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ABSTRACT 19	
  

Chronic obstructive pulmonary disease (COPD) is a major cause of global mortality and 20	
  

morbidity but current treatments are poorly effective. This is because the underlying 21	
  

mechanisms that drive the development and progression of chronic obstructive pulmonary 22	
  

disease (COPD) are incompletely understood. They differ depending on exposure to various 23	
  

causative agents like cigarette smoke or air pollution. Animal models of disease provide a 24	
  

valuable, ethically viable and economic platform with which to examine these mechanisms 25	
  

and identify biomarkers that may be therapeutic targets that would facilitate the development 26	
  

of improved treatments. Here we review the different established animal models of COPD 27	
  

and the various aspects of disease pathophysiology that have been successfully recapitulated 28	
  

in these models including; chronic lung inflammation, airway remodeling, emphysema and 29	
  

impaired lung function. Furthermore, some of the mechanistic features, and thus biomarkers 30	
  

and therapeutic targets of COPD identified in animal models have been outlined. These 31	
  

include recent studies of oxidative stress, mast cell proteases, circadian rhythm, epigenetic 32	
  

changes and microRNAs. Most therapeutics currently in clinical trials originated from studies 33	
  

on animal models, yet there is still a lack of therapies that halt the progression of COPD once 34	
  

it is established, and none that reverse its disease features. Some of the existing therapies that 35	
  

suppress some disease symptoms that were identified in animal models and successfully 36	
  

applied to the clinical setting have been outlined. Further studies of representative animal 37	
  

models of human COPD have the strong potential to identify new and effective therapeutic 38	
  

approaches for COPD. 39	
  

Word count 248 (250 max limit) 40	
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SUMMARY AT A GLANCE 43	
  

Here we review the current animal models that are widely used to investigate the 44	
  

pathogenesis of COPD. Recent studies that have revealed new mechanisms and potential 45	
  

treatments using these models are highlighted. 46	
  

Keywords: (5 keywords in alphabetical order) animal models, COPD, disease mechanisms, 47	
  

therapeutic targets, therapies. 48	
  

 49	
  

Abbreviations:  50	
  

-/- homozygous knockout 

AHR airway hyperresponsiveness  

BALF bronchoalveolar lavage fluid 

CLOCK Circadian locomotor output cycles kaput 

COHb Carboxyhemoglobin 

COPD Chronic obstructive pulmonary disease  

CORT Corticosterone  

CRY Cryptochrome 

CS Cigarette smoke 

DNMT DNA methyltransferase 

EGCG epigallocatechin 3-gallate 

FEV1 Forced expiratory volume in one second 

FOXO3 Forkhead box O3 

HDAC Histone deacetylase 

IFN Interferon 

IL  Interleukin  

LT Leukotriene 



	
   4	
  

LTB4 Leukotriene B4  

MAPK Mitogen-activated protein kinase 

MCs Mast cells 

miRNA MicroRNA 

mMCP Mouse mast cell protease 

MMP Matrix metalloproteinases 

MMP-1 Collagenase-1  

NAC N-acetylcysteine 

NAD Nicotinamide adenine dinucleotide 

NADPH Nicotinamide adenine dinucleotide phosphate 

NE Neutrophil elastase  

NF-kB Nuclear Factor-kappaB 

NO Nitric oxide  

PDE Phosphodiesterases 

PER Period 

PI3K Phosphoinositide 3-kinase 

RAGE Receptor for advanced glycation endproducts 

ROS Reactive Oxygen Species  

SIRT1 Sirtuin1 

TNFα Tumour necrosis factor alpha  

TRAIL Tumour necrosis factor-related apoptosis-inducing ligand 

 51	
  

INTRODUCTION 52	
  

Chronic obstructive pulmonary disease (COPD) is the third leading cause of chronic 53	
  

morbidity and death worldwide and its prevalence is continuing to rise.1 Recent estimates 54	
  

suggest that its prevalence may reach 9–10% in adults over the age 40 and has a global cost 55	
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of >$2 trillion.2 Cigarette smoke (CS) is the leading cause of COPD in Western societies 56	
  

although exposure to air pollution and occupational exposures to dusts and fumes are also 57	
  

risk factors. In developing countries, exposure to biomass fuels used for cooking is a major 58	
  

precipitant.3 Only 25% of smokers develop COPD and genetic predisposition likely plays a 59	
  

role. 60	
  

COPD is an inflammatory lung syndrome that is characterised by the limitation of 61	
  

expiratory airflow that deteriorates over time. Although heterogeneous, it is characterised by 62	
  

the common pathologies of chronic bronchitis and/or emphysema that lead to reduced lung 63	
  

function. These pathological features are associated with frequent infection-induced 64	
  

exacerbations of chronic airflow limitation and breathlessness.4 Chronic inflammation is 65	
  

characterised by increased levels of neutrophils, macrophages and CD8+ T cells throughout 66	
  

the airways that together with the injured airway epithelium release a variety of inflammatory 67	
  

mediators including leukotrienes, interleukin (IL)-8 (CXCL8), Tumour necrosis factor alpha 68	
  

(TNFα) and reactive oxygen species (ROS).5-7 These events promote further inflammation 69	
  

forming a feedback loop that promotes chronic inflammation. Once induced the patients’ 70	
  

condition progressively deteriorates with worsening inflammation, emphysema, declining 71	
  

lung function and increased breathlessness. Importantly, the mechanisms that drive the 72	
  

induction and progression of chronic inflammation, emphysema and altered lung function are 73	
  

not well understood and this has hampered the development of effective treatments for 74	
  

COPD. There is a strong systemic component to the disease with cachexia and cardiovascular 75	
  

involvement and it is emerging that there is lung-gut crosstalk that is a contributing factor.8 76	
  

These factors need to be taken into account when developing new therapies. 77	
  

Current treatments for COPD use glucocorticoids and bronchodilators to suppress the 78	
  

symptoms of disease but have limited clinical efficacy. There are no treatments that 79	
  

effectively halt the induction or progression of COPD. Increasing our understanding of the 80	
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molecular pathways and responses that contribute to the initiation and progression of disease 81	
  

features will facilitate the development of novel therapies. Human studies are complicated by 82	
  

individual genetic background, environment, smoking habits, the gradual long-term 83	
  

progression of disease and limitations in the samples that can be collected. The development 84	
  

of animal models of COPD that accurately recapitulate the critical features of the human 85	
  

disease in a short time-frame will be useful in efforts to develop effective treatments. Here we 86	
  

summarise the available animal models that recapitulate airway disease obtained from 87	
  

exposure to CS, air pollution and ozone. We then review what we have learnt so far from 88	
  

these models in regard to underlying disease mechanisms, biomarker discovery and 89	
  

therapeutic development. 90	
  

 91	
  

ANIMAL MODELS 92	
  

The interrogation of animal models of COPD plays an important role in determining the 93	
  

mechanisms leading to the development and progression of COPD as they enable the analysis 94	
  

of pathways involving integrated whole body responses in a reasonable timeframe, and the 95	
  

use of in-bred strains removes issues of genetic variability. Animals that accurately display 96	
  

the hallmark features of the disease are key in the drug discovery process as they facilitate the 97	
  

testing of novel therapeutics. There are some issues with differences in respiratory 98	
  

physiology between humans and animals that need to be taken into account, such as the 99	
  

reduced numbers of bronchial branches in mice. 100	
  

The ideal model would possess the hallmark features of the human disease, be 101	
  

induced by the same aetiological agent and be reasonably short-term to allow rapid progress. 102	
  

 103	
  

CS-INDUCED ANIMAL MODELS 104	
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The use of tobacco, primarily CS, causes >5 million deaths/year, and CS is the main risk 105	
  

factor for the development of COPD. CS contains >7,000 chemicals, of which >250 are 106	
  

hazardous and >60 are carcinogenic, 20 carcinogens cause lung tumours in laboratory 107	
  

animals or humans and are, therefore, likely to be involved in the induction of lung cancer in 108	
  

humans.9 Collectively these factors induce inflammation (inflammatory cell influx and 109	
  

increases in cytokines and chemokines in the airway and parenchyma), mucus hypersecretion 110	
  

(goblet cell metaplasia), airway remodelling (smooth muscle deposition, matrix deposition, 111	
  

and fibrosis), emphysema and impair lung function. These are the major features of COPD 112	
  

that restrict the life quality of the patients. Nevertheless animal models of CS-induced disease 113	
  

have only recently been developed and have used Guinea pigs, rats and mice (Table 1). Mice 114	
  

have become the most popular because of cost, ease of housing, and the availability of a 115	
  

plethora of molecular and immunological reagents and genetically modified strains. 116	
  

 117	
  

Guinea pigs 118	
  

Guinea pig models of CS-induced COPD develop disease features such mucus-secreting 119	
  

goblet cell metaplasia in the airways, small airway remodelling, inflammation, altered lung 120	
  

function and emphysema.10-12 The development of mucus hyper-secretion and emphysema is 121	
  

more prominent than in other models. Serum markers such as cotinine or blood 122	
  

carboxyhemoglobin (COHb) are useful for confirming the relative amount of smoke 123	
  

exposure. Heck et al., showed levels of COHb in the blood of ~15–20% for an acute model 124	
  

and ~5% for a chronic model,13 which is similar to that detected in humans. Their main 125	
  

disadvantages are high cost and the lack of molecular and immunological tools such as 126	
  

antibodies and factor deficient and transgenic strains for performing molecular studies, and 127	
  

lung function is not generally assessed. 128	
  

 129	
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Rats  130	
  

Rats are becoming more prominent in studies of CS exposure and COPD. A wealth of 131	
  

information including genetic mapping has been gathered that allows the development of 132	
  

genetically modified strains of rats, although this is not routine as it is for mice. Rats and 133	
  

mice share ~90% of their genes with humans, and many of the physiological pathways and 134	
  

processes can be related clinically. Several rat models recapitulate some features of human 135	
  

COPD. Side-stream whole body CS exposure is the method of choice as the relatively large 136	
  

size of rats reduces the viability of large-scale mainstream nose-only smoke exposure 137	
  

methods. A 30-week protocol of side-stream CS exposure induced parenchymal destruction 138	
  

and altered lung function with increased tissue dampening and respiratory system resistance 139	
  

and compliance.14 The extensive time frames involved in these models reduces viability and 140	
  

progress. To address this a 12-week side-stream CS exposure protocol coupled with repetitive 141	
  

bacterial infections to the airways was developed to induce COPD.15 Several features of 142	
  

COPD were observed including pulmonary hypertension, and airway remodelling, and 143	
  

reduced alveolar number and pulmonary function. The similarities in the COPD features 144	
  

observed and their relevance to the clinical setting may allow for more comprehensive studies 145	
  

of the mechanisms underpinning the initiation and progression of COPD in rats, and facilitate 146	
  

the development of effective therapies. 147	
  

Rat specific nose-only exposure systems have been developed, however, most studies 148	
  

have not been aimed at elucidating CS-induced COPD and its mechanisms, but rather the 149	
  

short-term effects of exposure. Stinn, et al., used a two year nose-only smoke exposure 150	
  

regime to show that exposure to diesel exhaust but not sidestream CS resulted in lung 151	
  

pathophysiology in terms of lung weight, cell proliferation, inflammation and 152	
  

tumorigenesis.16 van Miert, et al., used an acute model with 2x1hr exposures of diluted 153	
  

mainstream CS to deliver varying concentrations of particulate matter to show dose 154	
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dependent increases in lung epithelial hyperpermeability.17 A similar study over 13 weeks 155	
  

showed that mainstream CS exposure upregulated nicotinic acetylcholine receptors in the 156	
  

brain.18 157	
  

 158	
  

Mice 159	
  

The majority of recent models of CS-induced models use mice. They offer the advantages of 160	
  

low cost and ease of housing, the availability of extensive genomic data, a wide array of 161	
  

molecular and immunological tools and the potential for nose-only exposures. Importantly, a 162	
  

plethora of factor-deficient or over-expressing mouse strains are available or can be easily 163	
  

and rapidly produced with new CRISPR technology. They are valuable in assessing the 164	
  

pathogenesis of COPD. These models and strains can be used to assess the impact of short-165	
  

term CS or other exposures (4 days to 4 weeks) or the processes involved in the generation of 166	
  

COPD features (8 weeks to 6 months). Many of the characteristic features of human COPD, 167	
  

such as chronic lung inflammation, pulmonary hypertension, airway remodelling, 168	
  

emphysema, and impaired lung function, can be generated in CS exposed mice.19-21 CS 169	
  

exposure can be combined with mouse models of respiratory infections to study the impact of 170	
  

infections on pathogenesis and their roles in exacerbations.19-25 In one model, mice were 171	
  

exposed to side-stream CS for 36 weeks that induced various hallmarks of human COPD, 172	
  

including increased airway resistance and respiratory system elastance.26 However, this is a 173	
  

long model and shorter models that have the hallmark features of disease would enable rapid 174	
  

progression of our understanding of pathogenesis and development of new treatments. We 175	
  

have recently developed a novel short-term mouse model of CS-induced experimental COPD, 176	
  

using nose-only exposure that generates the major features of the human disease in 8 177	
  

weeks.22,23,27,28 Mice are exposed to the CS of 12 cigarettes for 75 minutes per day, twice per 178	
  

day for 5 days per week. Exposure consists of normal air interspersed with puffs of CS and is 179	
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representative of a pack-a-day smoker.29 Cotinine levels found in these models are around 180	
  

100ng/ml immediately after exposure, which is similar to that found in patients saliva 181	
  

(smokers approx. 113ng/ml).30 This regime results in acute and chronic airway and 182	
  

parenchymal inflammation, goblet cell metaplasia, airway remodelling, emphysema and 183	
  

impaired lung function,22,23,27,28,31 i.e. the major hallmarks of human COPD. Disease features 184	
  

progress over 8-12 weeks of CS exposure.22 Like in humans; features are not suppressed by 185	
  

corticosteroid treatment and do not resolve over time, mice with experimental COPD are 186	
  

more susceptible to viral (influenza) and bacterial (Streptococcus pneumoniae) infections, 187	
  

and have systemic involvement with skeletal muscle loss, and effects on the reproductive 188	
  

tract.22,32,33 189	
  

 190	
  

AIR POLLUTION MODELS 191	
  

Air pollution-induced models exist for Guinea pig, rat, and mouse,34 and typically use 192	
  

particulate matter (e.g. urban particulate matter),35 gases (e.g. ozone),36-38 or a combination of 193	
  

the two (e.g. freshly generated diesel exhaust).39 They are employed to understand 194	
  

toxicological effects of pollution on the lung and the impacts on the development of allergic 195	
  

airways disease.39-41 Innate immune activation42 and induction of oxidative stress43 are 196	
  

frequently observed, which are directly relevant to the development and exacerbations of 197	
  

COPD. Typical outcome measures include lung inflammation, goblet cell metaplasia, and 198	
  

lung function alterations (including responsiveness to methacholine). These methods can be 199	
  

applied to investigate how air pollution contributes to a COPD-like pathology in animals. 200	
  

Nevertheless few studies have been performed. Those that have been undertaken along with 201	
  

the clinical epidemiology data that suggests air pollution is a contributing factor to the 202	
  

development44 and exacerbation of COPD.45 Acute (24 hours) and chronic (6 weeks) ozone 203	
  

exposure models are used to investigate lung inflammation and remodelling processes in 204	
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mice. Ozone initiates intracellular oxidative stress through the formation of ozonide and 205	
  

hydrogen peroxide,46 which induces a COPD-like phenotype in 6 weeks.38 Ozone exposure in 206	
  

mice induces airway inflammation, airway hyperresponsiveness (AHR)47 and lung 207	
  

destruction similar to that observed in patients with COPD.48 These effects are in part 208	
  

reversible by treatment with the antioxidant N-acetylcysteine (NAC)49,50 and the MIF 209	
  

inhibitor (S,R)3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-210	
  

1).51 The effects of ozone exposure are associated with mitochondrial dysfunction and 211	
  

reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial 212	
  

oxidative stress, and reduced mitochondrial complex I, III, and V expression in the lung. 213	
  

Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ 214	
  

reduced inflammation and AHR.38 Furthermore, chronic ozone exposure induces a steroid 215	
  

insensitive phenotype, where inflammation and remodelling are not prevented by 216	
  

dexamethasone pre-treatment in chronically exposed mice.51	
  Animal models of exposure to 217	
  

air pollution exposure alone or in combination with CS exposure will be valuable in 218	
  

exploring how this environmental risk factor impacts the development and exacerbations of 219	
  

COPD. 	
  220	
  

 221	
  

OTHER MODELS 222	
  

A variety of other models exist that can be used for specific purposes. The use of factors that 223	
  

are known to play specific pathogenic roles in COPD, such as elastase and 224	
  

lipopolysaccharide/endotoxin can be used to induce specific features.52  225	
  

 Transgenic and gene deficient mice have been used to investigate the roles of specific 226	
  

factors in COPD pathogenesis. Transgenic mice that overexpress a particular gene product 227	
  

have been used to demonstrate that some factors are involved in promoting COPD features, 228	
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usually alveolar enlargement/emphysema (Table 2). For example, the constitutive 229	
  

overexpression of collagenase-1 (MMP-1) resulted in alveolar enlargement53. A limitation of 230	
  

the study was that the expression of collagenase-1 was not inducible, although it was lung 231	
  

specific in some lines; furthermore there was no detection of expression during early 232	
  

development. The use of inducible transgenic factors enables the elucidation of their function 233	
  

in adulthood, which excludes any effects on development. Overexpression of the Th2 and 234	
  

Th1 cytokines IL-1326 and interferon (IFN)-γ54 are two important examples of the use of 235	
  

inducible transgenes. Their temporal overexpression leads to emphysema. Overexpression of 236	
  

IL-13 resulted in inflammation and lung destruction in a MMP-9, MMP-12 dependent 237	
  

manner55. Overexpression of IFN-γ resulted in inflammation and proteinase-dependent 238	
  

emphysema. 239	
  

 Gene deficient mice have been used to demonstrate complex roles for TGF-β in 240	
  

COPD. TGF-β deficient (-/-) mice have high mortality within 1 month of birth due to the 241	
  

chronic inflammation, hence limiting their utility in COPD studies. However, Avb-/- mice are 242	
  

deficient in β6-integrin, and fail to activate TGF-β within the lung. These mice develop 243	
  

emphysema over time with excess MMP-12 production and macrophage rich inflammation.56 244	
  

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine that induces 245	
  

both inflammation and apoptosis.57 We recently showed that total TRAIL deficient mice 246	
  

(Tnfsf10-/-) chronically exposed to CS had reduced inflammation in both the bronchoalveolar 247	
  

lavage fluid (BALF) and parenchymal tissue, and suppressed expression of pro-inflammatory 248	
  

cytokines (TNFα, IL-33), chemokines (CXCL1, -3, CCL4, -22) and other COPD-related 249	
  

factors (MMP-12, SAA3, active NF-kB p65)31. These reductions in inflammation were 250	
  

accompanied by decreased emphysema-like alveolar enlargement which all combined to 251	
  

improve lung function outcomes such as lung compliance. Most importantly therapeutic 252	
  

neutralisation of TRAIL induced a reduction in pulmonary inflammation, emphysema-like 253	
  



	
   13	
  

alveolar enlargement, and small airway changes31. This prompted us to examine human 254	
  

tissues, in which we observed TRAIL and its receptors were also elevated in bronchial 255	
  

brushings and parenchyma of COPD patients also. Thus targeting TRAIL may be a potential 256	
  

new therapeutic approach in humans. 257	
  

 258	
  

PATHOGENIC MECHANISMS IDENTIFIED IN ANIMAL MODELS 259	
  

Oxidative Stress  260	
  

The causative risk factors CS and environmental pollutants induce the generation of 261	
  

excessive oxidative stress from inflammatory cells, which plays an important pathogenic role 262	
  

in COPD.58-60 Increases in ROS, have been identified in mice in endothelial cells in response 263	
  

to CS that is mediated by the activation of nicotinamide adenine dinucleotide phosphate 264	
  

(NADPH) oxidase.61 Increases in mitochondria-specific ROS has been shown to accompany 265	
  

lung inflammation and AHR with ozone exposure of mice.38 This was associated with 266	
  

mitochondrial dysfunction. The mitochondria targeted anti-oxidant reversed these features. 267	
  

Short-term CS exposure (4 days) of mice induces systemic oxidative stress, indicated 268	
  

by elevated levels of ROS, lipid peroxidation and superoxide dismutase, in the heart, liver 269	
  

and kidney.62 These data are supported by another short-term study, where they found that 270	
  

both short-term (6 weeks) and long-term (16 weeks) CS exposure cause increases in 271	
  

arterial pressure and a marked decreases in nitric oxide (NO). They also reported a 272	
  

correlation between NO and changes in the structural and mechanical status of arterial 273	
  

walls in response to CS.63 274	
  

FOXO3 is a transcription factor that protects against oxidative stress by promoting the 275	
  

transcription of antioxidants such as catalase.64,65 Activation of the phosphatidyl-inositol 3-276	
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kinase (PI3K) signaling pathway leads to phosphorylation of FOXO proteins by the kinase 277	
  

AKT.66 Phosphorylated FOXO3 then translocates from the nucleus to the cytosol, where it 278	
  

becomes ubiquitinated, leading to its degradation by the proteasome.67 In the absence of 279	
  

external growth signals, the PI3K–AKT axis is inactive, and unphosphorylated FOXO3 binds 280	
  

to its DNA consensus sequence to promote target gene transcription. A novel role in 281	
  

regulating lung inflammation and COPD pathogenesis was identified in CS-exposed FOXO3-282	
  

/- mice. These mice had reduced antioxidant gene expression in the lungs that was associated 283	
  

with exaggerated inflammatory responses and increased alveolar enlargement compared to 284	
  

CS-exposed wild-type mice.68 Furthermore, FOXO3 has been shown to act as a fine-tuner of 285	
  

NF-kB activity, and also modulates CS-induced lung inflammatory responses and COPD in 286	
  

this way.68 287	
  

Sirtuin1 (SIRT1) is a NAD+-dependent deacetylase and has been shown to be 288	
  

decreased in the lungs of rodents exposed to CS.69,70 SIRT1 deacetylates FOXO3 through 289	
  

direct protein-protein interaction. This increases the activity of FOXO3 thereby tipping the 290	
  

balance to cellular survival in response to oxidative and carbonyl stress. A study of lung 291	
  

senescence using CS- and elastase-induced alveolar enlargement in mice, demonstrated that 292	
  

SIRT1 protected against emphysema and a decline in lung function through a FOXO3-293	
  

dependent anti-senescent mechanism.71 A potential therapy is resveratrol, which has been 294	
  

demonstrated to activate SIRT1.72 Recent studies have suggested that resveratrol attenuates 295	
  

oxidative stress-induced damage to the lung, as well as decreasing the levels of NF-kB 296	
  

activity and increasing HO-1 expression.73 297	
  

 298	
  

Circadian rhythm  299	
  

An internal molecular clock exists that drives intrinsic circadian rhythms of physiology and 300	
  

behaviour. It is defined as a transcriptional and translational feedback loop oscillator. 301	
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Emerging evidence suggests that the molecular clock is intimately associated with responses 302	
  

to environmental stimuli. The positive inductive elements include the transcription factors 303	
  

CLOCK and BMAL1, which form a heterodimer and initiate gene transcription including of 304	
  

Period (PER) and Cryptochrome (CRY).74,75 Conversely, negative feedback is promoted by 305	
  

PER:CRY heterodimers that translocate back to the nucleus to repress their own transcription 306	
  

by acting on the CLOCK:BMAL1 complex.76,77 BMAL1 may also have a role in oxidative 307	
  

stress-induced inflammation.78-80 Patients with COPD display abnormal circadian rhythms in 308	
  

their lung function including variations in inspiratory capacity (IC), forced expiratory volume 309	
  

in 1 second (FEV1) forced vital capacity and peak inspiratory flow.81-83 Hence, CS exposure 310	
  

may affect circadian clock function in the lung leading to inflammatory and injurious 311	
  

responses. SIRT1 affects clock function by binding to CLOCK:BMAL1 complexes and 312	
  

deacetylating BMAL1 and PER2 proteins.84,85 CS exposure of mice alters the expression of 313	
  

the clock gene and reduces locomotor activity by disrupting the central and peripheral clocks, 314	
  

and increasing lung inflammation.84 Furthermore, BMAL1 has been shown to be acetylated 315	
  

and degraded in mouse lungs in a CS exposed model, mechanistically linking this factor to 316	
  

the CS-induced reduction of SIRT1.84 317	
  

Further studies in this area have revealed that two stress hormones, corticosterone 318	
  

(CORT), an adrenal steroid that plays a substantial role in stress and anti-inflammatory 319	
  

responses, and serotonin (5-hydroxytryptamine; 5HT), a neurohormone that contributes to 320	
  

sleep/wake regulation, are altered in the plasma of CS-exposed mice. This suggests that CS 321	
  

exposure affects the rhythms of stress hormone secretion, which may have subsequent 322	
  

detrimental effects on cognitive function, depression-like behaviour, mood/anxiety and sleep 323	
  

quality in smokers and COPD patients.86 324	
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 Understanding the contributions of the molecular clock function to the physiology and 325	
  

function of the lung, particularly in response to tobacco, may inform the schedule of 326	
  

treatment in the management of COPD.  327	
  

 328	
  

Epigenetics 329	
  

Epigenetics is the study of mitotically and/or meiotically heritable changes in gene function 330	
  

that does not involve changes in DNA sequence. These changes influence gene expression 331	
  

and can result from three mechanisms; DNA methylation, histone modification and non-332	
  

coding RNA interference. Epigenetic modifications have been linked to a number of diseases 333	
  

such as asthma and COPD (Table 3).  334	
  

In one study mice exposed to CS had global DNA methylation patterns that were 335	
  

altered prior to changes in histopathology,87 suggesting that these changes may precede 336	
  

disease development and could therefore be a potential biomarker. In addition DNA 337	
  

methylation may prime for a second insult, such as infection, that may increase susceptibility 338	
  

to COPD. DNA methyltransferases (DNMTs) are regulatory enzymes that are responsible for 339	
  

DNA methylation that silences gene transcription. The use of the DNMT inhibitor; 340	
  

epigallocatechin 3-gallate (EGCG), found in green tea, has been demonstrated to abrogate the 341	
  

alveolar enlargement and goblet cell hyperplasia in rats exposed to CS.88 In a mouse model, 342	
  

EGCG, has been shown to decrease inflammatory cell number in the lavage fluid but had no 343	
  

effects in halting the development of alveolar enlargement.89 344	
  

In regard to histone modifications, a mass spectrometry analysis approach in CS-345	
  

exposed mouse lungs identified potential novel histone marks including acetylation, as well 346	
  

as mono- and di-methylation of specific lysine and arginine residues of histones H3 and H4. 347	
  

Furthermore, histones H3K27me1 and H3K27me2 were only detected in the CS-exposed 348	
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group suggesting that gene transcriptional regulation was affected.90 A rat model of CS 349	
  

exposure was interrogated to show increased acetyl-H4 and phosphorylation of a specific 350	
  

histone 3 serine residue, H3S10p, compared to non-exposed groups both of which were 351	
  

thought to trigger inflammatory gene transcription.91 Histone deacetylase (HDAC) activity 352	
  

and in particular HDAC-2, is reduced in CS-exposed mice. This was associated with a 353	
  

reduction in glucocorticoid function, which was restored when mice were treated with the 354	
  

PI3K inhibitor theophylline.92,93 Decreased HDAC2 activity and expression was also detected 355	
  

in the lung tissue of CS-exposed rats.91 From a therapeutic perspective it has been shown that 356	
  

low levels of theophylline can restore HDAC2 activity and therefore GR function in 357	
  

macrophages.94 358	
  

MicroRNAs (miRNAs) are noncoding sequences that post-transcriptionally regulate 359	
  

messenger RNAs (mRNAs).24,95 In this way miRNAs contribute to the basic regulatory 360	
  

mechanisms of gene translation in cells including those that control inflammation. Thus, 361	
  

dysregulation of miRNAs, resulting in aberrant gene expression may play important roles in 362	
  

COPD pathogenesis. Analysis of miRNA in the lungs of rats exposed to CS extract (CSE) 363	
  

showed that most were down-regulated. Out of 484 miRNA analysed, 126 were 364	
  

downregulated including Let-7c, miR-34c and miR-222.96 In contrast, in the lungs of mice 365	
  

exposed to CSE only 15 were downregulated including, Let-7a, -7b and -7f, miR-124a and -366	
  

122a.97 Several of these miRNAs, such as miR-30, -146, -132 and -155, have roles in the 367	
  

activation of the NF-κB pathway, and their downregulation would increase inflammatory 368	
  

responses in the lungs and may contribute to COPD pathogenesis. In our CS-induced model 369	
  

that was followed by infection with Haeomphilus influenzae, the inhibition of miR-328 with 370	
  

an antagomir reduced infection without increasing inflammation, inhibited excessive mucus 371	
  

production and improved lung function.24 This was likely the result of augmented 372	
  

macrophage phagocytosis. 373	
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With evidence of aberrant epigenetic alterations occurring in response to CS and in 374	
  

the pathogenesis of COPD, targeted inhibitors and/or activators may restore the balance of 375	
  

regulatory enzymes and miRNAs. This would reduce pro-inflammatory gene transcription, 376	
  

and disease pathogenesis. 377	
  

 378	
  

Mast cell proteases 379	
  

Mast cells (MCs) have potent pro-inflammatory properties. Upon activation, they release 380	
  

newly formed and preformed mediators from their granules. Around 50% of human MCs 381	
  

consist of 16 neutral proteases that have various overlapping and unique roles in acute 382	
  

inflammation, blood coagulation and in protecting against infection.98 MC factors have 383	
  

highly potent effects and the influx and activation of small numbers of these cells can have a 384	
  

massive impact inducing life-threatening anaphylaxis. Genomewide association studies have 385	
  

not found a link between mast cell proteases and COPD, however this is likely because of 386	
  

their overlapping activities. Animal models can be used to delineate their roles that cannot be 387	
  

studied in humans. We have used our mouse model of CS-induced experimental COPD and 388	
  

factor deficient mouse strains to show that MC proteases play important roles in 389	
  

pathogenesis. The murine orthologs of human mast cell tryptase-β and tryptase-γ are mouse 390	
  

mast cell protease (mMCP)-6 and Prss31, respectively. When exposed to CS mMCP-6-/- mice 391	
  

had an equivalent elevated influx of mast cells into the airways as wild-type mice, but had 392	
  

reduced macrophage and neutrophil influx and parenchymal inflammation, and were 393	
  

protected against airway remodeling, emphysema and impaired lung function.22,28 Similarly 394	
  

Prss31-/- mice were also protected against airway and lung inflammation, airway remodeling 395	
  

and a measure of impaired lung function. These studies identify mast cell proteases as 396	
  

pathogenic factors and potential therapeutic targets in COPD. The development of inhibitors 397	
  

could suppress their activity and may have therapeutic benefit for patients. 398	
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 399	
  

Other mechanisms 400	
  

 We describe a selection of mechanisms of interest identified using animal models that are 401	
  

likely involved in COPD pathogenesis. Many other studies have been performed, 402	
  

mechanisms and therapeutic targets identified and drugs trialed. These models can also be 403	
  

used to study other features of COPD including systemic effects, pulmonary and gut cross 404	
  

talk and the roles of microbiomes.8,99 Genomic and epigenetic profiling and next generation 405	
  

sequencing would provide valuable libraries of data that could be interrogated to find broader 406	
  

disease pathways that could also be targeted.100 407	
  

 408	
  

BIOMARKER DISCOVERY 409	
  

In COPD the mechanisms that drive and mark the development and progression of disease 410	
  

remain poorly understood. As a result there are currently no reliable biomarkers of disease 411	
  

that can be used for non-invasive screening. Long-term monitoring of declines in FEV1 has 412	
  

been used to identify risk factors and gauge the efficacy of potential therapies, however this 413	
  

approach is slow and expensive. The identification of defined biomarkers would be valuable 414	
  

in the investigation of the natural history of COPD, the development of rapid and accurate 415	
  

diagnostic techniques, as well as provide a means for identifying those most at risk of disease 416	
  

development or progression. They could also serve as markers for the evaluation of efficacy 417	
  

and appropriate dosage of treatment in relatively short-term studies. The use of whole 418	
  

genome arrays or proteomics to identify biomarkers of disease has increased recently. A 419	
  

proteomic analysis of lung tissue from CS-exposed rats found two antioxidants, thioredoxin 420	
  

and peroxiredoxin-6 were increased whereas enolase, a multifunctional protein with roles in 421	
  

glycolysis, tolerance of hypoxia and allergic responses was decreased.101 Moreover, another 422	
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similar model showed that in lung tissue the receptor for advanced glycation endproducts 423	
  

(RAGE), calcyclin and thioredoxin were all increased.102 A benefit of discovering biomarkers 424	
  

in animal models is that the nature of their involvement can be assessed using interventions 425	
  

or genetic modifications (deletion or over-expression) and potential for therapeutic 426	
  

intervention can be studied. Nevertheless these findings are limited until they have been 427	
  

validated in clinical samples. 428	
  

 429	
  

THERAPEUTIC DEVELOPMENT AND TESTING 430	
  

Current treatments for COPD are poorly effective at inhibiting chronic inflammation, and do 431	
  

not reverse pathology or modify the factors that initiate and lead to disease progression in the 432	
  

long term. Therefore, it is clear that there is a need to develop new therapies to prevent the 433	
  

initiation and the progression of COPD, and an effective option is through the use of animal 434	
  

models that accurately reflect the physiopathology of the disease. Indeed, many COPD drugs 435	
  

that are currently in clinical development, such as inhibitors of inflammatory mediators, 436	
  

oxidative stress, kinases, phosphodiesterases (PDE) and proteinases, were originally 437	
  

identified in studies using animal models. 438	
  

Various inhibitors of inflammatory mediators are being developed and tested for the 439	
  

treatment of COPD. Inhibitors of TRAIL, leukotriene B4 (LTB4), TNF-α, IL-1, IL-8, and 440	
  

epidermal growth factor have shown strong indications when used in animal models, 441	
  

however the translation into the clinic has been disappointing with little to no sign of 442	
  

improved disease outcome in patients.103 For example, studies exposing TNF-α receptor 443	
  

knockout mice to CS resulted in reduced inflammatory cells in lavage fluid and attenuated 444	
  

alveolar enlargement compared to wild-type mice.104 These findings were supported by 445	
  

another knockout mouse study where both TNF-α receptors were shown to contribute to the 446	
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pathogenesis of murine COPD, with TNF-α receptor-2 being the most active receptor in the 447	
  

development of inflammation, emphysema and systemic weight loss.105 However, as 448	
  

occurred with asthma, where mouse studies were not interpreted properly or transferred 449	
  

effectively into clinical studies, it is likely that selected groups or phenotypes of patients may 450	
  

respond better to specific treatments.  451	
  

Anti-oxidants, particularly those that target specific processes in COPD have shown 452	
  

some promise. For example, in addition to reserveratrol, the antioxidant enzyme Gpx-1 has 453	
  

been shown to protect against lung inflammation and CS-induced emphysema in mice, and a 454	
  

Gpx mimetic also reduced lung inflammation when administered both prophylactically and 455	
  

therapeutically.106 456	
  

Studies of animal models of CS-induced airway inflammation support the potential 457	
  

therapeutic use of kinase inhibitors, such as those that inhibit p38 mitogen-activated protein 458	
  

kinase (MAPK) and PI3K, in COPD.107  MAPKs plays key roles in chronic inflammation,108 459	
  

and the p38 MAPK pathway is activated by cellular stress and regulates the expression of a 460	
  

wide variety of inflammatory cytokines and remodeling factors including IL-8, TNF-α and 461	
  

MMPs.109 Small molecule inhibitors of p38 MAPK have been developed, such as SB239063 462	
  

and have been shown to have anti-inflammatory and -remodelling effects.110 SB239063 463	
  

reduces neutrophil infiltration and the concentrations of IL-6 and MMP-9 in the BALF of rats 464	
  

after endotoxin inhalation, suggesting its potential as an anti-inflammatory agent in COPD.111 465	
  

PI3Ks play a role in controlling a wide variety of intracellular signaling pathways. Recent 466	
  

studies suggested that numerous components of the PI3K pathway play a crucial role in the 467	
  

expression and activation of inflammatory mediators, inflammatory cell recruitment, immune 468	
  

cell function and airway remodeling as well as corticosteroid insensitivity in chronic 469	
  

inflammatory respiratory disease such as asthma.112 It is emerging that PI3K also plays a 470	
  

pivotal role in the pathogenesis of COPD. It is important in the activation of macrophage and 471	
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neutrophils, which are key players in COPD inflammation.113 We have shown that influenza 472	
  

infection is more severe in CS-induced experimental COPD that is associated with increased 473	
  

PI3K activity.23 Treatment with the PI3K inhibitor LY294002 suppresses this activity, and 474	
  

enhances anti-viral responses that attenuate the infection leading to improved lung function.  475	
  

 The PDE4 inhibitor Roflumilast, a licensed treatment for severe COPD, was 476	
  

originally identified as a potential therapeutic in acute and chronic murine models of CS-477	
  

exposure.114 PDE4 degrades the anti-inflammatory cyclic adenosine monophosphate and its 478	
  

inhibition in mice has been shown to have numerous protective effects including reversing 479	
  

the loss of lung desmosine, a breakdown product of elastin, reducing neutrophil and 480	
  

macrophage influx, increasing the anti-inflammatory cytokine IL-10, and improving 481	
  

emphysema.114 482	
  

Serine-, metallo- and cysteine proteinases are the primary proteinases implicated in 483	
  

the development of COPD.115 In studies aimed at preventing the destruction of alveolar walls 484	
  

by proteolysis, and ultimately the development of emphysema, inhibitors of various 485	
  

proteinases have been trialed in animal models with varying levels of success. Guinea pigs 486	
  

were subjected to acute CS-exposure to induce increases in lavage neutrophils, desmosine, 487	
  

and hydroxyproline, and elastine and collagen breakdown. Subsequent treatments with the 488	
  

neutrophil elastase inhibitor ZD0892, reduced all of these factors, highlighting proteinase 489	
  

inhibitors as promising therapeutics for further studies.116 490	
  

Collectively studies show that animal models of COPD are valuable tools that further 491	
  

our understanding of the pathogenic aspects of the disease and can be used to identify novel 492	
  

therapeutic targets and develop and test new therapies. The inherent heterogeneity of the 493	
  

disease can also be reproduced and studied in animal models that are induced using different 494	
  

combinations or doses of induction agents. In such studies it is important to choose the model 495	
  

according to whether the research is focused on pathogenesis, diagnosis or treatment. 496	
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 497	
  

CONCLUSIONS 498	
  

The current therapies for COPD are poorly effective because we do not understand how the 499	
  

disease develops and progresses. Animal models have been established that develop the 500	
  

hallmark features of human COPD. The use of mice and CS exposure are the most common 501	
  

and representative of the causal factors, respectively. They develop pulmonary and systemic 502	
  

inflammation, small airway remodeling, emphysema and impaired lung function, some 503	
  

within the relatively short time frames of 8 weeks. These models are used to find factors that 504	
  

may be important in the pathogenesis and progression of COPD that identifies potential new 505	
  

therapeutic targets that are common between animal models and human disease. They can be 506	
  

also be used to discover biomarkers and test new treatments. Whole genome studies are now 507	
  

easily and economically achievable opening up this avenue for analysis of new representative 508	
  

animal models. Advancements in protein analysis have also allowed us to assess protein 509	
  

changes and post-translational modifications that may be important drivers of COPD. The 510	
  

interrogation of animal models has identified specific roles for inflammatory factors and 511	
  

immune cells. Numerous mechanisms associated with COPD have been identified such as, 512	
  

oxidative stress, circadian rhythms and epigenetic changes. These studies have opened up 513	
  

avenues for therapeutic development that target these mechanisms. Studies have aimed to 514	
  

develop more effective therapies, which can be tailored to the disease profile of patients 515	
  

leading to the future of “personalised medicine”. Since there are currently no effective 516	
  

therapies that halt the progression of disease, development of biomarkers for early detection 517	
  

of disease would dramatically improve the therapeutic outcome of these novel therapies. The 518	
  

use of a short-term animal model of COPD disease features, allows the identification of 519	
  

biomarkers, the possible targets of novel therapies and to test and assess the effects of novel 520	
  

therapeutic agents.  521	
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Species Inflammation Mucus 
hyper-

secretion 

Small 
airway 

remodelling 

Emphysema Impaired 
lung 

function 

Smoking 
cessation 

Steroid 
resistance 

Ref 

Guinea 
Pig 

+   +    117 

+ + + + + + 
 11,116,118-

122 

+ 
 

+ 
    123 
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+ + + + 
   123-125 

Rat +   +    126,127 
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   128,129 

+ 
 

+ + 
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+ + 
 

+ + 
 

+ 
131 

 
+ 

     132 

Mouse +   + +   21,133 

+ 
 

+ + 
   104,134 

+ 
  

+ + 
  135 

+ 
 + +    136-138 

+ 
  

+ 
 

+ 
 89 

+ 
  

+ 
   139 

+ 
  

+ 
 

+ 
 140 

+ 
  

+ + 
  141 

+ + + + + + + 
22,23,27,28,31 

 914	
  

Table 1. CS-induced animal models of COPD. Animal models that display features of 915	
  

chronic obstructive pulmonary disease (indicated by +). Only the last model by Beckett et al., 916	
  

used in other studies, displays the important aspects of disease phenotype, including steroid 917	
  

insensitivity.  918	
  

  919	
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 Mutation  Phenotype  Ref 
Transgenic mice     
Collagenase-1 MMP-1 Alveolar enlargement 53 
Interleukin-13  IL-13 MMP-9, MMP-12 

dependent lung 
destruction, airway 
inflammation, and airway 
remodelling. 

26,55 

Interferon (IFN)-γ IFN-γ Inflammation and 
proteinase-dependent 
emphysema 

54 

ApolipoproteinA-1 (ApoA1) Doxycycline 
Induced 
ApoA1 
 

Protection against lung 
inflammation, oxidative 
stress, apoptosis and 
metalloprotease after 
exposure to CS 

142 

“Knock-out” mice     
Transforming growth factor beta 
(TGF-β) 

Avb-/- Display a development in 
emphysema and 
macrophage rich 
inflammation  

56 

Nrf2 Nrf2-/- Susceptible to CS-induced 
emphysema 

143,144 

Macrophage elastase (MMP12) MMP12-/- Protection against 
emphysema after exposure 
to CS 

21 

Neutrophil Elastase (NE) NE-/- Protection against 
emphysema after exposure 
to CS 

145 

Tumor necrosis factor-related 
apoptosis-inducing ligand 
(TRAIL) 

Tnfsf10 -/- Protection against 
inflammation, emphysema 
and lung function after CS 
exposure 

31 

 920	
  

Table 2 Genetically modified mice that develop or are protected against COPD-like features. 921	
  

  922	
  



	
   35	
  

 Animal 
model 

Epigenetic modification Relevance/Findings Ref 

DNA methylation Mouse 
(CS) 

Altered Global DNA 
methylation 

Potential biomarker 87 

Histone modification  Mouse 
(CS) 

Increased:  
Lysine methylation sites:  
H3K27me2; H3K36me; 
HK56me2; 
H4K20me2; H4K31me2; 
Arginine methylation sites:  
H4R35me2; H4R35me2; 
H4R36me1 
Lysine acetylation sites:  
H3K79ac; H4K12ac;  
Decreased:  
H3K23me2; H3R72me2; 
H4K16ac 

Smoke affects gene 
transcriptional regulation 

90 

 Rat (CS) Increased acetylated 
histone H4 

Inflammatory gene 
transcription  

91 

 Mouse 
(CS) 

Decreased HDAC (total 
and -2) activity  

Correlated with reduction 
in Glucocorticoid 
function  

92,93 

 Mouse 
(CS & 
elastase) 

Decreased SIRT1 Potential therapeutic 
avenue by activating 
SIRT1  

71 

 Rat (CS) Decreased HDAC2 Increased inflammatory 
gene transcription 

91 

miRNAs Rat (CS) Decreased let7c, miR-34c 
and miR222 

 96 

Rat (CS)  Increased miR146a, miR-
92a-2, miR-147, miR-21 
and miR-20 

 146 

 Mouse 
(CS) 

Increased miR-135b  147 

 Mouse 
(CS) 

Decreased miR-34b, miR-
345, miR-421, miR-450b, 
miR-466 and miR-469 

Not reversed after 1 
week CS cessation  

148 

 923	
  

Table 3 Altered epigenetic mechanisms discovered in animal models of COPD. 924	
  


