuroscience (Camp-
bell and Robson 1968; Meese 2002). Fourier analysis breaks down any continuous signal, such as an image, into a
set of sine waves, each with a specific amplitude and relative phase. Fourier power (or, equivalently, amplitude, the
square root of the power) and phase can be represented as separate power and phase spectra. Local power spectra
are relevant to the perception of pattern (especially preattentively; Bergen and Adelson 1988), and phase spectra are
relevant to the location of local features such as edges (Morrone and Burr 1988; fig. 4E). In the power spectrum,
each Fourier power component is mapped in the Fourier space as a function of its frequency (with low-frequency
components at the center of the map) and orientation in the image. The Fourier power spectra of natural images
usually vary smoothly with frequency and commonly follow a power law such that pp 1=f n, where p is power, f is
spatial frequency in cycles per unit distance (e.g., visual angle), and the exponent n≃ 2 (Field 1987). It is therefore
possible to describe the overall power spectrum by averaging the signal in a relatively small number of bands (typ-
ically one octave in width). This measure of the image is essentially equivalent to that made by taking the outputs of
local spatial filters (known as wavelets), as used in image processing, and is thought to model important aspects
of neural processing in animal visual systems. For 2-D images, one can calculate the average power within a series
of circular bins drawn on the Fourier space (Field 1987), which is summarized in a graph of spatial frequency ver-
sus Fourier amplitude (fig. 4C). This spectrum represents the second-order image statistics, which account for the
spatial relationships between pairs of pixels in the image. Complementary to the amplitude spectrum are spatial phase
relations of the sinusoidal components, which are critical for specifying the locations of intensity changes in the image
and the presence of local features such as edges and lines.
Spatial filtering. Once an image is represented (via Fourier transform) in the frequency domain, it can be fil-

tered. To achieve this, the Fourier-transformed input image is multiplied by the Fourier transform of the filter. A
filter receives input and transmits some of the input as output, just as a sieve passes only particles below a certain
size. Low-pass and high-pass filters transmit low- and high-frequency spatial frequency components, respectively.
A band-pass filter transmits only Fourier components within a specified frequency range (or band). Filters may be
insensitive to orientation (isotropic), while others are orientation specific. Finally, an inverse Fourier transform
gives the output image in the spatial domain, as shown in figure 2. Multiplication in the frequency domain (equiv-
alent to convolution) is easy with conventional image processing tools in MATLAB. This method can be used to
simulate optical blurring in the eye, by convolution with a circular Gaussian function (fig. 3) of suitable di-
mensions. It can also be used to model the outputs of visual neurons with linear response functions, such as retinal
neurons with center-surround receptive fields or cortical simple cells.
Global and local transforms. The Fourier transform is global: it applies to an entire image. Alternative methods

exist for breaking down an image into its frequency components. Common examples are circularly symmetrical
difference-of-Gaussian (DoG) and the very similar Laplacian-of-Gaussian (LoG) filters (Marr and Hildreth 1980)
or oriented wavelet functions, especially Gabor functions (i.e., a Gaussian multiplied by a sinusoid; Daugman
1988; Jain 1989; for simple Gaussian and Gabor filters, see fig. 3). All the foregoing methods produce a local spatial
frequency analysis for a part of the image: they provide local information about space (2-D) and frequency, whereas
the (global) Fourier power spectrum averages across the entire image (Graps 1995). Importantly, wavelets are
thought to be a good model of receptive fields of simple cells in mammalian primary visual cortex, suggesting that
similar computational principles might apply to biological vision. For spatial analysis, the specific choice of trans-
form may depend on details such as whether orientation is important (as with striped patterns) or whether the
analysis is to be done globally (via Fourier transform) or locally (i.e., piecewise on small areas of the image, via
Gabor functions or wavelets). Global analysis, for example, might be relevant to describing the visual backgrounds
against which camouflage or communication signals are most effective. In “Biological Spatial Vision: A Brief Over-
view,” we describe how the visual system involves linear filtering. The Fourier, DoG, LoG, and wavelet transforms
are types of linear filters.
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in a variety of ways, based on the optics of the lens or the
packing of retinal ganglion cells (Caves and Johnsen 2017).
Related to the MTF is the contrast sensitivity function (CSF),
which is a behavioral measure dependent on the optical (MTF)
and subsequent neural contributions to contrast sensitivity
(Michael et al. 2011). Both the MTF and the CSF vary across
the visual field and with the light level; it becomes more chal-
lenging to resolve images as ambient light levels decline. In
daylight conditions, humans have peak sensitivity to medium
frequencies, with low- and high-frequency gratings requiring
more contrast to be detected.

Receptive Fields and Lateral Inhibition

The early stages of visual processing beyond the photo-
receptors are commonly modeled as linear filtering (Wan-

dell 1995), which is implemented by the operation known
as convolution (see box 1; fig. 2). This filtering affects sen-
sitivity to different spatial frequencies and, thus, the shape
of the CSF. The relevant properties of visual neurons are de-
scribed by the receptive field, defined as a region of the ret-
ina over which a cell responds to light (Hartline 1938).
Within the receptive field, the response to a given change
in light intensity depends on the cell’s sign (positive or neg-
ative; i.e., whether the cell is excited by an increase or a de-
crease in light intensity) and sensitivity (i.e., the magnitude
of the response to a given intensity change) to light at that
particular location. The part of the receptive field that is ac-
tivated by an increase in light intensity is known as an “on”
region and the part activated by dimming as an “off” region.
The cell’s response is said to be linear if it can be modeled as

Figure 2: Filtering an image in the spatial and frequency domains. After Meese (2009). An image can be filtered in the spatial domain or the
frequency domain (box 1). Left, Fourier analysis breaks down a complex waveform into its constituent sine waves, which can then be added
back together (via an inverse Fourier transform) to give the original waveform. As a 2-D image, light intensity varies in two dimensions (x, y),
and the Fourier transform represents information at any orientation in the frequency domain. The sinusoid amplitudes or power (amplitude
squared) can be represented as a function of orientation (lower left), with low-frequency components at the center of the map. This plot can
be averaged over all orientations to give a single amplitude or power spectrum (fig. 4C). Middle, now that an image is represented in the
frequency domain via a Fourier transform, a filter can be applied. Much as a sieve passes particles below a certain size, a filter transmits
some of the input signal and is selective for spatial frequency. Low-pass and high-pass filters preferentially transmit low- and high-frequency
spatial frequencies, respectively, and a band-pass filter transmits some intermediate range. Some filters are insensitive to orientation, while
others are orientation specific. The Fourier representation of a filter is called the filter’s modulation transfer function (MTF). The MTF shows
which frequency components the filter will transmit. To obtain a filtered image, the input signal (the Fourier-transformed input amplitude
values; lower left) is multiplied by the MTF of the filter (lower middle), yielding the Fourier-transformed output image (lower right). Right, an
inverse Fourier transform of the Fourier domain output (lower right) gives the output image in the spatial domain (upper right). Here, the
filter (middle) is a Gabor filter with wavelengthp 10 and orientationp 0 (vertical). For a low-pass filter, convolution is equivalent to blur-
ring the image with a function that corresponds to the intensity distribution (expressed in pixels or angle) produced when a point source is
transmitted through the filter, for example, a lens. This distribution is known as the point spread function (PSF) of the lens. More generally,
the MTF (frequency domain) is identical to the Fourier transform of the PSF (spatial domain) of a filter. For sensory neurons that act as
linear filters, the PSF corresponds to the cell’s receptive field. Note that the scenario presented here is slightly oversimplified, since translation
between the spatial and frequency domains requires some padding and shifting. Photo: plains zebra (Equus quagga), credit: D. Rubenstein.
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a simple summation of the intensity values at each location
within the receptive field and nonlinear if this is not the case
(Bruce et al. 2003). Simple cells in the primary visual cortex
of mammals tend to exhibit roughly linear summation over
their receptive fields, while complex cells show nonlinear
responses (Hubel and Wiesel 1962, 1968; Bruce et al.
2003; see “Processing in the Mammalian Visual Cortex”).

Lateral inhibition, which is a common first stage of visual
processing, is implemented directly on photoreceptor out-
puts in both vertebrate and arthropod visual systems. In
lateral inhibition, the stimulation at one location opposes
stimulation at a neighboring location and vice versa. Com-
putationally, lateral inhibition is modeled by subtracting
from the light intensity signal at each point (or pixel) in
the image an average of the responses in the neighboring
points (Srinivasan et al. 1982; Bruce et al. 2003). This pro-
duces so-called center-surround receptive fields, which are
circularly symmetric. For example, the retinal ganglion cells
whose axons transmit visual signals up the optic nerve are
commonly either center-on, being excited by light in the
center of the receptive field and inhibited by light on the pe-
riphery (the surround), or center-off, being excited when
light falls on the surround but not on the center. These re-
sponses can be modeled as a difference-of-Gaussian (DoG)
function, with a sharp decline in sensitivity as distance from
the center increases (Wandell 1995; Bruce et al. 2003). Lat-
eral inhibition means that neurons act as spatial frequency
band-pass filters, suppressing low frequencies but transmit-
ting high frequencies (Srinivasan et al. 1982; Bruce et al.
2003). This gives the CSF of most animals a characteristic
inverted U-shape, which for (light-adapted) humans peaks
at about 3 cpd (Campbell and Robson 1968).

The above description of a receptive field applies well to
cells such as photoreceptors or retinal neurons, but in the
brain, neurons often respond selectively to complex pat-
terns over wide areas. Here the concept of the receptive field
can be generalized to refer to the cell’s tuning to additional
stimulus parameters. Thus, cells in themammalian primary
visual cortex (visual area 1 [V1]) are tuned to the orienta-
tion of lines and edges (Bruce et al. 2003), whereas at a later
stage in the visual pathway, cells are tuned to some object-
or face-relevant parameter, such as gaze direction, emotional
state, or individual identity (Perrett et al. 1992; Quiroga et al.
2005).

Processing in the Mammalian Visual Cortex

In mammals, visual information is transmitted from the
retina via the optic nerve and the lateral geniculate nucleus
to the primary visual cortex (V1). Here receptive fields are
mostly not circularly symmetrical but oriented (i.e., hori-
zontal, vertical, diagonal; see box 1; figs. 2–4; Maffei and
Fiorentini 1973;Meese 2002). V1 neurons are classified into

twomain types: simple cells and complex cells. Simple cells,
which receive the most direct inputs from the retina, have
approximately linear responses, summing center-surround
inputs over the receptive field (Shapley 1997). In contrast,
complex cells do not simply sum signal intensities and
hence are nonlinear (fig. 4E; Shapley 1997). These cells are
sensitive to edges and other local features, irrespective of their
particular location within the receptive field or their contrast
polarity (i.e., an edge with dark above light gives the same re-
sponse as light above dark; fig. 4E; Riesenhuber and Poggio
1999). In other words, the nonlinear response of complex
cells means that they respond to specific local features in a
way that is more or less independent of their intensity and in-
steadmight be related to their relevance to object recognition.
Outside V1, visual information is further processed in

many areas of the mammal cerebral cortex and, at least in
primates, is thought to follow two visual streams. The ven-
tral, or “what,” stream includes areas V2 and V4 and then
the inferior temporal (IT) cortex (Bruce et al. 2003) and
processes information about the form, color, and recogni-
tion of objects. The dorsal, or “where,” stream is concerned
with spatial location and motion. In the ventral stream,
neurons show selectivity to increasingly complex shapes
and textures. Here, the spatial receptive fields become pro-
gressively more elaborate, with some cells sensitive to tex-
tures, borders, curves, and illusory contours (Krüger et al.
2013). In the IT cortex, some cells show selectivity to geo-
metric shapes (Gallant et al. 1993) and even to faces (Perrett
et al. 1992). Overall, the IT cortex extracts and integrates
features of intermediate complexity from lower levels of
the ventral stream, using them to build more sophisticated
representations of objects (Krüger et al. 2013).
As a caveat, the general picture we have presented in this

section is of bottom-up, feedforward, hierarchical visual
processing. This perspective is helpful and has inspired
most computer vision approaches (Medathati et al. 2016).
However, top-down mechanisms, including attention (Beck
and Kastner 2009; Carrasco 2011; Buschman and Kastner
2015), play critical roles mediated by extensive feedback be-
tween different parts of the visual pathway (Lee and Mum-
ford 2003) and interactions between the two visual streams
(Cloutman 2013; Medathati et al. 2016). For additional read-
ing on spatial vision, we direct readers to textbooks on vision
in humans (Wandell 1995; Bruce et al. 2003; Snowden et al.
2012) and animals (Land and Nilsson 2012; Cronin et al.
2014).

Species Differences in Spatial Vision

It is well known that species differences in photoreceptor
spectral sensitivities lead to differences in color vision, with
consequences for the evolution of color signals. Given the
diversity of animal eyes and brains and the likelihood that
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they are adapted to different ecological niches, what is the
evidence for comparable differences in how animals per-
ceive patterns?

The most obvious difference is in visual acuity, which
varies widely across different animal eyes (Caves et al. 2018).
Behavioral tests also reveal significant differences in contrast
sensitivity (Land and Nilsson 2012). Beyond this stage, little
is known about species differences in spatial vision. Neither
behavioral nor neurophysiological studies of pattern rec-
ognition predict with confidence major species differences.
For example, despite some anatomical differences in mam-
malian and avian brains (Jarvis et al. 2013)—and some in-
triguing behavioral differences in pattern processing (Qadri
and Cook 2015)—spatial vision inmammals and birds likely
involves analogous processes (Medina and Reiner 2000;
Soto and Wasserman 2011). More generally, the weight of
evidence points to remarkable similarity in the way in which
visual animals, whether vertebrates, arthropods, or cephalo-
pods, recognize patterns and objects (Cronin et al. 2014).
However, evidence that illusions are often perceived differ-
ently by various animals (Kelley and Kelley 2014) suggests
that theremay be intriguing differences we do not yet under-
stand, and much more work is merited.

Building a Pattern Space Informed by Receiver Vision

One can build a pattern space informed by general compu-
tational accounts of spatial vision. Broadly speaking, these
propose that the image is first filtered (box 1; fig. 2) to trans-
form the pixel-based image data into a more tractable form
(Daugman 1988; Jain 1989). This spatial frequency analysis
usually begins by breaking down the image into its compos-
ite frequencies, achieved by applying a Fourier transform
(globally, to the whole image) or something similar (such
as a wavelet transform, for a more local spatial analysis).
Once in the frequency domain, the image can be filtered
by selectively weighting frequency components from the
transformed image (fig. 2). Linear filtering is achieved by
convolving the image with the filter (in the spatial domain),
which is equivalently—and conveniently—implemented
by multiplying the image by the filter representation in
the frequency domain (box 1; fig. 2). Which method to use
depends on the size and nature of the filter: usually, analysis
in the frequency domain is more computationally efficient.

Models of image processing can then make two qualita-
tively different uses of the outputs of the spatial frequency
analysis of the image: (1) the power spectrum directly de-
termines the first- and second-order image statistics, which
specify the statistical characteristics of the light intensity
values of the image pixels, and (2) objects and other phys-
ical structures are identified within the image by means of
feature detection. This distinction no doubt simplifies bio-
logical reality but is rooted in fundamental aspects of visual

physiology and perception (see “Biological Spatial Vision:
A Brief Overview”; Marr 1982; Wandell 1995; Bruce et al.
2003; Snowden et al. 2012) and is reflected in most visual
models that are applied to animal coloration patterns. The
following sections introduce the steps for building a pattern
space. We show how they relate to principles of biological
vision and link them to current approaches in the scientific
literature.

Step 1: Capturing an Image

Quantitative analysis of a coloration pattern begins with an
image (or a video). The image can be of the animal in its
natural environment or of a skin in a museum collection.
The pattern can be studied in its entirety or as a region of in-
terest (fig. 1). Depending on the question at hand, it may be
important to account for the intended signal receiver’s vis-
ual field and viewing distance (see “Step 2: Modeling Visual
Acuity”). In other cases, it may be preferable to capture
images in a convenient, repeatable way, without faithfully
replicating the receiver’s vantage point.

Step 2: Modeling Visual Acuity

The next step is to filter the image to account for the visual
acuity of the signal receiver. Humans have higher acuity
than most animals, so, for a given viewing distance, there
is a risk of grossly overestimating the spatial detail that
can be resolved by other animals. A recent review (Caves
et al. 2018) highlights the need for work on how visual acu-
ity shapes signal evolution and lays out some useful hypoth-
eses: for example, signals directed at large animals, which
generally have large eyes and high acuity, should have more
complex patterns, and very fine patterns should be dis-
played to the highest-acuity parts of the signal receiver’s vi-
sual field. There are exceptions to these rules: jumping
spiders are small but have large simple eyes and excellent
resolution (Land and Nilsson 2012). Moreover, for many
animals, viewing distance will counteract the effects of eye
size.
As we saw previously (see “Visual Acuity and Contrast

Sensitivity”), the eye’s response to contrast (as a function
of spatial frequency) is described by the MTF. We can use
the MTF of a given visual system to determine how much
spatial information can be resolved from a behaviorally rel-
evant distance. This is achieved by convolving a pattern
with a circular Gaussian filter (fig. 3) whose dimensions are
given by the eye’s resolution, based on anatomical or behav-
ioral data, and the assumed viewing distance of the object
of interest (Vorobyev et al. 2001; Land and Nilsson 2012).
The tool AcuityView implements this function (Caves and
Johnsen 2017): it first converts the image to the frequency do-
main via Fourier transform, then multiplies the image by the
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relevant MTF, and then returns the image so that only the
resolvable spatial frequencies are retained.

The MTF, which is based on processes in the eye, can
then be compared to the behavioral CSF (see “Visual Acuity
and Contrast Sensitivity”), which corresponds to the MTF
modified by postretinal neural processes (Michael et al.
2011). The CSF is tested by recording responses to grating
patterns and is known for a wide range of animals; typically,
the CSF varies with the light level (Land and Nilsson 2012).
To simulate how an image would be modified by a given
CSF—combining the effects of image blurring (by the eye’s
optics and photoreceptors) and lateral inhibition—an im-
age can be filtered with a series of circularly symmetrical
filters, such as DoG functions or oriented filters (figs. 2, 3;

see “Visual Acuity and Contrast Sensitivity”). Melin and
colleagues (2016) used estimates of CSFs to model how ze-
bra stripes are perceived by zebra predators and conspe-
cifics. They concluded that zebra stripes are probably not
cryptic, since zebras are just as detectable to a lion as are
other similarly sized prey animals.

Step 3: Calculating Power Spectra and Image Statistics

Once the image has been adjusted for a signal receiver’s vi-
sual acuity, the next step is to measure its first- and second-
order image statistics or, equivalently, the spatial frequency
power spectrum (Field 1987; van der Schaaf and van Hat-
eren 1996; box 1; fig. 2). What are image statistics? An im-

Figure 3: A variety of filters can be applied. Early stages of visual processing are often modeled as convolution with filters. These filters can
correspond to optical blurring by the retina (Gaussian low pass), or the receptive fields of neurons such as the circularly symmetric center-
surround cells of the retina, or the oriented simple cells of the primary visual cortex (V1). A Gaussian low-pass filter lets only low-frequency
information through, blocking higher frequencies. A Gaussian high-pass filter lets only high-frequency information through, blocking lower
frequencies. A horizontal Gabor filter accentuates horizontal information. A vertical Gabor filter accentuates vertical information. The filter
element is shown next to its 3-D mesh representation, with red (intensityp 1) representing the frequencies transmitted and blue
(intensityp 0) representing the frequencies blocked, with gradations in between. The 2-D and 3-D filter representations contain the same
information, but the gradations are more apparent in the 3-D mesh versions. Images were generated using a modified version of
Gaussian_image_filtering.m (S. Rao, MathWorks File Exchange). Photo: plains zebra (Equus quagga), credit: D. Rubenstein.
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age comprises a 2-D array of pixels, each having a certain
intensity value. The first-order image statistics characterize
the overall distribution of these pixel values—typically,
their mean and variance—while the second-order statistics
characterize the correlations between pairs of pixels (Field
1987; Ruderman and Bialek 1994).1 Consider two extreme
and unlikely images: (1) a uniform array, where all pixels
have the same value so that, given the value of one pixel,
the intensities of all are known, and (2) spatial white noise,
where the intensities of each pixel in an image are drawn at
random from some distribution, so knowing the value of
any given pixel carries no information about any other.
Natural images fall between these extremes. This is because
nearby points tend to belong to the same object and to fall
under the same illumination. Consequently, the intensities
of neighboring pixels tend to be positively correlated, and
this correlation falls with distance from the point in ques-
tion (Field 1987; Ruderman and Bialek 1994).

Spatial correlation of pixel values, and hence the second-
order image statistics, is usually characterized by the spatial
frequency power spectrum, derived from a global Fourier
analysis or a spatially local approximation (Baddeley 1992;
van der Schaaf and van Hateren 1996). The Fourier trans-
form, which is common in image processing, converts the
familiar spatial pixel-based representation to a representa-
tion in the frequency domain, based on sine waves of varying
amplitude and relative phase, which can then be represented
as separate power (or amplitude) and phase spectra (see
box 1; figs. 2, 4). In the 2-D power spectrum, each power
or (amplitude) Fourier component is mapped in the Fourier
space as a function of its frequency (with low-frequency
components at the center of the map) and orientation in
the image. This can be simplified by averaging across orien-
tations (fig. 4C). In this simplified graph, power is the average
power within a series of circular bins drawn on the Fourier
space (Field 1987). The power spectrum makes it easy to
see whether neighboring pixel intensities are correlated in
the image. For images in which the correlation between pixels
declines with distance (in the image), the result is an averaged
power (or amplitude) spectrum with a negative relationship
between frequency and power (or amplitude). Over very large
distances (low spatial frequency information), pixels are un-
correlated (high variance, high power), but over short dis-
tances (high spatial frequency information), pixels are highly
correlated (low variance, low power). As we stated pre-
viously, natural scenes tend to have this property (fig. 4C).
For the purposes of analyzing animal patterns, image power

can usually be specified for a relatively small number of sep-
arate spatial frequency bands, as approximated by methods
such as granularity analysis (Barbosa et al. 2008; Troscianko
and Stevens 2015).
Conveniently, the Fourier analysis (box 1; fig. 2) is func-

tionally analogous to filtering by linear neurons (circularly
symmetric or oriented) tuned to a particular range of spa-
tial frequencies. In this way, we can think of performing a
Fourier transform—and thus describing the power spec-
tra—as simulating the linear filtering processes in biolog-
ical vision (see “Biological Spatial Vision: A Brief Overview”).
Here, we refer to the process of performing a Fourier trans-
form (or a similar transformation, such as the wavelet trans-
form) to determine its underlying statistical properties as
spatial frequency analysis. Given that natural images or ani-
mal patterns can often be defined in terms of a relatively
small number of spatial frequency bands (Meese 2002; and
that second-order image statistics are not dependent on spa-
tial phase), this step gives us a low-parameter and visually
relevant perceptual space in which to start characterizing
animal coloration patterns (fig. 1).
There is abundant evidence that human observers are

sensitive to the spatial frequency power spectrum in images
and hence to first- and second-order image statistics. It has
long been argued that human vision produces some type of
local spatial frequency analysis, decomposing the image
into separate spatial frequency bands (Campbell and Rob-
son 1968; Meese 2002), perhaps implemented by the simple
cells of the primary visual cortex (Maffei and Fiorentini
1973; Marčelja 1980; Field 1987). Importantly, it has been
found (especially in a brief preattentive view) that the ap-
pearance of visual textures for humans and other animals
depends on the power in different spatial frequency compo-
nents of the pattern rather than the phase relations between
these components (Bergen and Adelson 1988; Sutter et al.
1989; Malik and Perona 1990; Meese 2002). Moreover, the
receptive fields of visual neurons, especially simple cells of
themammalian primary visual cortex, resembleGabor filters
(see box 1).
Spurred on by a few classic studies, researchers in the

past decade have adopted various objective methods for
characterizing patterns; among these, power spectra (and
closely related metrics) are common. Godfrey and col-
leagues (1987) used a Fourier transform to calculate the
power spectra for an image of a zebra and an image of a ti-
ger. They found that at high spatial frequencies, the tiger
and its background are well matched, while the zebra dif-
fers from the background. Similarly, Kiltie and Laine (1992)
used measures of second-order image statistics to analyze
visual textures in animal camouflage. In a subsequent study,
the authors used wavelet analysis to calculate the degree of
difference (based on energy distribution patterns) between
two textures, applying this to questions about camouflage in

1. In principle, one can also characterize images and patterns by higher-order

statistical relationships—between triplets, quadruplets of points, and so forth

(Julesz et al. 1978; Julesz 1981)—but, in practice, higher-order image statistics

have not been useful for classifying natural images (Ruderman 1997) or pre-

dicting discrimination of natural textures by humans (Bergen and Adelson 1988;

Malik and Perona 1990).
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tigers, zebras, and pepperedmoths (Kiltie et al. 1995) and to
egg crypsis (Westmoreland et al. 2007). Granularity analy-
ses (Troscianko and Stevens 2015), which have been ap-
plied to the patterns of cuttlefish (Barbosa et al. 2008; Chiao
et al. 2009) and the markings of bird eggs (Spottiswoode and
Stevens 2010; Stoddard and Stevens 2010), use octave-wide
isotropic filters (i.e., circularly symmetric) to measure image

power in a small number of frequency bands.Metrics derived
from granularity analysis have sometimes been combined
with color and luminance in amultidimensional space (Spot-
tiswoode and Stevens 2010; Caves et al. 2017), yielding in-
sights about which visual traits are used by parasitized birds
in egg rejection decisions. Thismultidimensional space offers
the benefit of merging aspects of color and pattern spaces.

Figure 4: Power spectra, edges, and features. The 2-D power spectrum (B) of the zebra image (A) shows a clear anisotropy (directionality),
with greater power at high frequencies in the horizontal than the vertical directions, probably due to the zebra’s vertical stripes. Averaging
over all orientations (C), the power spectrum plotted on a log-log plot is approximately linear, with a slope of 21. Natural images typically
obey such a power law (Field 1987). It may be that the noticeable deviation from the straight line is due to the zebra’s stripes. In the whitened
image (D), the power spectrum is altered to resemble white noise (zero spatial correlation). Power is equal at all frequencies, and when the
spatial phase information is preserved, this transformation (which approximates high-pass filtering; fig. 3) does not render the image unrec-
ognizable. There is no objective definition of a visual edge (E). Operators such as the Canny edge detector (Canny 1986) identify locations in
the image that are likely to correspond to the borders of objects, thereby facilitating segregation of figure from ground. In this case, the edge
signals created by the stripes might be incorrectly interpreted by the visual system as object borders, which is the principle thought to un-
derlie disruptive camouflage (Osorio and Srinivasan 1991; Stevens and Merilaita 2009). F, Scale-invariant feature transform (SIFT) features
identified using NaturePatternMatch (Stoddard et al. 2014). Image whitening was performed using the Advanced Digital Imaging Laboratory
using MATLAB (L. Yaroslavsky). Photo: Grevy’s zebra (Equus grevyi), credit: D. Rubenstein.

174 The American Naturalist

This content downloaded from 139.184.160.189 on March 14, 2019 06:34:49 AM

All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



How best to achieve this is certainly an area ripe for future
work, especially in light of the fact that achromatic and chro-
matic processing in some animals may not be entirely inde-
pendent, as once believed (Lind and Kelber 2011). Themethods
described so far in this subsection are all essentially based on
spatial frequency analysis, power spectra, and image statistics.

Other pattern metrics may also be, in effect, measures of
spatial frequency power spectra. For instance, fractal di-
mension (FD) has been used to describe the degree to which
coloration patterns change when analyzing a pattern at dif-
ferent scales (Pérez-Rodríguez et al. 2017), where better
body condition in male red-legged partridges appears to
be linked to higher FD in the streaky black plumage on
the bird’s bib (Perez-Rodriguez et al. 2013). A similar ap-
proach has also been used to describe the distribution, size,
and FD of speckles on bird eggs (Gómez and Liñán Cem-
brano 2017). It is likely (but would need to be confirmed)
that fractal measures of animal coloration patterns are closely
correlated with spatial frequency measures (Olshausen and
Field 1996).

In summary, the first- and second-order image statistics
characterize an animal pattern in a way that captures how
animal visual systems process spatial information, and they
are very useful for predicting the appearance of visual tex-
tures and patterns—at least to humans (Adelson and Ber-
gen 1988; Meese 2002). From these statistics, one can choose
parameters to map as axes in pattern space (fig. 1): for exam-
ple, a small number of spatial frequency bands (as in granu-
larity analysis), the dominant spatial frequency, overall im-
age power, or variance in power across frequency bands
(Stoddard and Stevens 2010). A pattern space specified by
these parameters is relevant to many diverse questions in be-
havioral ecology, as evidenced by the studies discussed above.
However, second-order image statistics (which describe the
power spectrum and do not include phase information) on
their own do not give a complete characterization of an im-
age and are indeed largely irrelevant to the recognition of ob-
jects within images, which depends on specialized feature
detectors (fig. 4E; see “Step 4: Detecting Local Features and
Objects” and “Step 5: Detecting Higher-Level Objects”). In
practice, in almost all cases, phase information is crucial for
edge and feature detection. For example, abolishing power/
amplitude information has little effect on the appearance of
edges (fig. 4D).

Step 4: Detecting Local Features and Objects

To continue building the pattern space, the next step is to
consider local features relevant to overall shape, especially
edges. Moving from image statistics to local feature detec-
tion comes with the twin caveats that we know less about
how animals detect these features, and they are less amena-
ble to parameterization than image statistics (fig. 1). None-

theless, edge detection algorithms (fig. 4E) are easily applied
to animal coloration patterns, and it may also be possible to
identify more complex features such as peacock eyespots,
jaguar rosettes, bird egg markings, and disruptive camou-
flage patterns, which rely on pictorial edge or depth cues
for their effect (Cott 1940; Osorio and Srinivasan 1991;
Cuthill et al. 2005). Edges and local features are primarily
important because they contribute to (or create) object
boundaries. The real world is made of objects, that is, dis-
crete regions of 3-D space, which are usually opaque, bounded
by convex surfaces, and composed of one type of material.
Images are generated by the interaction of objects with illu-
mination. Even when the objects are physically alike, such as
leaves on a tree, lighting effects allow us to see them. Objects
are biologically relevant: animals eat, court, hide under, and
navigate by them. It is no surprise that animals are con-
cerned with objects, but it is perhaps less obvious that the vi-
sual task of isolating objects as discrete physical entities in
natural images—figure-ground segregation—is computation-
ally difficult. For example, shadows can be confused with
object boundaries, and objects often occlude one another.
Coloration patterns are well known to exploit mechanisms
concerned with object perception. For example, disruptive
camouflage acts by impeding figure-ground segregation,
and, conversely, some signaling patterns accentuate the out-
line of the body (Cott 1940; Osorio and Srinivasan 1991;
Troscianko et al. 2017). At the same time, we know that
edges and other local features such as corners, lines, and
axes of symmetry relevant to object recognition cannot be
defined in terms of second-order image statistics, so how
might their contribution to the appearance of a pattern be
specified?
Visual edges cannot be objectively defined: they are sim-

ply locations within the image that are likely to correspond
to the physical boundaries of objects. Operationally, this
means finding discontinuities in brightness (Marr 1982;
Canny 1986). In machine vision, image processing typi-
cally starts with linear filtering (i.e., convolution) by circu-
larly symmetrical filters or oriented wavelet functions (see
“Step 3: Calculating Power Spectra and Image Statistics”;
box 1). The filter outputs are then used for identification
of local features, especially edges but also corners (or
points of occlusion) and lines, which are integrated across
the image to define objects. Various methods of edge detec-
tion are used in computer vision (Marr and Hildreth 1980;
Canny 1986; Morrone and Burr 1988), but all are nonlinear
in that the output is not a continuous function of the input;
instead, they classify a given location as edge or nonedge
following some nonlinear operation (e.g., multiplication,
rectification, or thresholding). In general, whereasmeasure-
ment of second-order image statistics depends on linear
operations on the image (i.e., convolution), feature detec-
tors are generally nonlinear and sensitive to spatial phase
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information (box 1). Overall, metrics derived from edge de-
tection algorithms could form additional parameters, or
axes, of the pattern space (fig. 1).

Edge detection algorithms have been used in numerous
studies of animal patterning, especially in the context of cam-
ouflage. To investigate camouflage in moths, Stevens and
Cuthill (2006) applied a modified version of Marr and Hil-
dreth’s (1980) algorithm to photographs of experimental
moth stimuli. Their analysis supported the hypothesis that
disruptive coloration works because false edges are detected
at the periphery, obscuring the animal’s true outline. Simi-
larly, in a study of egg camouflage, Lovell and colleagues
(2013) used an edge detector to derive a number of camou-
flage metrics related to background matching and disrup-
tive coloration. They compared edge densities of the egg
and the substrate, predicting that the egg would be well
camouflaged (via background matching) when these densi-
ties were similar. A number of subsequent papers, including
work on moths (Kang et al. 2015) and shorebird eggs (Stod-
dard et al. 2016), applied similar methods.

There is increasing interest in understanding which edge
and feature detectors work the best for identifying cryptic
prey. In a comprehensive study, Troscianko and colleagues
(2017) evaluated seven classes of models used to analyze an-
imal camouflage, including spatial frequency power (image
statistics), edge detectors, and a new metric, GabRat, which
uses a Gabor filter to calculate the average ratio of false to
salient edges in a prey’s outline. Briefly, a series of Gabor
filters was applied to an image of a prey item. The GabRat
measure gave the (relative) strength of false or disruptive
edges in the pattern by taking the ratio of the outputs of
the filters (i.e., spatial power) oriented perpendicular to
those oriented parallel to the animal’s real body contour.
Ultimately, the GabRat metric best predicted human detec-
tion of computer-generated prey on a monitor, but, none-
theless, it accounted for only 8% of the variance in capture
times by human participants. The low predictive ability of
the model (at least for human viewers) suggests that we
are far from understanding the underlying perceptual mech-
anisms involved in detecting objects in complex natural
scenes. Nevertheless, systematic tests of the effects of differ-
ent visual features (simple image statistics, edges, objects) on
performance in visual tasks provide the ground-truthing
necessary to ensure that pattern spaces are capturing mean-
ingful information. How would other primates, or cats, or
birds, perform in a similar task? Comparative pattern per-
ception—across diverse animal taxa and in ecologically rel-
evant contexts—is an exciting prospect for future research.

Step 5: Detecting Higher-Level Objects

The final step in fleshing out the pattern space may be to
consider higher-level structures, such as objects and faces.

So far we have looked at pattern metrics that can reasonably
be related to animal visual mechanisms. For higher-level
patterns, such as monkey faces (Allen and Higham 2015),
the markings on birds eggs (Stoddard et al. 2014), or cuttle-
fish and fish coloration patterns (Ramachandaran et al.
1996; Kelman et al. 2008), quantification can be challenging
because we knowmuch less about the sensory and cognitive
processes involved in higher-level spatial vision. However,
it is often possible to take multiple measures of a set of pat-
terns, from which a low-dimensional representation can be
derived by a suitable method of factor analysis. One can
then test the visual salience of these representations, using
the pattern space as a starting point for depicting higher-
level, feature-rich patterns.
What methods exist for detecting features more complex

than edges? Of particular note aremethods used inmachine
vision, such as the scale-invariant feature transform (SIFT;
Lowe 2004) and hierarchical model and X (HMAX; Rie-
senhuber and Poggio 1999; Serre et al. 2007), which resem-
ble biological systems in that they start by convolving the
image with filters that correspond to the circularly symmet-
rical DoG receptive fields of retinal neurons (SIFT) or Ga-
bor function receptive fields of cortical simple cells (HMAX).
SIFT computes the differences between Gaussian convolu-
tions, at different spatial scales, and identifies a large number
of statistical regularities in these DoG signals that potentially
correspond to features of interest such as edges, corners,
patches, and blobs (fig. 4F). The local image parameters de-
rived from these convolutions are then used to identify ob-
jects in novel images; the SIFT algorithm is invariant to size
and orientation, so a familiar object can be identified in a
new scene even it appears to be, for example, smaller, ro-
tated, or tilted.We note that individual SIFT features should
be considered low- or mid-level “local features” (see “Step 4:
Detecting Local Features and Objects”); we include SIFT in
this section about “higher-level objects” because although
SIFT finds local features, the algorithm is considerably more
complex than conventional edge detection algorithms and
may well correspond to higher-level neural processes in bi-
ological visual systems (Lowe 2000), though more research
is needed. Overall, SIFT is highly effective in detecting high-
contrast local features such as speckles on a bird’s egg—or,
indeed, the unique characteristics of human handwriting
(Zhang et al. 2009)—that are otherwise difficult to define
(fig. 4F). HMAX applies a series of Gabor filters to an image,
the inputs of which are combined and represented as fea-
tures in a feedforward, hierarchical manner (Riesenhuber
andPoggio1999).Adetailed comparisonof SIFTandHMAX
is provided by Moreno et al. (2007).
Successors to SIFT and HMAX feature detectors in ma-

chine vision include hierarchical convolutional neural net-
works (HCNNs), which are based on neural network ar-
chitectures that are compared to those of the cerebral
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cortex (Yamins and DiCarlo 2016a). Convolutional neural
networks (CNNs) and deep learning have become extremely
popular in computer vision (LeCun et al. 2015). A CNN is
made up of layers, each of which learns to detect different
features. Filters are applied at different spatial scales, and
the output of each convolved image becomes the input to
the next layer. CNNs are then trained, usually on a very large
set of images, so that the number and weightings of the dif-
ferent filters and layers can be optimized for the recognition
task at hand. As phenotypic data sets become larger and
more accessible (Beaman and Cellinese 2012), it may be pos-
sible to harness the power of CNNs to test hypotheses about
animal visual signals; however, a real challenge will be to
make sense of the CNN weightings, which can be difficult
to interpret. In other words, a neural network is a black
box in that it might identify useful features or objects, but
deciphering how it does this—its underlying structure—is
often unwieldy. Nevertheless, though the analogy with bio-
logical sensory processing invoked by machine learning tech-
niques here may seem superficial, such methods can identify
image parameters whose visual salience can be tested exper-
imentally. Overall, in the pattern space, metrics derived from
SIFT, HMAX, HCNNs, or related methods could form addi-
tional axes (fig. 1). This would be very useful because studies
on object recognition in nonhuman animals remain rare.
Most tests of object recognition are concerned with whether
an animal can discriminate members of some behaviorally
relevant (or sometimes irrelevant) data set using poorly pa-
rameterized test stimuli, which leaves open the question of
whether discrimination is based on the low-level parameters
such as image statistics or higher-level features.

In this context, visual patterns that have evolved under
selection for deception, such as camouflage or mimicry, are
of particular interest; visual discrimination is tested to its
limits. In some cases, there may even be a coevolutionary
arms race between the signaler and the signal receiver. For
example, in a recent study of bird egg patterns, Stoddard
and colleagues (2014) developed NaturePatternMatch, an
algorithm that uses SIFT (fig. 4F), to test the hypothesis that
host species have evolved recognizable egg pattern signa-
tures in response to egg mimicry by common cuckoos (Cu-
culus canorus). They calculated the likelihood of a given host
egg being correctly matched to its own clutch and used this
as an index of pattern recognizability. Overall, host species
subjected to the most intense cuckoo mimicry appear to
have evolved the most recognizable patterns on their own
eggs in response. Unlike most SIFT-based algorithms, Na-
turePatternMatch does not search for exact objects (or pat-
tern features) on other eggs but rather compares two pattern
textures.

Face recognition is a special case of pattern recognition.
In a study of the diverse faces of guenon monkeys, Allen
and colleagues (2014) used eigenfaces to calculate the visual

distinctiveness of the faces of 22 guenon species. The ei-
genface method itself is not biologically motivated (Hansen
and Atkinson 2010), but the features extracted are thought
to be similar to those used by the primate brain in face
processing (Allen et al. 2014). Using this computational ap-
proach to face processing, the authors demonstrated that
guenon species in sympatry have evolved faces that are
more visually distinctive, perhaps to aid in species recogni-
tion.
For further reading on recognition algorithms, we direct

readers to Bruce et al. (2003) for a historical perspective, to
DiCarlo et al. (2012) for a neuroscience perspective, to Krü-
ger et al. (2013) and Medathati et al. (2016) for a computer
vision perspective, and to Soto andWasserman (2014) for a
comparative perspective.

Additional Methods

So far, our approach to building a pattern space has in-
volved mainstream methods of image processing: linear fil-
tering is followed by successive stages of feature detection,
typically leading to object recognition. We have shown how
this approach is relevant to biological systems and is likely
to yield insights into how animals perceive visual patterns.
There are, however, alternative ways in which to characterize
animal colorationpatterns.Hereweoutline several suchmeth-
ods.
Regular, repeating textures may be good candidates for

wavelet- and fractal-based analyses, but what about pat-
terns with a relatively small number of well-defined colored
regions, such as the different-colored patches that make up
a parrot’s phenotype or the irregular markings on poison
frogs? Endler andMielke (2005) introduced the LSED-MRPP
method, which accounts for relationships among colors in
an overall color pattern. This method combines least sum of
Euclidean distances (LSED) regression analyses with multi-
response permutation procedures (MRPP). Themethod is a
nonparametric multivariate statistical approach for testing
the hypothesis that two color patterns (represented by their
color space coordinates) are different. Building on this ap-
proach, Endler (2012) proposed using adjacency analysis to
determine which color patches are located next to one an-
other. Briefly, the analysis includes collecting color data
in a grid, placing the data on a zone map, and conducting
statistical analyses about relative color frequency and pat-
tern regularity. Compared to the earlier LSED-MRPP method,
the color adjacency method provides more information about
pattern complexity and texture. The method has recently been
applied to the study of color pattern variation in poison frogs
(Rojas and Endler 2013; Rojas et al. 2014). Like the LSED-
MRPP, the adjacency method is not inspired by biological
vision but could nonetheless be a powerful tool for captur-
ing texture variation. A conceptually similar tool, the distance
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transform, has recently been proposed to determine the sim-
ilarity of a pair of patterns (Taylor et al. 2013). Two binary
images are compared, pixel by pixel, using a distance trans-
form. The authors tested the method on hoverflies, wasps,
and butterflies, revealing that the metric could detect subtle
variation in two patterns. It would be interesting to compare
the predictions about visual appearance (e.g., discriminabil-
ity) made by these methods to those (discussed previously)
based on the outputs of linear filters or the spatial frequency
power spectrum.

In a departure from existing methods, Allen and col-
leagues (2011) produced synthetic reference patterns to in-
vestigate the ecology and evolution of felid coat patterns.
Using developmentally inspired reaction-diffusion equa-
tions, they produced a range of natural-looking patterns
including cheetah spots and leopard rosettes. Human ob-
servers then selected the synthetic patterns most closely re-
sembling the biological patterns. The synthetic patterns were
used to test the hypothesis that coat pattern generation
mechanisms are related to ecology. A major advantage of
this approach is that it can deal with complex patterns and
is linked to developmental processes, such as coat pattern
formation. A disadvantage is that patterns are quantified
by humans (as opposed to an objective method or one in-
formed by the relevant signal receiver), but given howmany
aspects of spatial vision appear to be conserved across ver-
tebrates (Stevens 2007; Cronin et al. 2014), the cost is likely
minor (but see Kelley and Kelley 2014). Overall, this method
has the important merit of emulating developmental mecha-
nisms that might generate a range of patterns under natural
selection. It also highlights the difficulty in relating even
such a simple developmental morphospace to visual appear-
ance, since human observers were required to decide how
well the synthetic patterns matched natural ones.

A little-explored tool for the analysis of pattern textures
is the elliptical Fourier analysis (EFA). EFA is a method that
might be useful for characterizing the shapes of irregular
animal color signals, such as the moustaches of guenon
monkeys (Allen and Higham 2013). In contrast to tradi-
tional landmark-based approaches, where landmarks in
the image must be selected, EFA works by representing a
shape in terms of harmonic ellipses, with the first, second,
and third harmonics capturing aspects of circularity, ellip-
ticity, and triangularity, respectively.

Finally, some of the most exciting breakthroughs on an-
imal pattern recognition have come from the growing field
of animal biometrics, where the goal is often to identify in-
dividual animals for conservation, management, and mon-
itoring. Computer vision techniques developed for this pur-
pose—for example, to recognize individual zebras (Lahiri
et al. 2011; Parham et al. 2017), penguins (Sherley et al. 2010),
and manta rays (Town et al. 2013) in the wild—could be
applied to studies of animal coloration patterns in the con-

text of signaling and camouflage. For example, it is well
known in biometrics that there is a trade-off between opti-
mizing methods for species versus individual recognition.
What might this trade-off reveal about how signals evolve
in nature under selection for recognizability? Going under
the hood to explore why biometrics methods work—and
when they fail—could be very profitable. For an excellent
review, see Kühl and Burghardt (2013).

Which Parameters to Choose?

Ultimately, the choice of which parameters to include in a
pattern space must be made. Should all aspects of an animal
pattern be measured, or should a priori decisions be made
about which aspects of pattern might be important? Given
the data, which aspects of pattern can be easily measured,
and what is known about the spatial vision of the signal re-
ceiver—if anything? These are just some of the questions
that might arise. In the end, some approximations and com-
promises will likely be made when constructing a pattern
space. Perhaps the most important consideration will be
whether to include low-level image statistics only or to add
local edges, features, and higher-level structures. Evidence
from human psychophysics suggests that differences in spa-
tial frequency power spectra often predict the discriminabil-
ity of two patterns well (Bergen and Adelson 1988). How-
ever, the question of how well image statistics predict the
detectability of a pattern as camouflage or communication
signals remains largely open (Zylinski et al. 2011; Troscianko
et al. 2017). Given this, in the absence of suitable evidence to
the contrary, there are good reasons for starting the analysis
by evaluating power spectra and other low-level image statis-
tics. The benefits are similar to those for using color spaces:
the measures are easily quantified, they tend to be quite sim-
ple, and we know that humans and other animals are sensi-
tive to them (see “Step 3: Calculating Power Spectra and Im-
age Statistics”). However, formany applications, quantifying
local features such as edges and more complex structures
such as objects will be vital to building a more complete
and meaningful pattern space.
Once patterns are represented in pattern space, a number

of additional metrics can be calculated, as in color space.
For example, the Euclidean distance between two points in
n-dimensional space (Spottiswoode and Stevens 2010) or the
volume occupied by a set of points in pattern space may
be useful starting points. Ultimately, much more psycho-
physical work must be done to determine whether such
measures are biologicallymeaningful. In color space, the dis-
tance between two stimuli is, in theory, correlated with the
perceived difference between them. Will some pattern spaces
have this property? The fact that differences in second-order
image statistics (power spectra) predict texture discrimina-
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tion well (Bergen and Adelson 1988) suggests that this might
be true, at least in some cases.

New Frontiers in Pattern Space

A pattern space provides a relatively simple way in which
to map, compare, and analyze patterns, informed by basic
principles of animal spatial vision. Moving forward, what
new insights might be revealed by pattern space analyses?

Information and Signal Design

If animal patterns (say, of poison dart frogs) are subject to
selection by multiple signal receivers—a conspecific frog, a
predatory bird—it will be useful to compare those patterns
across different pattern spaces. Where do they fall in a frog
pattern space, with the parameters (axes) set by frog vision?
Where do they fall in a bird pattern space? The equivalent
analysis in color spaces is common. For example, to exam-
ine the dual influence of sexual selection and natural selec-
tion on color in Dendrobates pumillio dart frogs, Siddiqi
(2004) analyzed frog colors by using models of frog color
vision and bird color vision, respectively. They showed that
each color morph possessed at least one color that would
appear as a highly conspicuous color to frogs and to birds,
suggesting that frog colors are effective signals to conspe-
cifics and predators alike. A pattern space would permit
the same analysis, accounting for variation in spatial vi-
sion—acuity, contrast sensitivity, or even a presumed sen-
sitivity to certain edges or features—across different animal
viewers. Analyses such as these may ultimately allow us to
determine the extent to which animal patterns may have
coevolved with spatial vision across taxa (sensu Lind et al.
2017) and whether ecological and sensory constraints on
spatial vision have influenced signal design (Rosenthal 2007).
In swordtails, for example, whether males of a particular
species possess vertical stripes used inmating displays is ap-
parently related to the critical flicker fusion frequency of
females (Ryan and Rosenthal 2001; Rosenthal 2007).

Behavior

In studies of animal coloration, behavior plays a critical
role: it provides the ultimate test of color vision models
(Kemp et al. 2015). We must hold models of pattern vision
to the same high standard. A pattern space gives a frame-
work for analyzing patterns at multiple levels of complexity,
from simple image statistics to low-level edges to higher-
level structures and objects. In this sense, a pattern space
helps to clarify predictions about what information might
be important to a signal receiver in the context of mate
choice, predation, or recognition. Which pattern informa-
tion matters to behaving animals? An explosion of empiri-

cal work on camouflage (Stevens and Merilaita 2009; Ste-
vens 2016; Hanlon and Messenger 2018) in recent years
has contributed greatly to our understanding of how ani-
mals interpret spatial patterns, with no signs of slowing
down (Troscianko et al. 2017; Pike 2018). Careful experi-
ments designed to test how animals prioritize low- and
high-level pattern information when making behavioral
decisions will be very valuable. Eventually, we can start to
use behavioral information to validate pattern spaces, which
can in turn be used to generate better predictions about how
animals act in the natural world.

Evolution

A pattern space can be useful for understanding the limits
of animal coloration patterns on a broad scale. By analogy,
efforts to quantify avian plumage coloration in the avian tet-
rahedral color space (Vorobyev et al. 2001; Stoddard and
Prum 2011) have revealed that plumage colors have evolved
to occupy some but not all of the theoretically visible color
space of birds. What regions of the pattern morphospace
are occupied by extant animal patterns (fig. 1)? What does
the occupied morphospace include, and what does it ex-
clude? Are gaps in the morphospace a consequence of phys-
iological constraint or of natural and sexual selection? We
are now well equipped to start addressing these questions
in a way that accounts, on some level, for the spatial percep-
tion of signal receivers. In fact, because many aspects of spa-
tial vision appear to be highly conserved across animals
(Cronin et al. 2014), comparisons among very different tax-
onomic groups may be possible.
Moreover, if a phylogeny for the taxonomic group in

question is available, these quantitative traits can be mapped
onto a tree and analyzed in a comparative framework, pro-
viding powerful insights into the evolution of animal pat-
terns (Allen et al. 2011, 2013; Davis Rabosky et al. 2016).
Several recent studies on camouflage and mimicry have in-
vestigated the evolution of animal coloration patterns by us-
ing quantitative approaches. In the context of camouflage,
Allen et al. (2011), as described above, used a morphospace
informed by developmental mechanisms to investigate the
evolution of felid coat patterns. Using a recent phylogeny
of cats, the researchers used comparative methods to exam-
ine evolutionary changes in pattern over time—and in the
context of habitat, arboreality, and nocturnality. Overall, fe-
lid coat patterns were highly labile (lacking a strong phylo-
genetic signal) and were correlated with habitat, presumably
for background matching. Plain and patterned cats tended
to live in homogenous and complex natural environments,
respectively. A similar approach was used to evaluate the
evolution of diverse coloration patterns on snakes (Allen
et al. 2013)—and on humans (Talas et al. 2017), in the con-
text of military camouflage. Although the phylogenetic con-
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siderations were different, a quantitative analysis of military
uniforms showed how historical events and political ideol-
ogies shaped the cultural evolution of camouflaged apparel
(Talas et al. 2017). In this study, the authors represented
camouflaged patterns in a pattern space defined by principal
components derived from texture analysis using a bank of
Log-Gabor filters, which resembled the responses of visual
neurons in the cortex.

Finally, to test a classic hypothesis about mimicry—that
shifts to mimetic coloration in nonpoisonous snakes are
related to co-occurrence with poisonous coral snakes—
Davis Rabosky et al. (2016) synthesized biogeographic, phy-
logenetic, ecological, and phenotypic data for more than
1,000 New World snake species. Their analysis provided
strong support for the idea that coral snake mimicry fol-
lowed the evolution of coral snakes and also showed thatmim-
icry, far from being a stable endpoint, is frequently gained
and lost in snakes. To simplify analyses, the color patterns
of snakes were classified based on categorical codes. In the
future, it would be exciting tomap snake patterns in an avian
color and pattern space—using some of the quantitative ap-
proaches championed in this synthesis—to estimate the ex-
tent to which snakes might appear mimetic or conspicuous
to avian predators.

Universal Principles

Have natural and sexual selection influenced animal pat-
terns in similar ways across very diverse taxa? If so, what
general principles apply? A pattern space could help reveal
these similarities. In fact, biological camouflage offers good
evidence for the limited dimensionality of natural visual
textures. Cryptic patterns are well matched to their back-
grounds, even though they are probably generated by a com-
paratively small number of developmental mechanisms (say,
!10; Carroll et al. 2013). Similarly, Kelman et al. (2006) found
that to conceal itself on a wide range of seafloor backgrounds,
a flatfish—the plaice Pleuronectes platessa—varies only two
independent components in its body pattern: high-contrast
scattered spots and blurry bars (see also Ramachandran
et al. 1996). This “basis set” of two patterns that has evolved
to generate camouflage is probably not a priori obvious from
principles of image coding, highlighting the need for an em-
pirical understanding of natural images and animal vision.
The vision scientist Bela Julesz (1981, 1984), who was fasci-
nated by camouflage, proposed that humans do indeed have
a small number of texture measures (or channels), which he
compared to the three color cones of trichromatic color vi-
sion. These channels could be identified by their ideal stim-
uli, or textons. Although texton theory has limited support
as an account of human vision (Bergen and Adelson 1988;
Malik and Perona 1990), animals such as flatfish and cuttle-
fish (Hanlon 2007; Hanlon and Messenger 2018) hint that

regularities of patterns in nature will reveal a small number
of major modes of variation that are exploited by spatial vi-
sion and, consequently, by coloration patterns. Mapping the
patterns of flatfish and cuttlefish alongside those of another
group with cryptic patterns (e.g., nightjars)—all in a pattern
space of a generic vertebrate predator—will allow us to de-
termine whether animal patterns fall into predictable catego-
ries.

Conclusion

Quantifying animal coloration patterns is a challenging en-
deavor. For those who are interested in investigating the per-
ception, function, and evolution of animal coloration pat-
terns, an important question will be which approach to use.
No single pattern space can completely capture the diversity
of coloration patterns as they are seen by animals—our phe-
notypic space (fig. 1). Moreover, just as most animal color
spaces fail to account for poststimulus processing (such as
opponency or color categorization), a pattern space will nec-
essarily be a simplification: the goal is a convenient, pragmatic
depiction of animal coloration patterns, represented in a way
that is relevant to an animal’s sensory experience.
As a first step, animal coloration patterns can be analyzed

in terms of image statistics, using spatial filters to measure
power in different spatial frequency bands and orienta-
tions. Such methods can more or less directly yield a low-
parameter, visually relevant perceptual space that can easily
be compared across patterns. This approach is parsimoni-
ous and, in the absence of evidence to the contrary, should
generally take priority over metrics based on higher-level
features, for example, in describing the strength of a signal
or the difference between a camouflage pattern and its back-
ground. As a second step, local features such as edges and
higher-level features such as faces can be characterized by
feature detection algorithms. This step adds new and some-
times complex parameters to the phenotypic space, but it can
provide information not captured by image statistics. A crit-
ical goal for future research will be to test the extent to which
this second step, the incorporation of edge- and feature-
based parameters, provides essential information beyond a
simple description based on image statistics. For example,
for a host bird faced with recognizing and detecting an
odd cuckoo egg, which is a better predictor of egg rejection:
egg pattern metrics based on higher-level SIFT features or
low-level power spectra? Evidence for selection acting on
such characters—on camouflage patterns or parasitic eggs,
for example—along with direct behavioral tests will show
which pattern metrics matter to animals and in what ecolog-
ical contexts (Stoddard et al. 2019).
Another question that will arise is: Which methods are

themost biologically realistic?Marr’s (1982) book on vision
remains an excellent account of how computational prin-
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ciples and methods can be related to biology. In general,
there is little doubt that Marr’s account of vision, based
on spatial filtering followed by feature detection, is biolog-
ically relevant. Beyond this, models based on specific algo-
rithms or computational schemes range from the precise
(e.g., in optical models of the eye) to the speculative and
metaphorical (e.g., comparisons of cerebral cortex to neural
networks). In the end, detailed behavioral and psychophys-
ical experiments, across many animal groups, will be needed
to test which computational methods might actually resem-
ble biological spatial vision. In this sense, we can consider
computational methods (and therefore pattern spaces) as
models that make predictions about spatial perception, to
be verified (or not) through experiments.

Once animal coloration patterns are represented in a pat-
tern space, many opportunities for sophisticated analysis
come into focus. In this synthesis, we highlighted ways in
which pattern space analyses can provide a powerful concep-
tual framework for investigating the production and per-
ception of animal signals. Over the next decade, we expect
that advances in neuroscience (Yamins and DiCarlo 2016a),
combined with better, more accessible computational tools
for visual ecologists (Weinstein 2017), will propel the study
of animal patterns and animal spatial vision to new heights.
Of course, pattern is just one aspect of a visual signal, and the
tall order for future researchers will be finding ways to inte-
grate color, pattern, and motion in a manner that relates to
receiver perception (Rosenthal 2007; Cuthill et al. 2017).
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APPENDIX

Glossary

Amplitude: A Fourier transform specifies the frequency,
amplitude, and phase of all spatial frequency components
of the image. The amplitude is the magnitude of the Fourier
components; it is often represented by grayscale intensity or
color in the 2-D power spectrum.

Contrast sensitivity function (CSF):A specialized form of
the eye’s MTF; it includes information about both the opti-
cal (the eye’s MTF) and neural contributions to contrast
sensitivity (Michael et al. 2011).

Difference-of-Gaussian (DoG): A linear filter with re-
sponses similar to those of the receptive fields of some visual
neurons. The shape of a concentric receptive field is often
modeled as a DoG function, which is constructed by taking
the difference between the bell-shaped sensitivity profiles of
the center region and surrounding regions as a function of
distance from the center (Bruce et al. 2003). The Laplacian-
of-Gaussian filter, which uses the second spatial derivative
of a Gaussian to estimate the shape of the receptive field, is,
for our purposes, essentially equivalent to the DoG function.

Fourier transform (FT): The classic approach for analyz-
ing linear systems. The FT breaks down a signal such as an
optical image into its constituent sine waves. In a 2-D im-
age, light intensity varies in two dimensions (x, y). A Fou-
rier transform converts this information to the frequency
domain. The power spectrum is a representation of themag-
nitudes of the sinusoidal components as a function of spatial
frequency; the representation does not include information
about their spatial phase relations. Power spectra (or, equiv-
alently, the first- and second-order image statistics) capture
visually relevant characteristics of natural images. Linear fil-
tering (i.e., convolution) and other transformations such as
whitening (fig. 4D) are implemented on the FT image, and
themodified image is recovered via an inverse Fourier trans-
form.

Gabor filter: An orientation-sensitive filter that resem-
bles the response properties of V1 simple cells (Daugman
1985; Jones and Palmer 1987; Soto and Wasserman 2011).
The Gabor function (fig. 3) is obtained by multiplying a
Gaussian envelope (the 2-D Gaussian curve) by a sine wave
(Bruce et al. 2003). Gabor filters have the important property
of representing both the spatial frequency and the spatial lo-
cation of a signal with minimal joint error (Marčelja 1980)
and for this reason are widely used as wavelets in image
processing (Daugman 1988; Jain 1989). Multiple Gabor fil-
ters, tuned to different frequencies and orientations, can be
used to represent the image in a manner that is efficient (as
in the JPEG image compression system) and computationally
convenient for edge detection and higher-level analyses (Lee
1996).

Image statistics: In general refers to any statistical rela-
tionship between intensity values in an image (Victor and
Conte 1991). Here we are concerned only with first-order
image statistics, which correspond to the mean and vari-
ance of the values of individual pixels, and second-order
statistics, which specify correlations between pairs of pixels.
Typically, this correlation falls with distance in the image
(figs. 2, 4; van der Schaaf and van Hateren 1996). Image sta-
tistics are described by the power spectrum.

Isotropic filter: A filter that is not sensitive to the orien-
tation of visual stimuli.

Lateral inhibition: A process by which neurons reduce
the responses of their neighbors; it serves to increase con-

Animal Coloration Patterns 181

This content downloaded from 139.184.160.189 on March 14, 2019 06:34:49 AM

All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



trast in an image, acting as a high-pass filter. High-pass fil-
tering enhances the signal at high relative to low spatial fre-
quencies. As a result, animals are often more sensitive to
abrupt changes in image intensity, such as those present at
edges, than more gradual changes in intensity, which are
due to the effects of illumination gradients and shading.

Linear filtering and convolution: Transformation of an
input image made by replacing the intensity value at each
pixel/point by the weighted sum of the values over a region
of the image. For low-pass filtering (i.e., blurring) character-
istic of optical systems such as eyes, the function is more
or less a circular Gaussian. Other linear filters often used to
model visual mechanisms include difference-of-Gaussian
(DoG) functions and Gabor functions. This transformation
is known as convolution, where the image is “convolved”with
the filter element (fig. 2) in the spatial domain. Convolution is
most conveniently performed in the frequency domain by
multiplying the Fourier transforms of the image and the filter
functions (fig. 2) and (if desired) inverse transforming the
output to recover the filtered image. Such operations are eas-
ily implemented in programming environments such as
MATLAB. See figure 2 for more details.

Modulation transfer function (MTF): A common way of
describing the eye’s overall response to contrast as a func-
tion of spatial frequency. It can be calculated in a variety
of ways, based on the optics of the lens or the packing of ret-
inal ganglion cells (Caves and Johnsen 2017). An equation
commonly used to estimate the MTF of an animal eye is
provided by Snyder (1977) and is based on the minimum
angular resolution (MAR) as a function of spatial frequency.
The MTF can be compared to the contrast sensitivity func-
tion, which is a psychophysical measure of performance.

Octave: A logarithmic measure of frequency range. One
octave corresponds to a factor-of-two difference (e.g., 1–2,
2–4, 4–8, or 8–16 cycles/degree). Visual cortex cells have
an average bandwidth of 1.5 octaves (Bruce et al. 2003).
Bandwidth refers to the range of spatial frequencies over
which a sensor such as a neuron will respond, measured in
octaves.

Pattern space: A low-dimensional space (fig. 1) that en-
codes features of natural patterns in a way that relates to the
viewer’s perceptual experience.

Phase:Here the relative phase between spatial frequency
components is of most relevance because it can be used to
identify lines and edges (Morrone and Burr 1988).

Power spectrum: The result of the Fourier transform
(fig. 2), in which each Fourier power component is mapped
in the Fourier space as a function of its frequency (with low-
frequency components at the center of the map) and orien-
tation in the image. The amplitude of a Fourier component
is the square root of its power.

Receptive field: Traditionally defined as a region of the
retina over which a cell responds to light (Hartline 1938)

but can generally refer to tuning in any sensory parameter
space, such as spatial frequency.

Spatial frequency analysis: See box 1.
Visual acuity: Ameasure of spatial resolution, the ability

to discriminate fine spatial patterns. Typically measured in
cycles per degree (cpd), the number of pairs of black and
white lines that fill a 17 angle of visual space.

Wavelet transform: Wavelets are often Gabor (or simi-
lar) functions, with the set of functions chosen to optimize
data compression with minimal loss of image quality and
information. Wavelets effectively provide a local Fourier
transform of the image, which offers important advantages
in image compression and machine vision, and are more
plausible as a model of biological systems (Marčelja 1980;
Daugman 1988).
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