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Abstract. Recent advances in spatial ecology have improved our understanding of the
role of large-scale animal movements. However, an unsolved problem concerns the inherent
stochasticity involved in many animal search displacements and its possible adaptive val ue.
When animals have no information about where targets (i.e., resource patches, mates, etc.)
are located, different random search strategies may provide different chances to find them.
Assuming random-walk models as a necessary tool to understand how animals face such
environmental uncertainty, we analyze the statistical differences between two random-walk
models commonly used to fit animal movement data, the Lévy walks and the correlated
random walks, and we quantify their efficiencies (i.e., the number of targetsfoundinrelation
to total displacement) within a random search context. Correlated random-walk properties
(i.e., scale-finite correlations) may be interpreted as the by-product of locally scanning
mechanisms. Lévy walks, instead, have fundamental properties (i.e., super-diffusivity and
scale invariance) that allow a higher efficiency in random search scenarios. Specific bio-
logical mechanisms related to how animals punctuate their movement with sudden reori-
entations in a random search would be sufficient to sustain Lévy walk properties. Fur-
thermore, we investigate a new model (the Lévy-modulated correlated random walk) that
combines the properties of correlated and Lévy walks. This model shows that Lévy walk
properties are robust to any behavioral mechanism providing short-range correlations in
the walk. We propose that some animals may have evolved the ability of performing Lévy

walks as adaptive strategies in order to face search uncertainties.
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INTRODUCTION

Standard methods in spatial ecology consider
Brownian motion and Fickian diffusion as two basic
properties of animal movement at the long-term limit
(i.e., large spatial scales and long temporal scales).
Thus, it isassumed that animal movements can be mod-
eled (at the long-term limit) as uncorrelated random
walks (Okubo 1980, Berg 1983). The problem of un-
correlated random walks is that they do not account
for directional persistence in the movement (i.e., the
tendency by animals to continue moving in the same
direction). Such limitation was overcome with two dif-
ferent types of random walks, correlated random walks
(CRWs) and Lévy walks (LWSs).

CRWs appeared in ecology from the analysis of short
and middle-scaled animal movement data. Experiments
with ants, beetles, and butterflies were performed in
less than 25-m? arenas, or otherwise, in their natural
environments, and usually last less than an hour (e.g.,
Bovet and Benhamou 1988, Turchin 1991, Crist et al.
1992). From these studies, ecologists promptly became
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aware of the necessity of adding directional persistence
into pure random walks to reproduce realistic animal
movements (Kareiva and Shigesada 1983, Bovet and
Benhamou 1988). More recently, the mathematical
properties of CRWs were used to explore the link be-
tween individual animal movements and population-
level spatial patterns (Turchin 1991, 1998). Further
studies have considered the relative straightness of the
CRW (i.e., degree of directionality; [Haefner and Crist
1994], or sinuosity, [Bovet and Benhamou 1991, Bovet
and Bovet 1993, Benhamou 2004]) as relevant prop-
erties characterizing animal movement.

The analysis of animal movement at larger spatial
scales or at longer temporal scales has given rise to a
new category of random-walk models known as Lévy
walks (Levandowsky et al. 1988a, Viswanathan et al.
1996). Animal pathsinvolving large spatial or temporal
scales (i.e., large-scale animal movement), turn out to
be a combination of “‘walk clusters” with long travels
between them. The heterogeneous multiscal e-like sam-
pling pattern generated by such paths are closely re-
lated to fractal geometries (Mandelbrot 1977) and bet-
ter modeled by random walks with Lévy statistics. LWs
have their origin in the field of statistical mechanics
and find wide application in physics (Shlesinger et al.
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1995, Klafter et al. 1996, Weeks and Swinney 1998)
and natural sciences such as geology and biology (Met-
zler and Klafter 2004). Although they have only re-
cently gained attention in optimal foraging theory (Vis-
wanathan et al. 1996, 1999), they appeared in an eco-
logical context around the same decade as CRWs. The
first mention of Lévy walks as animal search strategies
can be found in Shlesinger and Klafter (1986:283).
After that, Lévy walks were formally considered by
plankton ecologists (Levandowsky et al. 1988a, b,
Klafter et al. 1989).

CRW and LW models have been adjusted success-
fully to awide range of empirical data(CRWs[Kareiva
and Shigesada 1983, Bovet and Benhamou 1988, Tur-
chin 1991, Crist et al. 1992, Johnson et al. 1992, Berg-
man et al. 2000], LWs [Viswanathan et al. 1996, Lev-
andowsky et al. 1997, Atkinson et al. 2002, Bartumeus
et al. 2003, Ramos-Fernandez et al. 2004]). Recent
works have introduced the idea of hierarchical scale
adjustments on animal displacements (Fritz et al.
2003), and have fitted field data of specific species
(Marell et al. 2002, Austin et al. 2004) by using both
models. All these studies have shown that CRWs and
LWs can be used asfitting proceduresto analyze animal
movement. Nevertheless, there is a lack of an expli-
cative framework for such an approach, which severely
limits the biological interpretation of the obtained re-
sults. A better understanding of random searching pro-
cesses may help to develop random-walk models with
sound explicative power, sensu Ginzberg and Jensen
(2004). This knowledge could clarify how animalsface
environmental uncertainty and reduced perceptual ca-
pabilities in large-scal e displacements (Lima and Zoll-
ner 1996). Further, a solid relationship between animal
behavior and the statistical properties of movement
could be established, thus uncovering useful links be-
tween the behavioral (Bell 1991) and the pattern-based
approaches common in spatial ecology (Okubo 1980,
Tilman and Kareiva 1997).

Although some theoretical studies have already
shown the potential role of CRWs and LWs in the un-
derstanding of animal random search strategies (Zoll-
ner and Lima 1999, Viswanathan et al. 1999), two fun-
damental questions about CRW and LW models still
need to be addressed. First, quantifying their efficiency
as random search strategies based on their respective
statistical and scaling properties. Second, developing
adequate biological interpretations of such properties
in a random search context. The present contribution
is afirst effort to clarify the above points. For doing
so, we have structured our analysis as follows. First,
we demonstrate quantitatively relevant differences in
the statistical properties of CRWs and LWs. Then, we
discuss how such properties explain the different ef-
ficiencies obtained when the model s are used as random
search strategies in the ecological context. Finally, we
suggest how the present results may lead to a better
theoretical understanding of some fundamental aspects
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of large-scale animal displacementsin real ecosystems.
We would like to emphasize that our goal is not to
provide recipes to analyze specific empirical data and
determine which models would lead to a better fitting
in a particular case. Instead, our purpose is to provide
general criteria to evaluate why we should expect one
of the models to fit better. Providing explicative power
to random-walk models is especially necessary if such
models are going to be used as null models, as well as
if deviations from such null models are going to be
interpreted biologically.

METHODS

Random walks constitute probabilistic discrete step
models that involve strong simplifications of real an-
imal movement behavior. In relation to more complex
behavioralist models including many parameters, ran-
dom-walk models ultimately express behavioral min-
imalism (Limaand Zollner 1996, Turchin 1998). Their
main basic assumption holds that real animal move-
ments consist of a discrete series of displacement
events (i.e., move lengths) separated by successive re-
orientation events (i.e., turning angles). Discretization
of complex movement behaviors will determine (after
a large enough number of successive moves) the sta-
tistical distribution of displacement lengths on the one
hand, and the statistical distribution of changes of di-
rection (i.e., turning angles) on the other hand. From
successive random draws of such distributions, we can
obtain different movement path realizations. All the
paths obtained by this method have statistical equiv-
alence.

The models

We have used three random-walk models in our
quantitative analysis. Correlated random walks
(CRWs), Lévy walks (LWSs), and a new model based
on the previous ones which we have named L évy-mod-
ulated correlated random walks (LMCRWSs). Each
model controls the directional persistence of the move-
ment (i.e., the degree of correlation in the random walk)
in adifferent way. Below we briefly discuss each model
and the simulation procedures, leaving to the Appendix
all the technical details.

CRW models combine a Gaussian (or other expo-
nentially decaying) distribution of move lengths (i.e.,
displacement events) with a nonuniform angular dis-
tribution of turning angles (i.e., reorientation events).
These models control directional persistence (i.e., the
degree of correlation in the random walk) viathe prob-
ability distribution of turning angles. In our study, we
have used a wrapped Cauchy distribution (WCD [Bat-
schelet 1981, Haefner and Crist 1994]) for the turning
angles. Directional persistence is controlled by chang-
ing the shape parameter of the WCD (p). For p = 0O,
we obtain a uniform distribution with no correlation
between successive steps, thus Brownian motion
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(a) Shape of the wrapped Cauchy distribution used in the correlated random walk, for different values of the

shape parameter p. (b) Examples of correlated random walks, generated by wrapped Cauchy distributions with different shape
parameters. (c) Power-law distributions used in the Lévy walk, for different values of the Lévy exponent . (d) Examples
of Lévy walks, generated by power-law distributions with different Lévy exponents.

emerges. For p = 1, we get a delta distribution at 0°
(Fig. 1a), leading to straight-line searches (Fig. 1b).

LW models involve a uniform distribution for the
turning angles, but a power-law distribution for the
move lengths (i.e., the so-called flights). The exponent
of the power-law is named the Lévy index (1 < p =
3, see Fig. 1c) and controls the range of correlations
in the movement. LW models thus comprise a rich
variety of paths ranging from Brownian motion (p =
3) to straight-line paths (n - 1; Fig. 1d).

Finally, the LMCRW model introduced here gen-
erates a random walk with (i) a WCD for the turning
angles within a flight, (ii) a Gaussian distribution of
move steps within a flight, (iii) a uniform distribution
for the turning angles between flights, and (iv) a power-
law distribution of flight lengths. Asin the LW model,
the directional persistence of LMCRW is also intro-
duced through a power-law distribution of move
lengths (i.e., flights) but we can also modulate or con-
trol the degree of directional persistence during flight
lengths through a WCD of turning angles (i.e., by
changing the value of p). This new model can reveal
which type of directional persistence controls the op-
timization of random searches, whether the power-law

distribution of move lengths or the WCD of turning
angles.

The simulations

The statistical properties of random-walk models
should be evaluated at the long-term limit (i.e., large
spatial scales and long temporal scales). When running
simulations, this means that both the turning angle and
the move length probability distributions should be
thoroughly sampled (i.e., this is especially important
with long-tailed probability distributions). The long-
term statistical properties of random searches only
emerge once a minimum amount of time and space are
included in the search. The spatiotemporal scales re-
quired for that are not fixed, but are organism specific.

A first group of simulations studied the behavior of
a relevant macroscopic property of random walks: the
mean square displacement (msd), defined as the
squared distance that an organism moves from its start-
ing location to another point during a given time, av-
eraged over many different random walkers. Msd is
related to the CRW metric of net squared displacement
but is not exactly the same (see the Appendix for more
details). In this set of simulations, we computed the
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msd for a set of random walkers moving in a two-
dimensional arena at different times considering dif-
ferent parameter values for p and . in CRWs and LWs,
respectively.

We devised a second group of simulations in order
to determine the search efficiencies (\v) of the three
types of random walks (i.e., CRW, LW, and LMCRW
models). The objects that are looked for are called tar-
gets. In general, a target may represent any important
resource for a searcher (i.e., food, mates, breeding hab-
itats, nesting sites, etc.). In our simulations, targets are
nonmobile, thus we prefer the term target sites (e.g.,
static resources, suitable habitats, etc.). We defined the
search efficiency function v as the ratio of the number
of target sites visited to the total distance traversed by
the searcher. Note that in LWSs, 1 = (), in CRWSs, 1
= n(p), and inthe LMCRWS, 1 = n(, p). Specifically,
the simulations quantified the average search efficiency
of a set of random walkers provided with aradial de-
tection distance r, that looked for nonmobile circular
items with radius r, (i.e., target sites) in a two-dimen-
sional space with periodic boundary conditions. Target
sites were uniformly distributed in an otherwise ho-
mogeneous arena. The scaling of the search scenarios
is based on a unique key parameter: the mean free path
(N\), which is defined as the average distance between
two target sites. The mean free path isinversely related
to the density of target sites and the searcher’s detection
radius and gives us the idea of how far the searcher
moves before ** detecting’” atarget (see Appendix). We
defined three different search scenarios with increasing
values of \ representing a decreasing gradient of target
site densities (we kept the same searcher’s detection
radius for the three search scenarios). To represent dif-
ferent search strategies, we ran the simulations using
different parameter values for each random-walk model
(i.e., LW and CRW). The product Av allows usto obtain
a metric for the search efficiency that is independent
of the target site density.

We considered two kinds of encounter dynamics in
the efficiency simulations: destructive and nondestruc-
tive. In the case of nondestructive searches, the search-
er can visit the same target site many times. This ac-
counts for those cases in which target sites become
only temporarily depleted or searchers become satiated
and leave the area. In the case of destructive searches,
the target site found by the searcher becomes unde-
tectable in subsequent displacements—the target site
“disappears.” In this case, just to make averages al-
ways with the same target density, we generated a new
target site at random in the searching space. Both types
of encounter dynamics may represent real ecological
situations and should demand different random-search
strategies in order to optimize the rate of encounters
(Viswanathan et al. 1999). The nondestructive and de-
structive searching scenarios represent the limit cases
of a continuum of possible target regeneration dynam-
ics (Raposo et al. 2003). Moreover, the nondestructive
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case with uniformly distributed targets bears a simi-
larity to adestructive case with patchy or fractal target-
site distributions (Viswanathan et al. 1999). Thus, these
simulations cover a wide range of natural searching
situations.

ResuLTs
On the macroscopic properties of CRWs and LWs

Random-walk theory assumes that a particularly rel-
evant macroscopic property of random walks involves
the scaling in relation to time of the mean square dis-
placement (msd) of the diffusing organisms: (R(t)2 ~
te, where o characterizes the behavior of diffusive pro-
cesses. Innormal (i.e., Fickian) diffusive processes, the
msd increases linearly with time (o« = 1). The simplest
example of this is particles (or organisms) moving in-
dependently and executing uncorrelated random walks;
i.e., pure Brownian motion. On the other hand, pro-
cesses that lead to a nonlinear dependence of msd over
time, known as anomalous diffusion, typically occur
in complex or long-range correlated phenomena (Gefen
et al. 1983). Anomalous diffusion arises due to long-
range statistical dependence between stepsin arandom
walk and can involve a subdiffusive (« < 1) or a
superdiffusive (o« > 1) process. The fastest possible
superdiffusion occurs when particles (or organisms)
execute unbroken straight-line paths corresponding to
ballistic motion or dispersal with a = 2.

As stated above, CRW models control persistence
(i.e., the degree of correlation in the random walk) via
the probability distribution of turning angles. However,
from the macroscopic point of view, CRWs represent
simple Markovian processes that, by their very nature,
cannot generate long-range correlations in the move-
ment (Johnson et al. 1992). Thus, for CRWSs, the msd
can depart from the linear increase with time only over
a particular range of temporal and spatial scales, but,
at the long-term limit, the relation always becomeslin-
ear. Therefore, at the long-term limit, CRWs models
appear like uncorrelated random walks: they can only
give rise to Brownian motion. Fig. 2a shows the be-
havior of the msd in a CRW as we vary the shape
parameter p of the WCD (used to correlate the steps).
For any value p < 1 (even for values close to 1, e.g.,
p = 0.95) the macroscopic behavior of movement con-
verges rapidly (t = 100) to the Brownian motion do-
main. Only for the limit case of p = 1 do we obtain a
ballistic motion. Thus, there is no a smooth way to go
from Brownian to ballistic motion by changing the
turning angle distribution parameter of CRWSs (p). In-
stead, only two macroscopic motions emerge in the
long term limit: pure Brownian (p < 1) or ballistic
dispersal behavior (p = 1).

When persistence arises through a power-law distri-
bution of move lengths instead of Markovian short-
range angle correlations, a new property emerges be-
cause of long-range move length correlations. A grad-
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ual change in the Lévy exponent (i.e., p.) corresponds
to agradual changein the diffusivity (i.e., «) that does
not vanish at the long-term limit. A gradual transition
from normal diffusion (« = 1 for w = 3) to ballistic
motion (a — 2 for p - 1) becomes possible for LWs
(Fig. 2b). Therefore, different Lévy exponents of the
power-law distribution of move lengths provide a
whole variety of super-diffusive behaviors (1 < a <
2 for 1 < w < 3). Thus, changing the Lévy exponent
implies a qualitative change in the macroscopic and
long-term properties of the movement as a whole.

On the search efficiency of the random-walk models

Fig. 3 shows the changes in the searching efficiency
measured as A of both aCRW (n(p)) and aLW (n(w))
when varying the parameters controlling the degree of
persistence in the walk. We have considered three
search scenarios (A = 100, 1000, and 5000 [see Meth-
ods and Appendix]) representing a decreasing gradient
from high to low target densities, and two encounter
dynamics: destructive and nondestructive.

In al cases, LWs are more efficient than CRWs. As
density diminishes (i.e., N\ increases), LWs become
even more efficient (than CRWSs) in both dynamical
types of searches, but with different optimal Lévy ex-
ponents (j,y). IN the destructive case, wq, — 1 and, in
the nondestructive case, pqy =~ 2. These results agree
with previous works on Lévy random-walk searches
(Viswanathan et al. 1996, 1999). Note the convergence
of CRWs (p = 0) with LWs (n. = 3) and CRW (p =
1) with LW (p - 1). In the former, both models cor-
respond essentially to Brownian motion, whereas, in
the latter, they give rise to straight-line motion (i.e.,
ballistic dispersal behavior). The relevant differences
appear precisely in the transition from Brownian to
ballistic motion. Within the whole range of possible

random walks from the Brownian (pure random walk)
to the ballistic (straight-line walk), searchers perform-
ing LWs exhibit higher efficiency than searchers per-
forming CRWSs in the long-term encounter statistics
(i-e, n(pop) = M(po) N Fig. 3).

In destructive searches (Fig. 3), revisiting target sites
penalizes the search efficiency because targets are con-
sumed. Therefore, the larger the persistence in the
movement, the larger the search efficiency. Persistence
increases with increasing p in CRWs and decreasing
in LWs. However, changes in Lévy exponent not only
modify short-term persistence of the walk but also in-
volve concomitant changes in the macroscopic prop-
erties of the movement that the CRWs do not have. As
w decreases, superdiffusivity of movement is enhanced
(see Fig. 2b). Superdiffusion increases the efficiency
beyond short-ranged persistence; that is why LWs are
more efficient than CRWSs in destructive searches.

In nondestructive searches (Fig. 3), revisiting sites
is not penalized because targets are not consumed.
Therefore, persistence and superdiffusivity do not in-
fluence search efficiency significantly. Indeed, they are
useful to avoid empty areas created by destructive en-
counter dynamics. Thisfact explainswhy the efficiency
of CRWs in the nondestructive case is p independent.
However, the higher values for the LWs efficiency
(which furthermore remains dependent on ) may be
due to another particular LW property not shared with
CRWSs, namely, scale invariance. Thus, our results
clearly show that scale invariance plays a crucial role
in optimizing encounter rates in the nondestructive
cases.

Fig. 4 shows the searching efficiency measured as
A\n for the LMCRW model n(w, p) and A = 5000 in
destructive and nondestructive searches. Changesinthe
p and p parameters account for different searching
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strategies with different searching efficiencies. For the
destructive case, p must be very close to 1 (i.e., move
lengths must be straight lines) in order to get optimal
searches. However, for the nondestructive case, a cer-
tain degree of sinuosity during move lengths (i.e., 0.8
< p < 1) does not diminish the searching efficiency
considerably. In nondestructive searches, as the degree
of persistence within flights diminishes, the overall ef-
ficiency of the search diminishes and the Lévy index
giving rise to optimal searching strategies also decreas-
es.
The LMCRW model results for nondestructive dy-
namics (Fig. 4) show that reorienting the movement at
power-law time intervals have more influence in the
search efficiency than small direction deviations during
flights. This explains why LWs appear robust in their
efficiency even with sinuous flights due to the embed-
ded CRWSs. However, persistence within flights cannot
fall too low, (e.g., a proper range 0.8 < p < 1), oth-
erwise the pattern of move lengths will lose fractality
(i.e., scale invariance) due to the highly sinusoidal and
looping paths, and so no pure LWs will arise at the
necessary scales. Note that, for p < 1, a natural upper
cutoff appears for the scale invariance, due to the cor-
relation length of the embedded CRW, and thus su-
perdiffusive behavior does not occur in LMCRWSs.

DiscussioN

Most ecological interactions must necessarily begin
with a physical encounter (i.e., sensu strictu), which
usually takes place after an active or passive searching
process. By a search, we mean the process of looking
for the presence of real or suspected objects of interest
(i.e., food, mate, shelter, etc.) which we call *‘targets.”
Random search strategies can only exist when thereis
some degree of uncertainty in the behavior of targets.
When there is no search uncertainty, because both spa-
tial and temporal behavior of targets are known (Garber
1988) or because displacements are dictated by strong
external cues (Hauser et al. 1975), the resulting animal
movement cannot be considered a search. Those situ-
ations where the overall animal movement is mainly
driven by strong internal navigation mechanisms (i.e.,
migrations) or environmental constraints (i.e., strong
physical barriers) should also not be considered a
search.

In any interactive process between individuals, the
search is only one component among others. In for-
aging strategies, we also may consider the handling
times, pursuit costs, predation risks, discount decisions,
prey selection, etc. These components can be subjected
to optimization by natural selection, the search com-
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ponent being more or less relevant depending on the
cognitive capacities of organisms and the predictability
of its environment. The optimization of a search strat-
egy involves the selection of a specific set of “‘rules
of search’ that enhances the probability of finding un-
known located items.

Systematic and random search strategies

According to the characteristics of the ‘‘rules of
search” we can classify the continuum of search strat-
egiesin two main types: systematic and random search-
es. In systematic searches, the rules to optimally cover
agiven area are based on deterministic algorithms (i.e.,
fixed and organized plans), while, in random searches,
these rules rely on stochastic processes (i.e., the sam-
pling of probability distributions). Systematic search
strategies only work when some a priori relevant (al-
though partial) information about target characteristics
or locations at ‘‘landscape level” is available. The Ar-
chimedean spirals represent one of the most common
systematic searching rules in homing behaviors (Bell
1991, Turchin 1998). As available information regard-
ing positional, kinetic, or behavioral characteristics of
targets decreases, systematic searches become less ef-
fective. In these situations, animals must attempt to
move in such away so as to optimize their chances of

locating resources by increasing ‘‘the chances of cov-
ering certain regions,” and thus, different optimal so-
lutions arise by merely embracing different random
strategies (Viswanathan et al. 1999, Bartumeus et al.
20023, b, Raposo et al. 2003, Santos et al. 2004). An
interesting example that illustrates a switch between
the two types of search is provided by the homing
behavior of a desert isopod (Hoffmann 1983a, b). If an
isopod misses the entrance of its burrow by a few mil-
limeters, it must search for the entrance. If the excur-
sion has covered only a short distance, it searches fol-
lowing an Archimedean spiral pattern. If the burrow is
not found during this initial phase, the animal extends
its range, and moves in broad loops and meanders,
returning repeatedly to the starting point of the search
(Hoffmann 1983a). Therefore, when pure systematic
search fails, the isopod uses a mixture of systematic
(i.e., returns to the starting point) and random (i.e.,
meandering) search.

The opposite case, the shift from random search
strategies to systematic searches, should reflect an in-
crease in the predictability of the spatiotemporal be-
havior of targets. Foraging scenarios involving non-
destructive searches may enhance the incorporation of
systematic rules in relation to the spatial and temporal
pattern of rewards (learned after repeated visits to the
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targets). Thisisthe case of trapline foraging in bumble
bees (Thomson 1996, Thomson et al. 1997, Williams
and Thomson 1998). Hermit hummingbird traplining
also includes systematic ‘‘rules of thumb’ to directly
interfere with the search success of competitors (Gill
1988). In this case, uncertainty arisesin relation to how
the others behave, and search rules relaying on sto-
chastic processes may become an option (particularly
for those individuals repeatedly *““failing’” in their in-
teractions). Therefore, in any given environment, there
might be a range of search strategies that can be suc-
cessful, and individuals may differ in the search strat-
egy used. As is recognized by authors, the extension
to what learned systematic search mechanisms work in
more complex situations remains uncertain (Gill 1988,
Williams and Thomson 1998).

So far, animal search rules relying on stochastic pro-
cesses are not considered in behavioral evolution be-
cause it is assumed that sensorial or cognitive improve-
ments override the need of random search in nature.
However, it should be considered that, (i) in some
search processes, a high degree of uncertainty is un-
avoidable, and (ii) in such scenarios, the success of the
search can be improved by optimizing random search
strategies.

Lévy walks and correlated random walks

The key assumptions of CRWs involve the presence
of directional persistence at certain scales. However,
random-walk models with short-range correlations,
such as CRWSs, converge to a Brownian motion (i.e.,
normal diffusive process) at certain time scales, not
very long (Fig. 2a). Therefore, at large enough spatio-
temporal scales when persistence breaks down, the
macroscopic statistical properties of CRWs becomethe
same as in uncorrelated random walks. Thisfact, which
is part of the standard random-walk theory, has been
used to justify the usage of uncorrelated random walks
and normal diffusion modelsin ecology (Okubo 1980,
Berg 1983). However, our results show that their prop-
erties do not allow the best optimal random searches
if large enough spatiotemporal scales are of relevance.
This might be the reason that other biological consid-
erations such as dispersal risks or energetic costs are
needed in order to obtain optimal solutions when these
models are used as random search strategies (Cain
1985, Zollner and Lima 1999). Indeed, these studies
concluded that without biological constraints any ran-
dom search strategy should be equally efficient. Our
results show that this is not the case.

The key assumptions of LWs involve superdiffusive
and scale-invariant phenomena and ensure (1) depar-
tures from normal diffusion at all scales (Fig. 2b), and
(2) the possibility of optimizing encounter rates just
by pure statistical physics considerations in a wide
range of different searching scenarios (Fig. 3). Com-
monly, departures from normal diffusion have been at-
tributed to (i) *‘ large-scale-oriented’” movements of in-
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dividuals (e.g., seasonal migration, landscape cues,
cognitive maps, etc.), or (ii) physical barriers or cor-
ridors in the landscape that alter an organism’s other-
wise random movement (Johnson et al. 1992). How-
ever, to exploit the statistical advantages provided by
superdiffusion and scale invariance, it is not necessary
to assume cognitive mapping or high spatial memory
capacities of organisms (as some recent model s suggest
[Gautestad and Mysterud 2005]). Instead, simple
“rules of thumb’ in accordance with stochastic laws
may be enough. Consistently, scale-invariant animal
movement is a widespread phenomenon in nature, ob-
served from microorganisms to large vertebrates. Thus
far, Lévy walk patterns have been observed in soil
amoebas (Levandowsky et al. 1997), planktonic or-
ganisms (Bartumeus et al. 2003), bumble bees (Hein-
rich 1979), seabirds (Viswanathan et al. 1996), large
terrestrial herbivores (Marell et al. 2002), social can-
nids (Atkinson et al. 2002), arboreal primates (Ramos-
Fernandez et al. 2004), and Arctic seals (Austin et al.
2004).

Lévy walks as adaptive random-search strategies

We can inquire whether situations where random
strategies are the optimal solutions to a search problem
occur with sufficient frequency (at least to significantly
modify the fitness of the populations). And, if so,
whether there are specific biological mechanisms on
which natural selection could impinge to develop spe-
cific behavioral traits. Biological mechanisms optimiz-
ing the ‘‘chances of finding’’ unknown located items
should not necessarily be the same as those allowing
for the “‘detection” of such items. Probably, the se-
lective pressures and the triggering stimuli are different
in each case, and the combination of both mechanisms
can provide a huge behavioral plasticity to adapt
searches to widely different ecological scenarios.

Based on the standard theory of random walks (Oku-
bo 1980, Berg 1983), it seems reasonable to think that
selective pressure on ‘“‘local scanning mechanisms”
may not influence the statistical macroscopic properties
of the walk, although it can provide short-range cor-
relations with the statistical properties of CRWSs. In
contrast, selective pressure on ‘‘ episodic reorientation
mechanisms”’ could modify these macroscopic prop-
erties, and therefore change the chances of finding un-
known located items. Our quantitative results compar-
ing LW and CRW searching efficiencies show that the
optimization of random searches mainly depends on
the optimal temporal execution of reorientation events
(Fig. 3). Even when directional persistence within dis-
placements is not really high, the temporal execution
of reorientation events is the key factor controlling the
main properties of the random walk (Fig. 4). Thisresult
supports previous studies demonstrating the robustness
of LWSs against short-scale ‘*“memory effects” (daLuz
et al. 2001, Raposo et al. 2003). Therefore, random
search strategies are not incompatibl e with short-scaled
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(in time or space) ‘“memory effects’” (i.e., local scan-
ning mechanisms, systematic ‘‘rules of thumb,” etc).

Overall, we suggest that scale-free punctuations in
animal movement (i.e., stops, strong reorientations, be-
havioral distinctive interruptions during the walk, etc.)
could be the basis for a stochastic organization of the
search at landscape level. Some preliminary empirical
results point towards this hypothesis (Bartumeus et al.
2003). The heterotrophic dinoflagellate Oxyrrhis ma-
rina switches from an exponential to an inverse square
power-law distribution of flight times (that is, from
diffusive to superdiffusive behavior) when its prey
Rhodomonas sp. decreases in abundance. The specific
biological mechanism involved in this searching be-
havioral change are transient arrests of the longitudinal
flagellum beat, which are observable by simple visual
inspection of the animal’s movement. Thus, continuous
helical motion is interrupted by sudden changes in di-
rection (i.e., reorientation leaps) that govern the long-
term searching walk of this planktonic predator. Al-
though Lévy walk patterns have been identified for a
wide variety of organisms (Viswanathan et al. 1996,
Levandowsky et al. 1997, Atkinson et al. 2002, Marell
et al. 2002, Austin et al. 2004, Ramos-Fernandez et al.
2004), the case study of Oxyrrhis marina is so far the
only example where the biological mechanism gener-
ating a Lévy-type walk has been elucidated. The bio-
logical mechanisms generating Lévy walk patterns in
other species remain to be investigated. In this sense,
two questions should be answered first: Are these pat-
terns caused by a random search strategy or have they
emerged from complex behavioral processes, external
drivers, and so forth? Can we identify reorientation
mechanismswithin animal behavioral traits? We expect
that further investigations about when and how organ-
isms actively discretize their movements (Kramer and
McLaughlin 2001, O'Brien et al. 1990) will facilitate
the finding of adaptive mechanisms capable of opti-
mizing random search statistics.
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APPENDI X
A detailed description of the random-walk models and simulation proceduresis available in ESA’'s Electronic Data Archive:

Ecological Archives E086-168-A1.



