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Cardiovascular diseases are the first leading cause of death and morbidity in developed countries. The use of animal models have
contributed to increase our knowledge, providing new approaches focused to improve the diagnostic and the treatment of these
pathologies. Several models have been developed to address cardiovascular complications, including atherothrombotic and cardiac
diseases, and the same pathology have been successfully recreated in different species, including small and big animal models of
disease. However, genetic and environmental factors play a significant role in cardiovascular pathophysiology, making difficult
to match a particular disease, with a single experimental model. Therefore, no exclusive method perfectly recreates the human
complication, and depending on the model, additional considerations of cost, infrastructure, and the requirement for specialized
personnel, should also have in mind. Considering all these facts, and depending on the budgets available, models should be selected
that best reproduce the disease being investigated. Here we will describe models of atherothrombotic diseases, including expanding
and occlusive animal models, as well as models of heart failure. Given the wide range of models available, today it is possible to
devise the best strategy, which may help us to find more efficient and reliable solutions against human cardiovascular diseases.

1. Introduction

Cardiovascular diseases are the first leading cause of death
and morbidity in developed countries. Cardiac and vascular
complications are complex multifactorial pathologies, in
which both genetic and environmental factors are impli-
cated, thus making them very difficult to prevent. The
development of animal models of cardiovascular disease
(CVD), including cardiac and atherothrombotic diseases,
has provided us today with important insights into the
pathophysiology, and they were found to be essential tools to
evaluate new therapeutic strategies to predict and to prevent
these complications.

Here, we will summarize the most common models
of cardiovascular diseases, including those implemented in
both large and small animals, designed for helping to cover
with more precision and to better understand every single

aspect related to these human pathologies. In particular, we
will describe models of atherothrombotic diseases, including
expanding abdominal aortic aneurysms (AAA), thoracic
aneurysms, and occlusive atherosclerotic diseases, as well as
models of heart failure. These situations constitute today
a significant challenge since predictors to evaluate early
detection and forecast progression are crucial in these
pathologies, yet they are poorly explored.

2. Animal Models of Atherothrombotic Disease

2.1. Mouse Models. Atherosclerosis is a complex multifac-
torial disease with different etiologies that synergistically
promote lesion development. Mouse models have proved
to be useful to study development and progression of
atherosclerotic lesion, and several reviews have extensively
discussed the different available models [1–3]. In particular,
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knockout and transgenic mouse models for atherosclerosis
have been instrumental in understanding the molecular and
cellular mechanisms involved in atherogenesis, and in eval-
uating the effectiveness of new and existing atherosclerotic
drugs [4].

As wild-type mice are resistant to lesion develop-
ment, the current mouse models for atherosclerosis are
based on genetic modifications of lipoprotein metabolism
with additional dietary changes. Among them, low-density
lipoprotein receptor-deficient mice (LDLR−/− mice) and
apolipoprotein E-deficient mice (apoE−/− mice) are the
most widely used. Atherosclerotic lesions seen in these
models can be exacerbated by the addition of risk factors
such as hypertension or diabetes. Mice have become widely
used as models of human atherosclerosis as they offer
advantage compared with other species (Table 1).

2.2. LDLR−/− Mice. The LDLR−/− mouse represents a
model of familial hypercholesterolemia due to one of the
mutations affecting the LDLR, and the plasma lipoprotein
profile resembles that of humans. Mice, which are genet-
ically deficient in LDLR manifested delayed clearance of
VLDL and LDL from plasma. As a result, LDLR−/− mice
exhibit a moderate increase of plasma cholesterol level and
develop atherosclerosis slowly on normal chow diet [5, 6].
Interestingly, the severity of the hypercholesterolemia and
atherosclerotic lesions in LDLR−/− mice can be accelerated
by feeding a high-fat, high-cholesterol diet [5–7], by mutat-
ing the apoB gene into an uneditable version [8, 9], and
by crossing either with leptin-deficient mice [10] or with
apoB100 transgenic mice [11]. Under these conditions, the
lesions in the aorta can progress beyond the foam-cell fatty-
streak stage to the fibroproliferative intermediate stage.

In addition to LDLR−/− mice, the LDLR and apoE
double-deficient mouse (LDLR−/−apoE−/−) which devel-
ops severe hyperlipidemia and atherosclerosis even on
a regular chow diet, has been proposed as a suitable
model to study the antiatherosclerotic effect of compounds
without having to feed the animals an atherogenic diet
[12, 13]. However, the response of both LDLR−/− and
LDLR−/−apoE−/− mice to the treatment with hypolipi-
demic drugs varies from lowering of plasma cholesterol
without atherosclerosis decrease to a weak lesion reduction
with or without lower plasma cholesterol [4, 14]. By contrast,
those mice effectively respond to agonists of peroxisome
proliferator-activated receptor (PPAR) or liver X receptor
[15, 16]. This great variability indicates that LDLR−/−
is probably not well-suited for analyzing the cholesterol-
lowering and antiatherogenic effects of drugs.

2.3. ApoE−/−Mice. In 1992 two different groups simultane-
ously generated the apoE−/− mice by homologous recom-
bination in embryonic stem cells [17, 18]. Homozygous
deficiency in apoE gene results in a marked increase in the
plasma levels of LDL and VLDL due to a failure in their
clearance through the LDLR and LDLR-related proteins. The
apoE−/− mouse contains the entire spectrum of lesions
observed during atherogenesis and was the first mouse model

described to develop lesions similar to those of human [17,
18].

Under normal dietary conditions, apoE−/− mice have
dramatically elevated plasma levels of cholesterol, and they
develop extensive atherosclerotic lesions widely distributed
throughout the aorta [18–20]. This process can be exacer-
bated on a high-fat diet, with female mice more susceptible
than male mice [19]. A chronological analysis of atheroscle-
rotic lesions in apoE−/− mice revealed that the sequential
events involved in lesion formation in this model are strik-
ingly similar to those in larger animal models and in humans.
Predilection sites for atherosclerotic lesions in apoE−/−
mice are the aortic root, followed by the aortic arch, the
brachiocephalic trunk, the left carotid, and subclavian and
coronary arteries [6, 21]. Aortic lesions rapidly develop from
initial fatty streaks comprised primarily of foam cells with
migrating smooth muscle cells to more complex lesions in
middle-aged mice. These advanced lesions are heterogeneous
but typically composed of a necrotic core surrounded by
proliferating smooth muscle cells and extracellular matrix
proteins [20, 22].

The apoE−/−mice are currently the most widely utilized
animal model for the study of atherosclerosis. In fact, the
effect of many genes on the development of atherosclerosis
has been examined by crossing the apoE−/−mice with other
genetically manipulated animals. Furthermore, the apoE−/−
mouse serves as a useful tool to: (i) identify atherosclerosis-
susceptibility-modifying genes, by the candidate-gene and
gene-mapping methods, (ii) decipher molecular mechanism
and cell types involved in atherogenesis, (iii) search into
the drug effects on atherosclerosis, and (iv) assess novel
therapies that prevent lesion progression. In this sense,
the apoE−/− mouse model was used to test additional
therapeutic effects of statins beyond those attributable
solely to cholesterollowering. One of the first observations
was the paradoxical effect of simvastatin on atherogenesis
in both apoE−/− and LDLR−/− mice [23]. In contrast
to the atheroprotective effect of simvastatin in LDLR−/−
mice, age-matched apoE−/− showed elevated serum total
cholesterol and increased aortic plaque area, thus suggesting
that the therapeutic effect of simvastatin may depend on
the presence of a functional apoE [23]. In spite of this,
the antiatherosclerotic effects of other statins have been
effectively proven in apoE−/− mice [24, 25]. Several other
compounds, such as angiotensin II receptor antagonists or
PPAR agonists [26] also reduced the extent and severity of
atherosclerotic lesions without lowering plasma cholesterol
in apoE−/− mice. However, the recent finding of increased
atherogenesis in apoE−/−mice treated with PPAR alpha and
PPAR gamma agonists is consistent with clinical findings of
the adverse cardiovascular events of dual therapy [27].

Nevertheless, a major limitation of the apoE−/− mouse
model is the infrequency of plaque rupture and thrombo-
sis, two common complications of human atherosclerosis.
Ischemic cardiomyopathy has been occasionally found in
aged mice [20], but interestingly, rapid coronary artery
occlusion, myocardial infarction, and even premature death
occur when apoE−/− mice were crossed with mice deficient
in scavenger receptor class B type I or its adaptor protein
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Table 1: Animal models of atherosclerosis: advantages and limitations.

Mouse

(i) Rapid development of atherosclerotic plaques (i) Only partial resemblance to humans

(ii) Short reproductive cycle (ii) More atherosclerotic than atherothrombosis model

(iii) Large litters
(iii) Very high levels of blood lipids

(iv) Well-known genome

(v) Relative ease of genome manipulation

(vi) Relatively cheap

(vii) Useful for noninvasive imaging

(MRI, PET, CT, ultrasound)

(viii) Large experience

Rat
(i) Easy, available, and cheap

(i) Do not develop atheroma

(ii) Useful for restenosis analysis

Rabbit

(i) Medium size (i) Need for high blood cholesterol levels

(ii) Fibroatheroma lesions (ii) No plaque rupture model

(iii) Useful for restenosis models (iii) A model of neointima formation rather than
atherosclerosis

(iv) Affordable

Porcine

(i) Lesions more similar to human disease (i) High cost

(ii) Valid for restenosis studies
(ii) Difficult handling

(iii) Few genomic tools

[28, 29], thus mimicking many cardinal features of human
coronary heart disease.

2.4. Transgenic Mice. Transgenic technologies have provided
a series of very useful mouse models to study hyperlipi-
demia and atherosclerosis. Among them, mice expressing
mutant forms of apoE, such as apoE3Leiden (E3L) and
apoE (Arg 112→Cys→ 142) transgenic mice, are the more
widely studied. These mice display a lipoprotein profile
comparable to that of patients with dysbetalipoproteinemia,
in which plasma total cholesterol and triglycerides are mainly
confined to (V) LDL [30]. The E3L transgenic mice develop
atherosclerotic lesions with all the characteristics of human
vasculopathy, varying from fatty streak to mild, moderate,
and severe plaques [30, 31]. Furthermore, E3L transgenic
mice and the more recently developed E3L/Cholesteryl ester
transfer protein (CETP) transgenic mice have been shown
to be more sensitive to a variety of hypolipidemic drugs and
PPAR agonists than apoE−/− and LDLR−/−mice [4, 32].

2.5. Mouse Models of Diabetes-Accelerated Atherosclerosis.
Diabetes is a high risk factor of cardiovascular disease.
The cardiovascular complications of diabetes are manifested

primarily as ischemic heart disease caused by accelerated
atherosclerosis, and also as cardiomyopathy. Several models
are available to study atherosclerosis and cardiomyopathy
associated with diabetes, including apoE−/− and LDLR −/−
mice in which type 1 diabetes is induced by streptozotocin
or viral injection [33, 34]. In both mice, diabetes induc-
tion did not markedly change plasma lipid levels, thereby
mimicking the accelerated atherosclerosis seen in patients
with type 1 diabetes. Importantly, streptozotocin-injected
atherosclerotic mice exhibited increased atherosclerosis in
the aortic sinus, carotid artery, and abdominal aorta, as well
as calcifications in the proximal aorta [34, 35].

In brief, mouse models have been very useful to unveil
the importance of inflammatory and immunological mecha-
nisms in the formation and progression of atheroma plaque.
Recently, an enormous interest for the use of noninvasive
magnetic resonance imaging (MRI) in mouse models of
atherosclerosis has arisen [36], since MRI accurately char-
acterizes the location, the size and the shape of lesions.
In addition, MRI allows the differentiation between fibrous
and lipid components of regress in plaques in mice. In
combination with noninvasive imaging technologies, mouse
models of atherosclerosis today also serve to test novel



4 Journal of Biomedicine and Biotechnology

contrast agents, and to design and target specific molecules
involved in high-risk plaque.

2.6. Rabbit Models. The high-cholesterol diet rabbit model
has been widely used for experimental atherosclerosis. Back
in 1913, cholesterol was found to cause atherosclerotic
changes in the rabbit arterial intima, which is very similar to
human atherosclerosis. Atherosclerotic lesions also develop
in normolipemic rabbits as a result of repeated, or con-
tinuous intimal injury by an indwelling aortic polyethylene
catheter, balloon angioplasty or nitrogen exposure. There-
fore, many studies have used the rabbit model with high-
cholesterol diet, arterial wall injury, or, most commonly, a
combination of these two methods. In all these models, the
observed lesions resemble, at least in part, those seen in
human plaques, mainly regarding the inflammatory compo-
nent, though the vascular smooth muscle cell proliferation
determines for a great deal the lesion.

The rabbit model has largely been used to study the
influence of lipid lowering (by diet or statins) on the
plaque formation and “stabilization.” Those studies have
contributed to unveil the mechanisms by which lipid lower-
ing reduces macrophage accumulation and other aspects of
atheroma inflammation [37, 38].

Recently, we have set up a novel rabbit model to examine
the influence of inflammation on atherosclerotic plaque. The
aim was to study some mechanisms by which atherosclerosis
is particularly severe in patients with rheumatoid arthritis.
Briefly, the model consists in a combination of femoral injury
in hyperlipidemic rabbits and induced acute knee arthritis.
Those animals had more intensive vascular lesions than
animals without inflammation. This model could represent
a novel approach to the study, inflammation-associated
atherosclerosis [39].

A model for plaque rupture has been also developed
in rabbits. Shimizu and coworkers [40] have developed a
simple rabbit model of vulnerable atherosclerotic plaque,
with the combination of aggressive vascular injury associated
to a hyperlipidemic diet. The histological findings showed

that an aortic plaque had the three features of “vulnerable
plaque”: lipid-rich core, accumulation of macrophages, and
a thin fibrous cap. In addition, a low-density lipoprotein
(LDL) receptor-deficient animal model (the WHHL rabbit)
has been developed. This model resembles to human familial
hypercholesterolemia and shows evidence of progressive
disease of the aorta with accumulation of birefringent lipids
in intimal lesions and plaques, as well as in the media from
birth to 1 year of age.

Although rabbit aortic arteries are smaller in vessel
diameter than human carotid artery, they allows the studies
with endovascular therapeutic devices. In addition, the
rabbit model has also been used for the quantification
of atherosclerotic aortic component by MRI. This tech-
nique accurately quantifies fibrotic and lipid components
of atherosclerosis in the model and may permit the serial
analysis of therapeutic strategies on atherosclerotic plaque
stabilization [41].

2.7. Porcine Models. They prevention of heart attack and
stroke depends on the detection of vulnerable plaques
and development of plaque-stabilizing therapies. Animal
models are essential for testing mechanistic hypotheses in
a controlled manner, they should be representative of a
human disease, and at the same time be easy to manip-
ulate. However, vulnerable plaque recreation is one of the
toughest tasks in animal model design. Plaque rupture is
an additional complication of an already complex process,
and the precise mechanisms involved remain hypothetical.
A plethora of experimental approaches are available for
growing atherosclerotic lesions in various animal species as
mentioned above (Table 2).

Currently, there is no single and golden standard animal
model of vulnerable plaque, but pig models are probably the
best way to recreate human plaque instability. The combina-
tion of diabetes and hypercholesterolemia constitutes a good
model of accelerated atherosclerosis [42], and it was relevant
study the role of certain biomarkers, such as the Lp-PLA2
since these animals share a similar plasma lipoprotein profile
humans. In this regard, the selective inhibition of Lp-PLA2
by darapladib decreased progression to advanced coronary
atherosclerotic lesions and confirmed a crucial role of vascu-
lar inflammation not associated to hypercholesterolemia, in
the development of lesions implicated in the pathogenesis of
myocardial infarction and stroke [43].

Several porcine models of advanced human-like coro-
nary atherosclerosis have been employed to analyze the
development and validation of coronary imaging technolo-
gies. In the evolving era of technological development, the
availability and use of such animal models will become
critical for the development of emerging technologies in
interventional cardiology [44], and for the study of drug-
eluting stents [45]. In addition, the porcine models of
coronary atherosclerosis allow examining the impact of
adventitial neovascularisation, on atherosclerotic plaque
composition and vascular remodelling [46].

3. Animal Models of Abdominal Aortic
Aneurysms (AAAs)

Animal models of atherothrombotic AAA are essential tools
for the preclinical evaluation of new therapeutic strategies
for the suppression of aneurysmal degeneration (Table 3).
Recent insights into the mechanisms of human AAA have
come from the studies in mouse models, and elastase-
induced AAA in particular appears to recapitulate many
features of human AAA. Here we briefly outline the most
frequently used models of AAAs, and refer the reader to
recent comprehensive reviews regarding additional animal
models [47–52].

3.1. Rat Models

3.1.1. Localized Aortic Perfusion with Elastase. This model
consists of exposing a segment of the abdominal aorta and
infusing it with elastase [53]. The degradation of elastic
fibers triggers an inflammatory response that develops into
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Table 2: Animal models of plaque rupture and plaque associated thrombosis.

Spontaneous Induced

39–54-month-old pigs with inherited hyper=LDL
cholesterolemia.

ApoE−/− mice after squeezing the aorta supplemented between forceps.

42–54-week old ApoE−/− mice. Hypercholesterolemic rabbits subjected to balloon injury.

Dahl salt-sensitive hypertensive transgenic rats for human
cholesteryl ester transfer protein.

Atherosclerotic ApoE−/− mice subjected to photochemical injury.

—
Intraperitoneal injection of Russell’s viper venom in New Zealand White
rabbits intermittently fed with high cholesterol diet.

Intraperitoneal injection of Russel’s viper venom in Watanabe heritable
hyperlipidemic rabbits, in combination with the administration of
serotonin or angiotensin II.

an aneurysm [54, 55]. The severity of the induced AAA can
be increased by adding plasmin to the infusion. This model
has been adapted for use in several other species, including
rabbit, mouse, and large animals.

3.1.2. Decellularized Xenografts. This model was based on
the observation that chronic rejection of arterial allografts
and xenografts, results in arterial wall dilatation and rupture.
Michel and coworkers decellularized a section of abdominal
aorta from one species (e.g., guinea pig), and the resulting
tube of intact extracellular matrix was grafted into another
morphologically compatible species, usually rat [58]. The
xenogenic extracellular matrix triggers the destruction of
host matrix, leading to aneurysm formation. The model has
been successfully used to evaluate therapeutic targets [64–
69], although the heterogeneity of the aneurysms formed and
the lack of vessel rupture are significant limitations.

3.2. Mouse Models. The mouse has become the preferred
model for cardiovascular research for several reasons, includ-
ing the ease of handling, low procedure costs, and the
ability to manipulate the mouse genome. Consequently, of all
animal models of AAA, mouse models have provided most
of the insights into the mechanisms of human AAA. The
following models are the most widely-used to date.

3.2.1. Calcium-Chloride-Induced AAA. In this method, ini-
tially developed in rabbits [62], calcium chloride is applied
periaortically in the region between the renal arteries and
the iliac bifurcation. Significant dilatation of the aorta is
observed within 14 days, and the severity is significantly
increased if calcium chloride is applied together with thio-
glycolate and if animals are fed a high-cholesterol diet [56].
Unlike other models, calcium chloride application induces
AAA without the need for mechanical intervention.

3.2.2. Elastase-Induced AAA. The elastase-induced model
was adapted for mice by Pyo et al. [57]. Elastase perfusion in
mouse aorta causes a mild-to-moderate dilatation initially,
which subsequently develops to a >100% increase in aortic
diameter within 14 days. In this model, the degradation
of medial elastin is delayed, and the subsequent aortic
wall inflammation consists of mononuclear phagocytes

throughout the adventitial and medial layers, with relatively
few polymorphonuclear cells localized to the adventitia
[57]. Elastase-induced injury increases the expression of
MMPs, cathepsins, and other proteases [70], with MMP-9
being localized to aneurysm-infiltrating macrophages [71].
Elastase-induced AAAs thus appear to recapitulate many
features of human AAAs, and this model has become a
valuable and convenient tool for systematically evaluating the
roles of individual gene products in aneurysmal degeneration
[71–80].

When compared to calcium-chloride-induced AAA, the
main limitation of this method is in the mechanical stress
required to recreate medial elastic degradation. However,
the protocol resembles the time course of events leading
to human AAA, including initial recruitment of leukocytes
and mast cells, the development of a transmural aortic
wall inflammatory response, and finally the upregulation of
extracellular matrix metalloproteinases and other proteases,
which induce a progressive degradation of the medial elastin
and collagen, leading to the final aortic dilatation.

3.2.3. Angiotensin II-Induced AAA. This procedure was ini-
tially developed to define whether increased plasma concen-
trations of Angiotensin II (Ang II), have a direct effect on the
atherogenic process in hyperlipidemic old apoE−/− mice.
Unexpectedly, Ang II also produced large suprarenal abdom-
inal aortic aneurysms in these animals [81]. In this model,
inflammation of the vessel wall is associated with signaling
through AT1a receptors [82], nuclear factor- (NF-) kappaB-
mediated induction of proinflammatory genes, including
MCP-1, M-CSF, iNOS, COX-2, inhibition of PPARs [83],
activation of the NADPH oxidase p47phox [84], c-JUN N-
terminal [85], Rho kinases [86], and enhanced recruitment
of macrophages [87, 88] and extracellular matrix compo-
nents and degrading enzymes [89–91], leading to vessel
dissection, and rupture. The severity of AAA is higher in
hyperlipidemic apoE−/− or LDLR−/− male mice (∼60%
of mice), when compared to normolipidemic C57Bl/6 mice,
although in these models neither hyperlipidemia per se nor
atherosclerosis is considered major determinants [92–94].

The model contributed to evidence the implication of
the rennin-angiotensin (RAS) system in aneurysmal disease.
However, two main limitations should be considered: the
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Table 3: Current procedures for inducing AAA in animals.

Species AAA models

Murine

Calcium Chloride [56].

Elastase infusion [57].

Angiotensin-II-infused AAA: used in hyperlipidemic (ApoE−/− or LDLR−/−) male mice or in wild-type C57BL/6 mice in
conjunction with repeated administration of neutralizing TGF-β antibodies [50].

Decellularized xenografts: grafting of abdominal aortic extracellular matrix from one species to a compatible recipient of a
different species [58].

Spontaneous [59].

Rabbit
Elastase-induced AAA: similar to the murine model [60], also applicable to the carotid artery [61].

Calcium chloride [62].

Pig
Surgical model: dilatation of the infrarenal aorta with an angioplasty balloon followed by infusion of pancreatic porcine
elastase [63].

suprarenal location of the aneurysm (in contrast to the
infrarenal location in humans) and the clinical relevance
of RAS inhibition, since the association of RAS in human
AAA has provided controversial results, pointing towards
necessary large population studies.

3.2.4. Spontaneous Mouse Mutants. The blotchy mouse is
a mouse strain containing a spontaneous mutation on the
X chromosome which leads to abnormal intestinal copper
absorption. These animals have weak elastic tissue due to
failed crosslinking of elastin and collagen, and develop aortic
aneurysms mainly in the aortic arch, thoracic aorta, and
occasionally in the abdominal aorta [59]. However, results
from this model are difficult to interpret, since the mutation
produces many severe additional effects.

3.3. Rabbit Models. Several of the same interventions used in
mice are also implemented in rabbits, including elastase infu-
sion [60] and calcium chloride application to the abdominal
aorta [56]. Another intervention used in rabbits is elastase
infusion in the right carotid artery [61]. The main advantage
of rabbits over other animal models is that rabbit aneurysms
more closely resemble human aneurysms hemodynamically
and histologically. Rabbit models also combine several of
the attractive features of small animals, such as the easy
housing and handling. In addition, similarly to large animals,
rabbit aneurysms can be monitored by accessing through the
femoral artery, thus providing an excellent model for testing
endovascular therapies [95, 96].

3.4. Porcine Models. Porcine models of AAA have provided
significant information about the changes that occur after
AAA induction and about the responses to stent deployment.
A recently-developed porcine model combines mechanical
dilatation by balloon angioplasty with enzymatic degrada-
tion by infusion of a collagenase/elastase solution. The model
is characterized by gradual AAA expansion associated with
degradation of aortic wall elastic fibers, an inflammatory
cell infiltrate, and persistent smooth muscle cell loss [63].
A broad number of similarities were found between this
model and human AAA, and the procedure may also
represent an excellent method to evaluate endovascular

related procedures. Despite the benefits, however, pigs have
significant disadvantages, including complex animal han-
dling, the requirement of special housing and surgical room
facilities, the elevated cost of the animals, and the reduced
sample sizes per assay.

3.5. Thoracic Aortic Aneurysm (TAA). Elastic tissue degra-
dation is also related to the development of thoracic aortic
aneurysm (TAA), and mouse models have significantly
advanced the understanding of this pathology. TAA is a
characteristic feature of Marfan syndrome (MFS), a disorder
caused by mutations that affect the structure or expression
of the extracellular matrix protein fibrillin-1, a glycoprotein
that is associated of extracellular proteins, including integrin
receptors and insoluble elastin [97]. Fibrillin-1 mutations
in MFS decrease ECM sequestration of latent TGFβ, thus
rendering it more prone to or accessible for activation [98–
100]. TAA progression in MFS is driven by elastic fiber cal-
cification, vascular wall inflammation, intimal hyperplasia,
structural collapse of the vessel wall, impaired activation of
MAP kinase signaling, and altered synthesis of ECM proteins
and matrix-degrading enzymes (MMPs) [101]. Systemic
administration with TGFβ antagonists has been successfully
used to mitigate vascular disease in mouse models of MFS
and in children with severe and rapidly progressive MFS [97,
102]. Moreover, studies in mouse models have shown that
fibulin-4 and LRP1 are also associated with TAA [103, 104].

4. Animal Models of Heart Failure

Models of heart disease in small animals, particularly rats,
have been very useful for the assessment of pharmacolog-
ical therapies. In addition, several target genes have been
identified in genetically modified mouse models. Many of
these genes have proved to be crucial in the initiation and
progression of heart disease. Below, we describe the animal
models currently used to study heart failure, which are also
summarized in Table 4.

4.1. Rat Models. Rat models have dominated research into
heart damage because, while rats share many of the benefits
of mice (low cost, ease of handling, etc.), their larger
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Table 4: Current procedures for inducing heart damage in animals.

Species Heart failure models

Murine

Myocardial damage
Chemical: isoproterenol administration [106].
Electrical: overlapping burns [107].
Surgical: coronary artery ligation [105].

Ischemia Reperfusion:
Transient occlusion of the left coronary artery [108].

Cryoinfarction: cryo-injuries to the epicardium [109].

Pressure overload: aortic constriction and banding. Aortic stenosis [110, 111].

Transgenic models of dilated cardiomyopathy: mutation of cardiac α-actin protein [112].

Rabbit

Spontaneous: WHHLMI rabbits [113].

Coronary artery occlusion: similar to the murine model, also applicable to the carotid artery. This is an excellent
model for testing endovascular therapies [114].

Pressure overload: aortic banding [115], valvular stenosis [116].

Dog

Microembolization [117].

Tachycardia: ventricular pacing [118].

Aortic stenosis [119].

Pig
Surgical model: balloon occlusion of coronary arteries [120].

Tachycardia: pacing-induced supraventricular tachycardia [121].

size greatly facilitates surgical and postsurgical procedures.
Myocardial damage in rat hearts is induced by three proce-
dures: surgical, pharmacological, or electrical.

The surgical method, first developed by Pfeffer and
coworkers, consists of ligating the left coronary artery [105].
In this procedure, left thoracotomy is performed on the
anesthetized rat, and the heart is rapidly exteriorized by
gentle pressure on the right side of the thorax. The left
coronary artery is either ligated or heat cauterized between
the pulmonary artery outflow tract and the left atrium.
The heart is then returned to its normal position and the
thorax immediately closed. Several modifications have been
introduced to improve performance and to reduce animal
mortality, and left coronary artery ligation is the most
common method used to induce acute myocardial damage in
rat and other animal models. One important modification is
temporary occlusion followed by reperfusion, allowing flow
recovery through the previously occluded coronary artery
bed. Left coronary artery ligation can thus be used to evaluate
diverse parameters resulting from either permanent ischemia
or ischemia/reperfusion.

Pharmacological induction of heart damage was first
implemented by Bagdon and coworkers in 1963 and is
achieved by treatment with the beta-one adrenergic receptor
(B-AR) agonist isoproterenol [106]. Isoproterenol adminis-
tration before ischemia exerts a cardioprotective action in
rats, but at the right dose it induces cardiac myocyte necrosis
and extensive LV dilatation and hypertrophy.

Isoproterenol treatment and left coronary artery ligation

in rats are efficient and reproducible methods that provide
valuable information about the underlying mechanisms
implicated in human heart disease.

The electrical method consists of generating overlapping
burns in exposed rat hearts by applying a 2-mm-tipped
soldering iron to the epicardium of the left ventricle [107].

While this is also a valid method, the degree of heart damage
produced is not consistent among laboratories, limiting the
reproducibility of the results obtained with this procedure.

4.2. Mouse Models. Against the many general advantages of
working with mice (ease of handling, low pregnancy times,
etc.), investigators choosing them as models of heart failure
must consider two important limitations: the small size of
the heart and the structural differences with respect to the
human cardiovascular system. Nonetheless, the availability
of transgenic and knockout strains and the relative ease with
which new genetic modifications can be introduced make the
mouse one of the most attractive models for research into the
molecular basis of heart failure.

One of the most widely used models of heart failure in
mice is the left coronary artery ligation procedure, adapted
from rat. In some protocols the artery is occluded perma-
nently, but recently procedures for temporary occlusion have
been introduced to reproduce human ischemia/reperfusion
injury [108]. In this method the left anterior descending
coronary artery is occluded and then reperfused, allowing
flow recovery through the previously occluded coronary
artery bed. Reperfusion is monitored visually, and the infarct
can be analyzed by histopathological techniques, and can be
documented in real time by non invasive high frequency.
The areas at risk and the infarct size are revealed by staining
with Evans blue dye and triphenyltetrazolium chloride and
are assessed by computerized planimetry. This model has
confirmed the benefits of reperfusion, since infarct size
was found to be significantly lower than after permanent
occlusion of the coronary artery.

The method has been further modified to analyze
ischemic preconditioning of the heart. In this method, the
left coronary artery is repeatedly occluded to subject the
heart to several rounds of brief ischemia and reperfusion,
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followed by permanent occlusion. This approach has iden-
tified several ischemia-induced genes that confer tolerance to
a subsequent ischemic event [122].

More recently, a model of myocardial infarction was
developed, in mice and rats, in which a series of cryo-
injuries is generated in the heart. This new model is yielding
promising results [109].

4.3. Large Animal Models of Heart Failure. Small animal
models have provided significant insights into human car-
diac pathophysiology. However, rodent and human hearts
differ in their architecture, heart rates, oxygen consumption,
contractility, protein expression, and even stem cell popula-
tions, and there is therefore an obvious need for models of
heart failure in large animals.

The first large animals used to study heart failure were
dogs, in which models of myocardial infarction and serial
microembolization of the coronary artery were developed
[117]. However, the preferred large animal model of heart
damage is the pig, because the collateral coronary circulation
and arterial anatomy of pigs and humans are very similar
and infarct size can be accurately predicted [123]. Among
several models of MI in pigs, one of the most widely
used is balloon occlusion of the left anterior descending
coronary artery. In this model, a catheter is inserted through
the femoral artery, positioning an angioplasty balloon over
a guide wire at a position distal to the second largest
diagonal branch of the artery, and infarction is induced
by balloon inflation [120]. The similar size and cardiac
physiology of pigs and humans mean that this model offers
major advantages over models in other species. However, the
method requires specialized equipment, dedicated surgical
facilities and skilled personnel, limiting the number of
laboratories able to conduct these studies.

The rabbit, much less expensive than pig, offers a
compromise solution. Rabbit models of heart failure, includ-
ing coronary artery occlusion models [114], have major
advantages over other species. For example, the composition
of sarcomeric proteins in rabbits is similar to that in
humans, and the sarcolemmic reticulum contributes about
70% of calcium elimination. In addition, the WHHLMI
rabbit strain provides a model of spontaneous myocardial
infarction requiring no surgical intervention. This model was
developed by selective breeding of coronary atherosclerosis-
prone WHHL rabbits [124]. The main limitation of the
WHHLMI model is that it does not feature plaque rupture,
whereas in humans coronary plaque rupture and subsequent
intravascular thrombosis are the major causes of acute
myocardial infarction. Despite this limitation, the model is
valid for the study of atherosclerosis-related heart complica-
tions [113, 125].

An additional model of heart failure in large and small
animals is pressure overload of the left ventricle, induced
by transverse aortic constriction in mice [110] and aortic
banding in rats and rabbits. Left ventricle hypertrophy can
also be recreated by ventricular pacing in dogs [115, 118,
126], valvular stenosis in rabbits [116], and renal artery
constriction or aortic stenosis in rats, hamsters, mice, rabbits
and dogs [111, 119].

Another model of heart failure is the dilated cardiomy-
opathy. Human dilated cardiomyopathy has been modeled
in rabbits and pigs by inducing chronic tachycardia with a
pacemaker [121, 127]. Transgenic mouse models, involving
mutations that predispose to dilated cardiomyopathy, have
also proved very useful. These models have identified an
association of cytoskeletal and contractile proteins with this
pathology, and very recently a transgenic model expressing
a mutated cardiac alpha-actin gene was provided, in which
calcium sensitivity of myofilaments is decreased and the
expression of calcium/calmodulin-dependent kinase IIdelta
(CaMKIIdelta) is increased [112]. Inhibition of CaMKII-
delta in these animals prevented the increase in p53 and
apoptotic cardiomyocytes and ameliorated cardiac function.

5. Conclusion

Animal models of cardiovascular disease yield important
insights into the genetic basis of human cardiovascular
diseases and provide a test bed for pharmacological and
treatments. Nonetheless, investigators need to carefully
consider their choice of model: no single method per-
fectly recreates the human disease, and there are related
considerations of cost, infrastructure and the requirement
for specialized personnel. Taking these considerations into
account, experimenters therefore need to select models that
best reproduce the aspect of disease being investigated. In
particular, when moving from bench to bedside it is essential
to test procedures in relevant models that yield highly
reproducible results, but despite these limitations, given the
range of animal models available today it will always be
possible to devise an appropriate strategy, and animal models
remain the best tools for advancing the understanding of the
mechanism of human cardiovascular disease.
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