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Animating Lip-Sync Characters with Dominated

Animeme Models
Yu-Mei Chen, Fu-Chun Huang, Shuen-Huei Guan, and Bing-Yu Chen, Member, IEEE

Abstract—Character speech animation is traditionally consid-
ered as important but tedious work, especially when taking lip
synchronization (lip-sync) into consideration. Although there are
some methods proposed to ease the burden on artists to create
facial and speech animation, almost none are fast and efficient. In
this paper, we introduce a framework for synthesizing lip-sync
character speech animation in real time from a given speech
sequence and its corresponding texts. Starting from training
dominated animeme models for each kind of phoneme by learning
the character’s animation control signal through an EM-style
optimization approach. The dominated animeme models are
further decomposed to polynomial-fitted animeme models and
corresponding dominance functions while taking coarticulation
into account. Finally, given a novel speech sequence and its
corresponding texts, the animation control signal of the character
can be synthesized in real time with the trained dominated
animeme models. The synthesized lip-sync animation can even
preserve exaggerated characteristics of the character’s facial
geometry. Moreover, since our method can perform in real time,
it can be used for many applications, such as lip-sync animation
prototyping, multilingual animation reproduction, avatar speech,
mass animation production, etc. Furthermore, the synthesized
animation control signal can still be imported into 3D packages
for further adjustment, so our method can be easily integrated
into existing production pipeline.

Index Terms—lip synchronization, speech animation, charac-
ter animation, dominated animeme model, animeme modeling,
coarticulation.

I. INTRODUCTION

W ITH the popularity of 3D animation and video games,

facial and speech character animation is becoming

more important than ever. MPEG-4 even defined the facial

animation as one of its key features [1]. There are many

technologies allowing artists to create high quality character

animation, but facial and speech animation is still difficult to

sculpt because the correlation and interaction of the muscles

on the face are very complicated. Some physically-based

simulation methods are provided to approximate the muscles

on the face, but the computational cost is very high. A less

flexible but affordable alternative is the performance-driven

approach [2][3][4][5], in which the motions of an actor is

cross-mapped and transferred to a virtual character (see [6]

for further discussion). This approach gains much success,

but the captured performance is difficult to re-use such that
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a new performance is required each time when creating a

new animation or speech sequence. Manual adjustment is still

a popular approach besides the above two, that artists are

requested to adjust the face model controls frame-by-frame

and compare the results back-and-forth.

When creating facial and speech character animation, it

is more challenging to have a character model’s lips syn-

chronized. It is a labor-consuming process, and even requires

millisecond-precise key-framing. Given a spoken script, the

artist has to first match the lips’ shapes with their supposed

positions. The transitions from word-to-word or phoneme-to-

phoneme, a.k.a. coarticulation, play a major role in speech ani-

mation and need to be adjusted carefully [7][?]. Coarticulation
is the phenomenon that a phoneme can influence the mouth

shapes of the previous and next phonemes. In other words,

the mouth shape depends on not only the current phoneme

but also its context, including at least the previous and next

phonemes. As opposed to simple articulated animation which

can be key-framed with linear techniques, coarticulation is

non-linear and difficult to model.

In this paper, we propose a framework to synthesize lip-sync

character speech animation in real time. For each phoneme,

one or multiple dominated animeme models (DAMs) are

first learned via clustering from a training set of speech-to-

animation control signal (e.g. the character controls used in

Maya or cross-mapped mocap lip-motions). A DAM is the

product of a latent dominance function and an intrinsic anim-

ime function, where the former controls coarticulation and the

latter models the mouth shape in the sub-phoneme accuracy.

The two entangled functions are learned and decomposed

through an EM-style solver.

In the synthesis phase, given a novel speech sequence, the

DAMs are used to synthesize the corresponding speech-to-

animation control signal to generate the lip-sync character

speech animation automatically, so it can be integrated into

existing animation production pipeline easily. Moreover, since

our method can synthesize acceptable and robust lip-sync

animation in real time, it can be used in many applications

for which prior techniques are too slow, such as lip-sync

animation prototyping, multilingual animation reproduction,

avatar speech, mass animation production, etc.

To summarize the contributions of this paper:

1) A framework is proposed to synthesize lip-sync charac-

ter speech animation in real time.

2) Instead of generating hard-to-adjust vertex deformations

like other approaches, high-level control signal of 3D

character models is synthesized. Hence, our synthesis

process can be more easily integrated into existing



2

animation production pipeline.

3) We present the DAM, which fits coarticulation better by

modeling the animation control signal in sub-phoneme

precision with the product of a latent dominance func-

tion and an intrinsic animeme function.

4) Multiple DAMs are used to handle large intra-animeme

variations.

II. RELATED WORK

Face modeling and facial/speech animation are broad topics;

[6][7][?] provided good surveys. In this section, we separate

the face modeling and the specific modeling for lips in the

discussion.

A. Facial Animation and Modeling

Most facial animation and modeling methods can

be categorized into parameterized/blend-shape, physically-

based, data-driven, and machine-learning approaches. For

parameterized/blend-shape modeling, faces are parameterized

into controls; the synthesis is done manually or automatically

via control adjustment. Previous work on linear blend-shape

[8][9][10], face capturing/manipulation (FaceIK) [11], and

face cloning/cross-mapping [12][13][14][15][16] provided a

fundamental guideline for many extensions. However, their

underlying mathematical frameworks indeed have some limita-

tions, e.g. the faces outside the span of examples or parameters

cannot be realistically synthesized, and these techniques re-

quire an excessive number of examples. Other methods reduce

the interference between the blend-shapes [17] or enhance the

capabilities of cross-mapping to animate the face models [18].

Physically-based methods [19][20] simulate the muscles

on the face, and the underlying interaction forms the subtle

motion on the skin. The advantage of the physically-based

methods over the parameterized/blend-shape ones is exten-

sibility: the faces can be animated more realistically, and

the framework allows interaction with objects. However, the

muscle-simulation is very expensive, and hence reduces the

applicability to interactive controller.

Data-driven methods [21] construct a database from a very

large training dataset of faces. The synthesis of novel facial

animation is generated by searching the database and mini-

mizing the discontinuity between successive frames. Given the

starting and ending example frames, the connecting path in the

database forms newly synthesized facial animation. However,

they have to deal with missing training data or repetitive

occurrence of the same records.

Machine-learning techniques base their capabilities on the

learned statistical parameters from the training samples. Previ-

ous methods [22][23][24][25] employed various mathematical

models and can generate new faces from the learned statistics

while respecting the given sparse observations of the new data.

In our system, we adopt the blend-shape facial basis based

on “Facial Action Coding System (FACS) [8]” to form the

speech-to-animation controls to drive the 3D face models eas-

ily. By merging the advantages of the data-driven and machine-

learning techniques, we construct a lip-shape motion control

database to drive speech activities and moreover generate

new lip-sync motions. Unlike other previous methods which

directly use training data to synthesize results, our approach

can synthesize natural lip shapes that did not appear in the

training data set.

B. Lip-Sync Speech Animation

Many speech animation methods derive from the facial

animation and modeling techniques. The analysis of the

phonemes under the context of speech-to-face correspon-

dence, a.k.a. viseme, is the subject of much successful work.

Many previous methods addressed this issue with Spline

generation, path-finding, or signal concatenation.

Parameterized/blend-shape techniques [26][27][28] for

speech animation are the most popular methods because of

their simplicity. Sifakis et al. [29] presented a physically-

based approach to simulate the speech controls based on

[20] for muscle activation. This method can interact with

objects while simulating, but still, the problem is the sim-

ulation cost. Data-driven approaches [21][30] form a graph

for searching the given sentences. Like similar approaches,

they used various techniques, e.g. dynamic programming, to

optimize the searching process. Nevertheless, they still suffer

from missing data or duplicate occurrence. Machine-learning

methods [31][32][33][34][35] learn the statistics for phoneme-

to-animation correspondences, which is called animeme, in

order to connect animation up to speech directly and reduce

these searching efforts.

Löfqvist [36] and Cohen and Massaro [37] provided a

key insight to decompose the speech animation signal into

target values (mouth shapes) and latent dominance functions

to model the implicit coarticulation. In subsequent work, the

dominance functions are sometimes reduced to a diphone

or triphone model [33] for simplicity. However, the original

framework shows some examples (e.g. the time-locked or

look-ahead model) that are difficult to explain by the simpler

diphone or triphone model. Their methods are later extended

by Cosi et al. [38] with the resistance functions and shape

functions, which is the basic concept of the animeme.

Some recent methods [29][34][35] used the concept of

animeme, a shape function, to model the sub-viseme signal

to increase the accuracy of phoneme fitting. Kim and Ko [34]

extended [31] by modeling the viseme within a smaller sub-

phoneme range with a data-driven approach. Coarticulation
is modeled via a smooth function in their regularization

with the parameters found empirically. However, it has to

resolve conflicting and insufficient records in the training set.

Sifakis et al. [29] modeled the muscle-control-signal animeme

(they call it physeme) for each phoneme, and concatenate

these animemes for words. They found that each phoneme has

various similar animemes with slight variations due to coar-
ticulation, which is modeled with linear cross-fade weighting

in a diphone or triphone fashion.

Kshirsagar et al. [39] presented a different approach to

model coarticulation by using the visyllable. Each syllable

contains at least one vowel and one or more consonants. It

requires about 900 demi-visyllables for the system in their ex-

periments, and therefore the approach needs a huge database.
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Wampler et al. [35] extended the multilinear face model [25] to

derive new lip-shapes for a single face model. Coarticulation is

modeled by minimizing the lips’ positions and forces exerted.

However, it is usually unnecessary to sample the face tensor

space to produce a single speech segment. Moreover, the face

tensor space also inherits the curse of dimensionality, which

is also a difficult topic for facial capturing.

We learned from many successful previous methods and

improved the deficiencies in them. The analysis in the sub-

viseme, or so-called animeme, space has significant improve-

ments over the viseme analysis. In addition, we also solve

for the hidden dominance functions, and extend coarticulation
beyond the simpler diphone or triphone model. Moreover,

the synthesis process is much simpler and faster because the

models used for generating the results are trained in an offline

pre-pass.

III. DOMINATED ANIMEME MODELS (DAMS)

To animate a character (face) model from a given script

(phonemes), it is necessary to form the relationship between

the phonemes and animation control signal C(t), which is

called animeme that means the animation representation of

the phoneme. However, due to coarticulation, it is hard to

model the animeme with a simple function, so we model the

animation control signal C(t) with a product of two functions:

the animeme function and its dominance function. The ani-

meme function controls the intrinsic mouth shapes when used

alone without other phonemes. When putting words together,

it is necessary to concatenate several phonemes together,

and the dominance functions of the animemes control their

individual influence and fall-off, and hence coarticulation.

Mathematically, one dominated animeme model (DAM) is

modeled as:

C(t) = D(t)A(t), t ∈ [−∞,∞]

where the animeme function A(t) is modeled with a high de-

gree polynomial function to simulate the relationship between

phonemes and lip shapes, and the dominance function D(t)
is modeled via a modified exponential function, which is used

to simulate coarticulation.

Some previous literatures [33][36] described the dominance

function as a bell-shape function. That means, although our

lip-shape is mainly affected by the current phoneme, the lip-

shape is also affected by the neighboring phonemes. Inspired

by [37], if the time is within the activation of the phoneme (i.e.,

t ∈ [0, 1]), then the animeme has full influence. Exponential

fall-off is applied when time is outside the activation period

of the phoneme:

D(t) =



























1, t ∈ [0, 1]

exp

(

−t2

σ2 + ε

)

, t < 0

exp

(

− (t− 1)
2

σ2 + ε

)

, t > 1

(1)

where σ is the phoneme specific parameter affecting the range

of influence, and ε is a small constant to prevent dividing by

zero.

Putting multiple phonemes together to get the full sequence

of animation control signal, we simply concatenate these

DAMs with the summation of their normalized values:

C∗(t) =
J
∑

j=1

Cj(tj) =
∑

j

Dj(tj)Aj(tj), (2)

where j = 1, 2, ..., J indicates the j-th phoneme in the given

phoneme sequence, and tj = (t − sj)/dj is the normalized

local time for each phoneme activation, where sj is the

starting time-stamp of the j-th phoneme and dj is its duration.

Generally, in the dominance function of an animeme, the fall-

off controls its influence beyond its phoneme activation period.

Strong coarticulation has slow fall-off and vice versa. Note

that the phonemes farther away from the current phoneme may

have very little contribution to it, so the influence of the DAMs

far from it is relatively small.

One major observation besides the above description is the

intra-animeme variations. In fact, some phonemes strongly

depend on lip-shapes than others. By performing the unsu-

pervised clustering [40], we found some phonemes can have

multiple DAMs which we call them modes; the choice of

which mode to use depends on the speech context. This

finding coincidentally agrees with many successful data-driven

methods.

In the subsequent sections, we will use the DAMs and give

a system that learns and synthesizes speech animation se-

quences. To learn the parameters for modeling animemes and

their dominance functions, multiple modes of each phoneme

are first found by affinity-propagation [40]. Then, an EM-style

solver is performed to learn the DAM parameters for each

mode, specifically the polynomial coefficients for animeme

functions and the fall-off controls (σ in Eq. (1)) for dominance

functions. Once the parameters are learned, we can synthesize

the animation control signal given a novel speech sequence and

its corresponding texts. The given texts provide the guide to

choose an individual DAM for each phoneme, and the chosen

DAMs are then concatenated with Eq. (2).

IV. OVERVIEW

Fig. 1 shows our system flowchart. The system has two

phases: training (left) and synthesis (right). In the training

phase, the system takes as input the captured lip-motions or

the animation control signal of the character (face) model

directly. The animation control signal is usually used to drive

the motions of a character model in the modeling tools, like

Maya. If we choose the lip-tracking result from a speech

video or 3D lip-motions captured by a mocap facility, the

data in the vertex domain will be first cross-mapped to the

control signal domain (discussed in Appendix A). If there

exists acceptable lip-sync character animation, the capturing

and cross-mapping processes can be omitted; the speech-to-

animation control signal from the existed artist-sculpted or

captured speech animation can be used directly.

Then, the speech and its corresponding texts are aligned

with SPHINX-II [41] to obtain the aligned scripts (phoneme

sequence), which contain phonemes with their starting time-

stamps and durations in the speech. The aligned scripts and
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Fig. 1. System flowchart.

animation control signal C(t) are used as training examples

to construct the DAMs (Section V) for future novel speech

animation synthesis.

In the synthesis phase, we take as input a novel speech and

its corresponding texts, and use SPHINX-II again to obtain the

aligned scripts. From the scripts, the DAMs are concatenated

to generate the animation control signal C∗ (Section VI).

Finally, the animation control signal C∗ is used to animate

the character (face) model in Maya or similar modeling tools

to generate the lip-sync character speech animation.

The core components in the system are the learning module

for constructing and modeling the DAMs and the synthesis

module for generating the animation control signal C∗, which

will be explained in the next two sections, respectively.

V. LEARNING DAMS

A. Learning Modes for Phonemes

According to the aligned scripts (phoneme sequence), every

phoneme can have many corresponding animation control

signals. Based on these training examples, we can construct

the phoneme’s DAM(s). However, we found it is difficult to

decouple the animeme function and its dominance function

gracefully if we construct a single DAM for each phoneme due

to large intra-animeme variations. Instead, multiple DAMs, or

modes, for each phoneme are used. The choice of modes in a

speech sequence depends on the speech context.

The training animation control signal for each phoneme is

first fitted and reconstructed with a cubic Spline interpola-

tion, while the duration of the phoneme is parameterized to

t ∈ [0, 1]. Then, an unsupervised clustering algorithm, affinity

propagation [40], is used to cluster the training control signal

into some modes; the quantity of the clustering is determined

automatically.

Note that the idea of modes is not new; data-driven ap-

proaches synthesize animation by searching animation clips

within the database. This kind of methods has to deal with

repetitive clips. The use of which clips depends on smooth

transitions and user-specified constraints, which are similar to

our choices of modes. In the synthesis phase (Section VI), we

will discuss the mode-selection in more details.

B. Estimating Animeme Function

Assuming each mode of each phoneme appears in the

sequence exactly only once and denoting the j-th dominance

function Dj(i) at time i as a fixed value Di
j , the estimation

of the polynomial function Aj(t) can be reduced to find the

polynomial coefficients a0j , a
1
j , ..., a

M
j . Then, Eq. (2) can be

rewritten as:

C(i) =

J
∑

j=1

Di
j

[

M
∑

m=0

amj (tij)
m

]

, (3)

where tij = (i − sj)/dj is the normalized local time-stamp

from the activation of the j-th phoneme.

Since we want to find the coefficients a0j , a
1
j , ..., a

M
j for each

phoneme j (M = 4 in our implementation), in a regression

manner, we can set the partial derivative of regression error R

with respect to the m-th coefficient amj for the j-th phoneme

to zero. The least square fitting for regression is:

fi = C(i)−
J
∑

j=1

Di
j

[

M
∑

m=0

amj (tij)
m

]

,

R = F
T
F =

n
∑

i=0



C(i)−

J
∑

j=1

Di
j

[

M
∑

m=0

amj (tij)
m

]





2

,(4)

where F is the column-concatenated vector formed for each

element fi. Since the unknowns amj are linear in F, the

problem is essentially a linear least-square fitting. By setting

all partial derivatives to zero and arranging Eq. (4), we can

obtain the following matrix representation:

D =











D1
1(t

1
1)

0 · · · D1
1(t

1
1)

M · · · D1
J · · · D1

J (t
1
J )

M

D2
1(t

2
1)

0 · · · D2
1(t

2
1)

M · · · D2
J · · · D2

J (t
2
J )

M

...
. . .

... · · ·
...

. . .
...

Dn
1 (t

n
1 )

0 · · · Dn
1 (t

n
1 )

M · · · Dn
J · · · Dn

J (t
n
J)

M











,

A =
[

a01 · · · aM1 · · · a0J · · · aMJ
]T

,

C =
[

C0 C1 C2 · · · Cn
]T

,

where D is the dominance matrix, A is the coefficient vector

we want to solve, and C is the observed values at each time i,
so the minimum error to the regression fitting can be written in

the standard normal equation with the following matrix form:

(DT
D)A = D

T
C, (5)

where D is an n× ((M + 1)× J) matrix, C is an n vector,

and A is an (M + 1)× J vector to be solved.

If we remove the assumption that each mode of each

phoneme appears exactly once, multiple occurrences of each

mode of a phoneme have to be fitted to the same value. Hence,

we can rearrange the multiple occurring terms and make it

easier to solve. For example, if phoneme 1 (with only one
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mode) appears twice as the first and third phonemes in the

phoneme sequence, then Eq. (3) becomes:

C(i) = Di
11
A11(t

i
11
) +Di

2A2(t
i
2) +Di

12
A12(t

i
12
) + ...

=
[

Di
11

+Di
12

]

a01 +
[

Di
11
(ti11) +Di

12
(ti12)

]

a11 + ...

+ Di
2a

0
2 +Di

2a
1
2(t

i
2) +Di

2a
2
2(t

i
2)

2 + ..., (6)

where 11 and 12 indicate the first and second times the

phoneme 1 appeared. Note that the polynomial coefficients amj
of the animeme function Aj(t) are the same and independent

to the occurrences.

By the above re-arrangement, we can remove the original

assumption that each mode of each phoneme can appear

exactly only once, and rewrite the original term in Eq. (3)

with the summation of each occurrence Hj of the same mode
of phoneme j as:

Di
j(t

i
j)

m ⇒
∑

Hj

Di
jh
(tijh)

m, (7)

where jh denotes the h-th time occurrence of the mode of

phoneme j.

C. Estimating Dominance Function

In the previous section to estimate the animeme function

Aj(t) of the j-th phoneme, we assumed that its dominance

function Dj(t) is known and fixed. In this section, we will

describe how to estimate the dominance function Dj(t) over

the regression, given that the animeme value Aj(i) at time i
is known and fixed, denoted as Ai

j . Back to the definition of

the dominance function formulated in Eq. (1), for phoneme j,

its influence control is affected by σj , which is unknown now.

Here, we want to minimize the regression Eq. (4) again as

we did in the previous section. However, since the parameter

σj for regression is non-linear, we need a more sophisticated

solver. Standard Gauss-Newton iterative solver is used to

approach the minimum of the regression error R. As we

defined the residual error in the previous section, the Gauss-

Newton algorithm linearizes the residual error as:

fi = C(i)−

J
∑

j=1

Dj(t
i
j)A

i
j ,

F(σj + δ) ≈ F(σj) + Jδ, (8)

where tij = (i− sj) /dj is the normalized local time, F is

formed by fi but takes as input the influence control σj for the

j-th phoneme, δ is the updating step for gradient direction of

the Gauss-Newton solver, and J is the Jacobian matrix. Each

iteration of the Gauss-Newton algorithm solves a linearized

problem to Eq. (4), and after removing the terms that do not

dependent on δ, we get the follows:

J
T
J δ = −J

T
F,

σk+1

j = σk
j + δ. (9)

The Gauss-Newton algorithm repeatedly optimizes the regres-

sion error by updating δ to σk
j at the k-th iteration, and

achieves linear convergence.

“SIL“

(start)

“G“ “R“ “AE“ “F“ “SIL“

(end)

Fig. 2. An animeme-graph example for synthesizing “Graph”. There are
multiple DAMs (modes) for one phoneme (with the same color). The suitable
sequence (denoted by solid circles and lines) is selected by A* algorithm.

D. Learning with Iterative Optimization

In the previous two sections, we showed how to minimize

the regression error by estimating the animeme function Aj(t)
and its hidden dominance function Dj(t). Since the entire

formulation is not linear and cannot be solved intuitively,

we employed an EM-style strategy that iterates between the

estimation of the animeme function Aj(t) and the optimization

for the dominance function Dj(t).

• The E-step involves estimating the polynomial coeffi-

cients amj for each animeme function Aj(t) by solving a

linear regression using the standard normal equation.

• The M-step tries minimizing the regression error to

estimate the influence controls σj by improving the non-

linear dominance function Dj(t).

First, when solving for the E-step, the initial influence

control parameters σj involved in Dj(t) are set to 1. At

the M-step, where the Gauss-Newton algorithm linearizes

the function by iteratively updating the influence controls σj ,

all parameters of the polynomial coefficients amj are carried

from the first half of the iteration. The EM-style strategy

keeps iterating between the E-step and M-step until no more

improvement on regression error can be done. Convergence

of optimizing Dj(t) is fast, but the effect of estimating Aj(t)
has more perturbation on σj . The number of iterations for

convergence is varying for different DAMs, which is directly

proportional to the quantity of the clustered control signals for

each DAM, but the process is an off-line computation in the

training phase separate from synthesis.

VI. SYNTHESIZING WITH DAMS

In the synthesis phase, we want to generate the output

control signal according to the input phoneme sequence. Since

some phonemes may have multiple modes, we have to decide

which mode should be used for each phoneme. The goal to

construct the output animation control signal requires selecting

the most suitable mode for each phoneme, and then directly

use Eq. (2) to concatenate the DAMs in the sequence.

Giving a phoneme sequence j = 1, 2, ..., J and possible

modes DAMg
j (g = 1, ..., Gj , where Gj is the number

of modes) for each phoneme j, the animemes can form an

animeme-graph as shown in Fig. 2. The selection of suitable

modes for the phoneme sequence can be treated as a graph

search problem, and A* algorithm is used in our implemen-

tation. Since we want to find a compromise between the
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TABLE I
THE MODELS USED IN THIS PAPER.

model vertex# face# control#

Afro-woman 5,234 5,075 7
Boy 6,775 6,736 7
Child 6,991 6,954 16
Old-hero 8,883 8,738 8
Court-lady 1,306 1,307 7

“P” “AA” “P” “Y” “AH” “L” “ER”

Fig. 3. The comparison of training data (the 1st raw) and the synthesized
results of DAM (the 2nd raw), Cohen-Massaro model (the 3rd raw), and
MMM (the 4th raw), while speaking “popular” by Afro-woman.

likelihood of the modes and the smoothness in the animation,

the cost of each node in the animeme-graph is set as:

E = wcEc + wsEs, (10)

where Ec is a data term, which represents the likelihood of

the mode DAMg
j in the training set linked with its previous

and next phonemes, Es is the smoothness term computing

the C2 smoothness on the joint frame of every DAMg
j (g =

1, ..., Gj) of the current phoneme j and every DAMg
j−1

(g =
1, ..., Gj−1) of its previous phoneme j − 1, and wc and ws

are the weights of the error terms. We used wc = 1000 and

ws = 1 for all results in this paper.

VII. RESULT

The training set involves 80 sentences and about 10 minutes

of speech context with unbiased content. In the training phase,

constructing the DAMs costs about 50∼60 minutes per control

on a desktop PC with an Intel Core2 Quad Q9400 2.66GHz

CPU and 4GB memory. For synthesizing a lip-sync speech

animation, the animation control signal formed by our DAMs

are generated in real time (i.e., 0.8 ms. per phoneme on

average). Table I shows the number of vertices, faces, and

controls of each model, respectively, used in this paper.

-0.6

-0.59

-0.58

-0.57

-0.56

-0.55

DAM

Cohen_Massaro

MMM

training data

Fig. 4. The comparison of the signal fitted in Fig. 3 by DAM, Cohen-
Massaro Model, and MMM with the captured one. The y-axis shows one of
the coordinates of a control.

Fig. 3 shows a comparison of the training data and the syn-

thesized results of our dominated animeme model (DAM),

Cohen-Massaro model [37], and multi-dimensional morphable

model (MMM) [31], while speaking “popular” by using the

Afro woman model. Fig. 4 shows a part of signal fitting

for these results. The average L2-norms for DAM, Cohen-

Massaro model, and MMM are 0.4724, 0.6297, and 0.5023,

respectively. This sequence represents continuous lip motion,

and the flow is from left to right. According to the training

data, the lips should be closed during the phoneme “P” and

opened for other phonemes appropriately. At the last frame of

the sequence, the mouth closes to prepare for the next word.

Note that the Cohen-Massaro model is implemented using

our DAM by setting M = 0 in Eq. (4), i.e., the polynomial

form is reduced to only the constant term. The formulation

of our dominance function (Eq. (1)) is very similar to their

original form but with the flexible extension that the shapes

of the phonemes can be varied. The reconstruction result of

the Cohen-Massaro model is too smooth at some parts in

the sequence, such that consecutive phonemes are greatly

influenced, i.e., they span too much. Hence, the features

of a few phonemes can be shown, but others are not as

prominent as they should be. In contrast, our DAM spans more

properly in range with respect to the training data. The MMM

formulates the fitting and synthesis as a regulation problem. It

fits each phoneme as a multidimensional Gaussian distribution

and forms the words or sentences as a path going through these

phoneme regions by minimizing an energy function containing

a target term and a smoothness term. The speech poses using

MMM have good timing but lack prominent features.

Fig. 5 shows two results of speaking two words - “apple”

and “girl” by using the Afro woman model. As shown in the

close-up view of the mouth, although the last phonemes of the

two words are the same (“L”), the lip shapes are different due

to coarticulation. Note that the lip shape for pronouncing the

phoneme “P” shows the mouth closes well, although some

other similar methods cannot due to the smoothness effect.

One can also notice that while pronouncing the phoneme

“ER”, the tongue is rolled. In general, the shape change of

the tongue is very hard to capture. However, since our method

uses animation control signal as the training data, once the

target model is designed well for performing such features,

our synthesis results can also keep these characteristics.

Fig. 6 and 7 show two other results with different models:

the old hero speaks “old man” and the boy speaks “top of

the world”. All of them have their typical styles. Comparing

the lip shapes of the two models while pronouncing the
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“SIL” “AE” “P” “AX” “L”

“SIL” “G” “ER” “L”

Fig. 5. Result of speaking “Apple” (upper) and “Girl” (lower) by Afro-woman.

“SIL” “OW” “L” “D”

“M” “AE” “N” “SIL”

Fig. 6. Result of speaking “Old Man” by Old-hero.

phoneme “L”, their lip shapes performed in two different

ways because of coarticulation and their characteristics. To

keep the models’ characteristics while synthesis, our method

is character (model) dependent. Each character’s DAMs should

be trained by its own animation control signal. Models with

similar controls can use the same DAMs. Of course, artists can

also use another model’s trained DAMs to make a prototype

of a novel model, and then refine the model for training its

own DAMs. This can speed up the training preparation time

while keeping the quality of the training data.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose a new framework for synthesiz-

ing lip-sync character speech animation in real time with a

given novel speech sequence and its corresponding texts. Our

method produces fairly nice transitions in time and generates

the animation control parameters that are formed by our dom-

inated animeme models (DAMs), which are constructed and

modeled from the training data in sub-phoneme accuracy for

capturing coarticulation well. Through an EM-style optimiza-

tion approach, the DAMs are decomposed to the polynomial-

fitted animeme functions and their corresponding dominance

functions according to the phonemes. Given a phoneme se-

quence, the DAMs are used to generate the animation control

signal to animate the character (face) model in Maya or

similar modeling tools in real time while still keeping the

character’s exaggerated characteristics. Moreover, the DAMs

are constructed by the character controls instead of absolute lip

shapes, so it can perform better training/synthesizing results

and is suitable to be integrated into existing animation pipeline.

By using the Facial Animation Parameters (FAPs) defined in

MPEG-4 for training and synthesis, our approach can be easily

extended to support MPEG-4 facial animation [42].

Even though the quality of the synthesized lip-sync char-
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“SIL” “T” “AA” “P” “AH”

“V” “OH” “W” “ER” “L” “D”

Fig. 7. Result of speaking “Top of The World” by Boy.

acter speech animation may not be perfect as compared with

that of animation created manually by an artist, the synthesized

animation can still easily be fine-tuned, since the automatically

generated animation control signal is lip-synchronized and

can be used directly in Maya or similar animation tools. By

extending the phoneme dictionary, our method can also be

used to produce multilingual lip-sync speech animation easily.

Furthermore, since our method can synthesize acceptable and

robust lip-sync character animation in real time, it can be used

for many applications for which prior methods are inadequate,

such as lip-sync animation prototyping, multilingual animation

reproduction, avatar speech, mass animation production, etc.

Our model still has some weaknesses, such as that it cur-

rently infers the dynamics of motion solely from the training

data set. If the training data set does not contain speech similar

to the synthesis target, the results may be inaccurate. For

example, if the training data set contains only ordinary speech,

it will be unsuitable for synthesizing a singing character,

because the typical phoneme behavior for singing a song varies

greatly from the ordinary speech and imposes more challenges

for dynamics modeling. A second weakness is that in our

DAMs, we used a function of Gaussian-based form to model

the dominance functions. A potential problem is that while

sining a song, certain phonemes may extend indefinitely with

dragging sounds. It is not only difficult for a speech recognizer

to identify the ending time, but also the Gaussian-based form

cannot accommodate such effects. One possible solution is to

model the dominance functions with greater variability and

non-symmetric models.

APPENDIX A

CROSS-MAPPING

Although the input of our system is animation control

signal, to ease the efforts for adjusting the character (lip)

model, we also provide a method to cross-map the captured

lip motion to the animation control signal. After the lip motion

is captured, the key-lip-shapes Lk are identified first, which

can be pointed out by the artist or by using an unsupervised

clustering algorithm, e.g. [40]. The captured key-lip-shapes Lk

are then used to fit the captured lip motion Li for each frame

i by using the Non-Negative Least Square (NNLS) algorithm

to obtain the blending coefficients αi
k. This process can be

expressed as the following constrained minimization:

min ‖Li −

K
∑

k=1

αi
kLk‖

2, ∀αi
k ≥ 0,

where K is the number of identified key-lip-shapes. The above

clustering and fitting process for the captured lip motion needs

to be performed only once. If the target character model has

some well-defined bases, it is better to assign the key-lip-

shapes to the bases manually, since the blending coefficients

αi
k can be used as the control signal Ci directly without further

processing.

To cross-map the input captured lip motion to the target

character model, the identified key-lip-shapes Lk are first used

to guide the artist to adjust the vertices V on the lips of

the target character model to imitate the key-lip-shapes Lk

while keeping the character’s characteristics. The number of

adjusted vertices should be equal to or more than that of

the character controls C (i.e., ‖V‖ ≥ ‖C‖) for solving the

constrained minimization in the next paragraph. Then, the

blending coefficients αi
k are used to blend the adjusted lip

vertices Vk for key-lip-shapes Lk to obtain the lip vertices

V
i for each frame i via:

V
i =

K
∑

k=1

αi
kVk.

Instead of using the lip vertices V
i for training directly,

for better training/synthesis results and animation pipeline

integration, the training and synthesizing are performing on

character controls. Assuming there are K animation controls

Ck ∈ C, which can be used to drive the lip motions of the

target character model, the animation control signal Ci
k

for

each frame i and control k can be obtained by fitting the lip
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vertices Vi as the following constrained minimization:

min ‖Vi −

K
∑

k=1

V(Ci
k)‖

2,

where V(·) denotes the transfer function from control signal to

lip vertices, and each animation control Ci
k
∈ Ci is constrained

to [0, 1]. Again, it is solved by the NNLS algorithm.
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