
Animating Oscillatory Motion With Overlap: Wiggly Splines

Michael Kass John Anderson

Pixar Animation Studios

Pixar Technical Memo 06-06a - June 2008

Abstract

Oscillatory motion is ubiquitous in computer graphics, yet existing
animation techniques are ill-suited to its authoring. We introduce
a new type of spline for this purpose, known as a “Wiggly Spline.”
The spline generalizes traditional piecewise cubics when its reso-
nance and damping are set to zero, but creates oscillatory animation
when its resonance and damping are changed. The spline provides
a combination of direct manipulation and physical realism. To cre-
ate overlapped and propagating motion, we generate phase shifts
of the Wiggly Spline, and use these to control appropriate degrees
of freedom in a model. The phase shifts can be created directly
by procedural techniques or through a paint-like interface. A fur-
ther option is to derive the phase shifts statistically by analyzing a
time-series of a simulation. In this case, the Wiggly Spline makes
it possible to canonicalize a simulation, generalize it by providing
frequency and damping controls and control it through direct ma-
nipulation.

CR Categories: I.3.7 [Computer Graphics]: Three Dimensional
Graphics and Realism—Animation; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Physically-Based
Modeling G.1.6 [Numerical Analysis]: Optimization

Keywords: Spacetime Constraints, Splines

1 Introduction

Oscillatory motion is very common in computer graphics, occur-
ring in virtually every computer animated feature film. Its ubiq-
uity arises from the fact that most physical systems tend to oscillate
when displaced from equilibrium. Typical examples of importance
in film production include the motion of insect antennae, car sus-
pensions and the swinging of ropes or animal tails. Unfortunately,
traditional animation tools are poorly suited to these types of mo-
tions, adversely impacting both the artistic quality and the cost of
animating oscillatory phenomena.

For decades, computer graphics scientists worked hard to get oscil-
lations out of splines, and rightly so. Ordinary interpolants in use in
other fields were prone to undesired oscillations and were deemed
unacceptable in computer graphics. As a result, a variety of spline
types were developed to combat oscillations and still provide ade-
quate control to animators. While these spline types are well-suited
to many types of motion, their use is extremely labor-intensive for
motion which is fundamentally oscillatory. Large numbers of knots

are required to create oscillations, and moving them appropriately
in concert to craft oscillatory motion can be both awkward and
time-consuming.

In recent years, physical simulation has been used with some suc-
cess to animate oscillatory phenomena, but it too suffers from se-
vere limitations. Chief among them is that the relationship between
the parameters of a simulation and the actual behavior can be very
complicated. As a result, technical specialists are often needed, and
even they may be unable to come up with parameters that give a
director the desired effect.

It may seem that one could set up the parameters for a physical sim-
ulation in a production environment when building characters and
environments, and then use passive motion that simply reflected
physical reality. However, even simple cases of secondary oscil-
latory animation like the jiggling of a character’s belly, which we
explore in section 6.2 and the associated video, involve non-trivial
issues of story-telling, timing, cinematography and character ex-
pression. The way a belly moves informs the viewer of the charac-
ter’s moment by moment energy, strength and tension. Beyond that,
anything that moves in film is liable to draw the viewer’s attention.
So animators and directors demand absolute control over what is
moving, how it moves and for exactly how long. If a character’s
belly appears momentarily in profile, its jiggle may be excessively
evident and need to be toned down. If an emotional moment de-
mands stillness, the jiggle must come to a stop. All this is difficult
with traditional simulation.Yet simulation still has much to offer.
What we seek is a method that combines the physical reality of
simulation with the directability and control of traditional splines.

Our solution begins with “Wiggly Splines,” a generalization of
the traditional animation splines that allow intentional oscillations.
Wiggly Splines re-create traditional spline behavior when their res-
onant frequency and damping are set to zero, but create oscillatory
animation when their resonance and damping are set to be repre-
sentative of a an oscillatory physical system. The Splines provide a
familiar interactive interface supporting direct manipulation while
at the same time embedding the physical realism of an oscillatory
differential equation into the spline itself. They provide the mix we
seek between realism and control.

With Wiggly Splines, we can address not only individual degrees of
freedom in a model that oscillate, but also the more broadly impor-
tant problem of oscillatory motion that involves propagating phe-
nomena like waves. With a phenomenon like belly jiggle, the na-
ture of this propagation will determine whether the belly looks stiff,
“sloshy” or somewhere in-between.

In particular, Wiggly Splines allow us to address a key issue known
to animators by the term “overlap.” The term generally refers to
the fact that different degrees of freedom of any given model need
to accelerate and decelerate at different times. If all the degrees
of freedom vary synchronously in phase, the result is motion that
usually looks very stiff or “computery.” Breaking up the synchrony
to the point that propagation effects are visible is vital to achieving
an acceptably natural appearance. While this notion is central to
animators’ thinking, to the best of our knowledge, it has not until
now received a mathematical characterization.

In order to address the issue of overlap, we argue that at least in the

realm of oscillatory motion, and perhaps more broadly than that,
overlap can be mathematically characterized through the notion of
phase relationships of coupled oscillators. For ordinary splines,
these phase relationships are not easily available. However, with
Wiggly Splines, if one solves the optimization over complex num-
bers rather than real ones, there is a simple, automatic and natural
assignment of phase angle to each point on the spline.

The availability of phase angle with Wiggly Splines opens up some
interesting possibilities. For example, a single animation curve can
control multiple degrees of freedom in a model related by phase or
amplitude shifts. These phase and amplitude relationships can be
authored procedurally or specified directly using a paint or similar
interface. In addition, we show that the phase and amplitude rela-
tionships can be extracted from simulation data using a statistical
time-series analysis. The time-series method is powerful because it
allows us to take a single simulation, extract a canonical form, and
then generalize and control it with the Wiggly Spline.

The rest of the paper is structured as follows. In section 2, we dis-
cuss previous work and introduce the basic approach. In section
3, we derive the basic Wiggly Spline by applying spacetime con-
straints to a damped mass-spring oscillator and show that it can be
computed efficiently. In section 4, we provide the view from Dig-
ital Signal Processing, which allows us to accurately characterize
the stability and resonances of the discrete system. In section 5,
we extend our analysis to complex-valued solutions. The complex
solution allows us not only to broaden the resonance of the Wiggly
Spline, but also to make explicit its phase information. Finally, in
section 6 we show how the phase information can be used to create
overlapped motion for procedural models, hand-weighted models,
and models derived from simulation data.

2 Previous Work

There have been a variety of animation systems over the years that
have used filtering to introduce oscillatory effects in animation. No-
tably [Litwinowicz 1991] and most recently [Wang 2006] describe
animation systems with filters that produce some degree of “antici-
pation” and “follow-through” for a given set of key-framed values.
[Unuma et al. 1995]and [Bruderlin and Williams 1995] have also
proposed signal processing based approaches to processing anima-
tion. While these systems are suggestive of the value of filtering,
they fail to provide interpolation of keys. In these systems, alter-
ing filter parameters usually changes the values of the animation
curves at all the key frames. In the case of production animation
for film, this is largely unacceptable. Animators, having selected
values at key frames, are loathe to see their carefully crafted poses
modified by filters. Filtering effects are valuable, but we seek a
technique that allows these kinds of effects to be introduced while
maintaining the direct manipulation and interpolation of traditional
animation splines.

When oscillatory motion involves moderate deformations, it is well
known that good approximations to physical simulation can often
be achieved by combining the effects of a small number of oscilla-
tory modes. Modal dynamics was introduced to the graphics com-
munity by [Pentland and Williams 1989] who describe a system
based on deformable superquadrics. James and Pai [James 2002]
showed how to extend the method to general finite-element models
and compute the result in real-time with graphics hardware. While
these efforts address the type of motion we consider, for our pur-
poses they suffer from two key limitations. First and foremost,
like all traditional forward simulation methods, they fail to provide
the kind of control we require. As presented, there is no way for
an animator to craft a series of poses at different times with these
modal techniques and know that the dynamics will accurately recre-

ate them. In addition, these methods provide only the original simu-
lation parameters as methods for changing the motion. By contrast,
we seek to abstract the full complexity of the simulation parameters
into a much smaller number of simple controls that make sense to
an animator.

In 1988, [Witkin and Kass 1988] developed a technique called
Spacetime Constraints to try to marry the physical realism of
simulation with the controllability and predictability of traditional
splines. Their idea was to have animators specify key values of
parameters over time, but interpolate the motion in the most phys-
ically realistic way possible subject to these constraints. Instead of
demanding that Newton’s second law, f = ma be satisfied all the
time as in traditional simulation, Spacetime Constraints minimizes
the deviation from the second law while guaranteeing the interpola-
tion constraints set by the animators are met. This formalism makes
it possible to combine interpolation constraints with modal dynam-
ics, and acts as the foundation of our approach.

A variety of researchers have applied the Spacetime Constraints ap-
proach to specific domains, used different optimization methods,
tried accelerate it, or addressed other weaknesses in the original
formulation (eg. [Cohen 1992], [Ngo and Marks 1993], [Liu et al.
1994], [Witkin and Popović 1995], [Rose et al. 1996], [Gleicher
1997], [Popović and Witkin 1999], [Popović et al. 1999], [Fang
and Pollard 2003], [Treuille et al. 2003], [Safonova et al. 2004]).
Good summaries of the specific contributions and evolution of the
ideas can be found in [Fang and Pollard 2003] and [Safonova et al.
2004]. It is also possible to use approaches specialized for particu-
lar classes of objects. [Barzel 1997] has shown the utility of simple
quasi-dynamic analogs for ropes and springs.

Our interest in oscillatory phenomena and overlapped motion leads
us to a unique twist on the traditional spacetime formulation. The
relationships of coupled oscillators are often best expressed by their
relative phase, and phase is most conveniently encoded by complex
numbers. As a result, we investigate spacetime optimizations for
the first time over the realm of complex-valued functions. We find
that this significantly extends the suitability of spacetime methods
for modal dynamics. Since our spacetime solutions have associ-
ated phase information, they allow us to control propagation effects
simply by scaling phase differences.

3 Spacetime Mass and Spring

The widespread applicability of modal dynamics in engineering
arises from the fact that the equations of motion for physical sys-
tems displaced slightly from equilibrium become particularly sim-
ple when viewed in special modal coordinates. In these coordinates,
under the common assumption of proportional (Rayleigh) damping,
the small displacement equations of motion are actually the same
as those for a single mass and spring [Goldstein 1980]. If we can
control the motion of a single mass and spring, then using modal
coordinates, we can control very complex motion.

To apply the Spacetime Constraints formalism, we take our physical
system with a single mass and spring, add constraints provided by
the animator, and subject to these constraints, minimize an objective
function which penalizes non-physical and inefficient motion. A
physically accurate simulation will follow Newton’s second law of
motion: f = ma. Instead of integrating this differential equation,
however, we follow [Witkin 1988] and minimize the L2 norm of
the deviation from correct physics.

E =

∫

(f −ma)2dt (1)

Let our point mass move in one dimension with position given by
x(t). In a standard damped spring, the applied force is given by:

f = −kx− γ ẋ+ fext (2)

where fext represents a specified external driving force applied to
the spring. Plugging this expression for the force into equation 1
yields the optimization function

E =

∫

(ẍ+ γ ẋ+kx− fext)
2dt. (3)

where we have chosen units in which the mass of the particle is one.

Consider what happens when the spring constant k and the damp-
ing γ are zero. Then without external forcing, the function to be
minimized reduces to:

E =

∫

ẍ2dt. (4)

Equation 4 is the minimum principle from which traditional cubic
interpolatory splines are derived [Bartels 1987]. It is well known
and easy to prove using calculus of variation that the minimization
of equation 4 gives rise to piecewise cubic polynomial solutions
which are widely used throughout computer graphics.

Calculus of variations can similarly be used to construct an analytic
minimum for equation 3, but we find a finite difference approach to
more convenient for our purposes. Discretizing with standard finite
differences leads to the following function to be minimized:

Es =
1

h2

n

∑
i=1

(

(xi−1 −2xi +xi+1)+hγ(xi+1 −xi)+h2xi − fext

)2

(5)

where h is the time separation between samples. The objective
function is a positive-definite quadratic form, so the minimum will
occur when the gradient vanishes

∂Es

∂xi
= 0 (6)

For each i away from the boundaries, three terms of the sum in
equation 5 lead to non-zero derivatives, and they combine so that
equation 6 leads to a banded linear system with bandwidth 5. Equa-
tions of this form can be solved using standard techniques [Golub
and Van Loan 1983] [Press et al. 1986] in time proportional to n,
the number of samples of xi.

In order to make the solution of equation 6 interesting, we need
to add some constraints. The primary constraint, of course, is the
ability to set a particular value at a particular time – an interpola-
tion constraint. Setting up interpolation constraints with the finite
difference formalism is not at all difficult. Suppose we want to es-
tablish the constraint that x j = v for some j. All we have to do is
drop x j from equation 5 and replace it with the constant value v.
The resulting linear system will have one fewer equation.

In addition to setting values, animators are used to establishing tan-
gent constraints. This is also easy to handle in the finite difference
formulation. Let g be the desired slope at sample i. We can make
the tangent constraint absolute by using the equation xi+1 − xi = g
to eliminate a variable from the linear system. Alternatively, we can
introduce an approximating tangent constraint by adding a penalty
term to the optimization function as follows:

E = Es +Et (7)

Et = ct((1/h)(xi+1 −xi)−g)2 (8)

where ct is a constant that sets the strength of the tangent penalty.

Figure 1: Top curve: Resonant frequency. The resonance begins at zero, and then

changes abruptly to a non-zero value. Bottom curve: Wiggly Spline with three inter-

polation and tangent constraints.

Note that with just interpolation constraints, the solution of the min-
imization problem in equation 5 produces a spline with global sup-
port. If local support is important, strong tangent constraints will
decouple the solution on one side from the solution on the other.

We have embedded our solution to equation 5 into a traditional
spline editor. Our implementation achieves frame rates limited
by drawing speed rather than the computation time of the Wiggly
Spline itself. Figure 1 shows an example of a Wiggly Spline be-
ing used. The upper curve is a traditional spline used to control the
spring constant, and the lower curve is the Wiggly Spline itself. On
the left side of the figure, the spring constant and damping are zero,
so the bottom curve behaves like a familiar piecewise cubic spline.
In the middle, the upper curve, representing the spring constant,
abruptly increases and shifts the resonance. As a consequence, on
the right side, the curve oscillates between the second and third in-
terpolation constraints. Note that the curve has a series of inflection
points between the second and third constraints, and is clearly not
representable on that span as a single cubic.

Figure 2: Bottom: Changing equilibrium value. Middle: Wiggly Spline with no

constraints, showing passive response. Top: Wiggly Spline edited with an interpolation

constraint.

Figure 2 illustrates the difference between our spacetime approach
and traditional forward simulation. In this example, we have an-
imated the equilibrium position of our spring to follow the curve
at the bottom of figure 2. As with the method of [James and Pai
2002], the acceleration of the spring equilibrium causes a external
force fext to be applied to the spring, and the middle curve of figure
2 shows the passive dynamics that results. This, however, is where
the similarity to forward simulation ends. In forward simulation,
the only way to modify the curve is by changing the simulation
parameters, but the relationship between the simulation parameters

and the resulting curve can be very complex. Moreover, there is no
guarantee that any settings of the parameters will yield the desired
motion. Animators faced with such circumstances will frequently
give up and accept an artistic compromise. With our system, by
contrast, the animator can edit motion curves with direct manipula-
tion. The top curve of figure 2 shows this in action. An animator
has introduced a knot and tangent constraint to increase the amount
of overshoot, and the Wiggly Spline faithfully interpolates the ani-
mator’s new knot. If the animator wants absolute control of a piece
of the curve, he or she can set the resonant frequency and damp-
ing of the Wiggly Spline to zero on the corresponding interval and
edit that segment like any other traditional piecewise cubic. With
Wiggly Splines, the animator gets the default behavior of forward
simulation, but can edit the output with the absolute control and
directability of traditional splines.

4 Digital Signal Processing View

The continuous differential equation that results from equation 2 is
stable for all positive values of k and γ . Unfortunately, once finite
differences are substituted for continuous derivatives, stability is no
longer guaranteed. Frequencies higher than those representable at
the given sampling rate can cause aliasing and make the equations
diverge. Here we make use of results from digital signal processing
to derive conditions that guarantee stability.

Discussion of the stability of spacetime constraint optimization is
generally absent in the literature, perhaps because it seems hope-
less to make any guarantees of convergence in the general non-
linear case. Nonetheless, non-linear spacetime problems are usu-
ally solved by a sequence of linearized sub-problems, and the tech-
niques we use here can provide stability conditions for the lin-
earized sub-problems.

Let J = f −ma represent the departure of the spacetime solution
from accurate physics in the spacetime solution. J has units of force
and can be regarded as the force that has to be applied to our particle
to make the equations of physics hold.

Substituting finite differences for the derivatives in equation 2
yields

fi = fext −kxi − γ(xi+1 −xi)/h. (9)

Combining this with the definition of J and using a finite difference
for ẍ gives us

xi+1 −axi −bxi−1 = Ji + fext (10)

where a and b are functions of the spring constant k and the damp-
ing constant γ . In the language of Digital Signal Processing, equa-
tion 10 represents a second order recursive (IIR) filter where the
input of the filter is the sum of the external force and the residual
force computed by the optimization. We can now re-write the ob-
jective function in terms of a and b, and then use IIR filter design
techniques to set a and b to values that guarantee stability. The
re-written objective function is

Es =
n

∑
i=1

(xi+1 −axi −bxi−1)2 . (11)

The response of the filter in equation 10 to the input is fully char-
acterized by the system function of the filter, which is given by
[Oppenheim 1975]

H(z) =
1

1−az−1 −bz−2
. (12)

where z is a complex parameter. When evaluated on the unit circle,
the system function gives the frequency response of the filter. If

Figure 3: Left: pole locations. Right: frequency response. Top: Two pole real filter.

Middle: Four pole real filter. Bottom: Two pole complex filter

we factor the system function, then we will find two roots of the
denominator polynomial

H(z) =
1

(1−λ0z−1)(1−λ1z−1)
(13)

These roots, λ0 and λ1 are known as the poles of the filter, and they
provide the information required to control the frequency response
and the stability of the filter. If both poles are inside the unit circle,
the filter will be stable.

We find that a fixed angular separation of the poles works for our
purposes. If a user has selected a center frequency of ω and a damp-
ing rate d > 1, we use poles

λ0 = e−d+i(ω+.05) (14)

λ1 = e−d+i(ω−.05) (15)

and compute a and b using

a = λ0 +λ1 (16)

b = −λ0λ1. (17)

For a general non-linear spacetime problem, the analysis we pro-
vide above can be used for linearized sub-problems. In that case,
step size control can be used at each iteration to bring all the poles
within the unit circle.

Figure 4: Complex-valued spline: The bottom curve shows the real part resulting

from three interpolation and tangent constraints. The top curve is the computed imag-

inary part.

5 Complex Valued Spline

The Wiggly Spline as described above has one remaining difficulty
as an authoring tool. Its resonance is too sharp. The spline is over-
eager to oscillate at precisely the resonant frequency, and this can
make it difficult to control.

What we expect when we pull two knots apart is that the spline
curve in between will stretch up to some limit, and then when it
passes the limit begin to introduce an additional cycle. With an ex-
cessively sharp resonance, this will not happen. Instead, the curve
will continue to oscillate at exactly its resonant frequency, and it
will satisfy the constraints by adding whatever low-frequency com-
ponents are necessary. The behavior is extremely counter-intuitive
for an animator. In order to fix this behavior, we need to widen the
resonance, creating a relatively flat passband for the filter.

The second order mass-spring system provides very limited de-
grees of freedom for shaping the frequency response because the
two poles are required to be complex conjugates in order to en-
sure that the filter coefficients are real. The top of figure 3 shows a
representative sample pair of conjugate pole locations, and the cor-
responding of the frequency response. Note the sharpness of the
resonance. At the same time, there is significant response at zero
frequency where the influence of the two conjugate poles interact.

The usual way to gain additional degrees of freedom to shape the
frequency response of a filter is to make it higher order, for exam-
ple, by adding poles. The middle row of figure 3 shows a represen-
tative example of what can be accomplished with this technique. It
depicts a fourth-order filter with pairs of poles centered around the
previous poles and exhibits the resulting frequency response. The
resonance has been broadened, but the response at zero frequency
is still unacceptably high.

An alternative solution to the problem is to allow the filter coeffi-
cients to be complex. Then the poles need not be conjugate, and a
very different frequency response can be obtained. The bottom row
of figure 3 shows a representative example of this technique. The
pass band has been widened while keeping the response at zero fre-
quency much lower.

Figure 3 is indicative of a general issue. With real-valued signals
and real-valued filters, it is not possible to distinguish between pos-
itive frequencies and negative ones, so the frequency response of
a filter has to be symmetric around zero. Going to a complex rep-
resentation makes this issue go away. More generally, with real-
valued signals, there is a fundamental ambiguity of phase. The
phase of a real-valued oscillatory signal exists only implicitly. Mov-
ing to complex-valued signals, by contrast, makes the phase both
explicit and unambiguous. While the idea of having a complex-
valued animation curve may seem odd at first, the advantages of an

Figure 5: The complex spline is able to adjust its frequency as the interpolation

constraints are moved.

explicit phase representation have led us to embrace it.

Extending the Wiggly Spline to the complex domain turns out to be
relatively simple. We begin as before by having the animator select
the resonant frequency and damping. These together determine a
point on the complex plane. The complex poles λ0 and λ1 are then
generated by rotating the point clockwise and counterclockwise by
an amount that selects the bandwidth of the filter. In our experience,
a rotation of about .05 radians in each direction has worked well.
From λ0 and λ1, we can then compute the coefficients a and b of
our recursive filter. This time, however, the coefficients a and b and
the resulting spline will all be complex. The new objective function
will be

Es =
n

∑
i=1

|xi+1 −axi −bxi−1|
2 . (18)

where the sum of squares in equation 11 has been replaced with
a sum of squared complex magnitudes. The number of degrees
of freedom in the optimization has also been doubled, since each
value of x has both a real and an imaginary part. The condition for
the minimum is that the partial derivative of the objective function
E with respect to both the real part and the imaginary part of each
xi must vanish.

Figure 4 shows the real (below) and imaginary (above) parts of the
complex-valued Wiggly Spline solution. All the interpolation con-
straints are applied to the real part, and the imaginary part is com-
puted almost as a side effect. The animator can edit the real part,
blissfully unaware that the imaginary part even exists. The presence
of the imaginary part, however, makes the complex-valued Wiggly
Spline a good deal more powerful than its real-valued counterpart.

Figure 5 shows that the widening of the resonance with the com-
plex Wiggly Spline is effective. Moving the third interpolation con-
straint from its position in the bottom curve to its position in the top
curve causes the curve to stretch as expected, instead of finding
some other, less intuitive, way of meeting the constraints.

6 Animating with Wiggly Splines

6.1 Controlling Procedural Models

We introduced the complex-valued Wiggly Spline in part to craft
a desired frequency response, but also to make the phase explicit.
Here we show that the explicit phase information can help us create
overlapped motion. Consider the value x of the complex Wiggly
Spline at a given moment in time. We can represent it in polar
imaginary coordinates using the identity

x = reiθ (19)

As long as r does not vanish, the value of θ is well defined and
easy to calculate from x. In all cases, whether r vanishes or not,

Figure 6: Animation of a procedural tail

it is easy to create phase-shifted animation curves from x. Since
phase angles add under multiplication, all we have to do is multiply
x by a unit-magnitude complex number with the appropriate phase
to accomplish the shift. Let φ be the desired phase shift. We can
compute a real-valued phase-shifted animation curve xφ using the
formula

xφ = ℜ(rei(φ+θ)) = ℜ(eiφ x) (20)

where ℜ denotes the real part of a complex number.

Figure 6 shows a procedural model of a tail being animated with
this computation. The real part of the original Wiggly Spline x is
used to drive the first bend angle at the base of the tail. Scaled and
phase-shifted versions of the spline are used to drive all the other
bend angles. The phase shifts increase along the length of the tail
at a rate proportional to the width. The amplitudes are proportional
to the width. Even with just a few animation knots, it is possible
to get very interesting and lively animation out of models like this.
The accompanying movie shows an example of an animation curve
and the resulting real-time motion of the tail. The changing phase
shifts along the length of the curve give rise to propagating and
overlapped motion.

6.2 Hand Crafting Modes

In section 3, we noted that if we use modal coordinates, the motion
of complex systems near equilibrium can be described accurately
by the preferred dynamics of a Wiggly Spline. There remains the
question of how to create these coordinates and connect them to a
Wiggly Spline. For maximum artistic control, there will be times
when these oscillatory coordinates are best authored by hand.

Figure 7 illustrates an example where we have done just that to
add belly jiggle to an animated character. For this example we
hand specified amplitude A(p) and phase φ(p) fields on the surface
points of the character. The amplitude field has been constructed to
have a zero value on the perimeter of the belly where the motion
blends into the rigid character and increases to a maximum in the
center of the soft region. The phase field is likewise constructed
to be zero on the perimeter and smoothly increases to a maximum
value in the softest part of the character. There are larger phase
angles in the lower regions of the belly to represent their weaker
connection to the frame.

Together, these two fields provide a complex number at each point
on the belly that control the relationship of the belly-jiggle defor-

mation to the driving wiggly spline. The amount d of belly-jiggle
applied to each point p is then given by:

d(p) = ℜ(rA′ei(φ ′+θ)) (21)

where A′ and φ ′ incorporate the effects of a scaling, s, of the imag-
inary component:

A′ = |Acos(φ)+ isAsin(φ)| (22)

φ ′ = arg(Acos(φ)+ isAsin(φ)) (23)

In the accompanying video, we show examples of the animation
with the phase scaling s of the belly jiggle set to 0, 1.0 and 2.3. At
a value of zero, the belly jiggle has no true propagation effects, and
looks somewhat stiff. As the scaling is increased to one, the motion
looks increasingly fluid, due to the overlap. At a value of 2.3, the
belly appears to be sloshing around. This scaling of the imaginary
(out of phase) component provides an effective tool for controlling
the apparent rigidity of part of a model.

It may seem that similar effects can be accomplished through time
delays. They can, however, the delays would have to be changing
with time. In this example, the time between foot plants varies
by about 50% over the clip due to changes in both the character’s
speed and the length of his steps. The constant phase delay we used
provides a consistent impression of the firmness of the character’s
belly. A constant time delay would not. Achieving a similar-quality
result with time delays would require animating the delays with
care to keep the belly jiggle synchronized to the footfalls.

Figure 7: Two frames from a shot with Wiggly Spline belly jiggle.

6.3 Deriving Modes from Simulations

While hand-authored modal coordinates provide the greatest pos-
sible control, in some cases simulation can provide a more realis-
tic result. [James and Pai 2002] for example illustrate modes that
can be extracted directly as eigenvectors of the stiffness matrix of
a finite-element simulation. These are certainly candidates for use
with Wiggly Splines, although they suffer from two important lim-
itations. The first is that the eigenvectors of the stiffness matrix are
real-valued. A real-valued mode by itself cannot describe propa-
gating motion – it will appear to oscillate in place, and look very
stiff.

When finite-element models give rise to propagating phenomena,
the modes usually come in orthogonal out-of-phase pairs. One will
correspond to the real part and the other to the imaginary part of
the complex-valued mode we seek. It is the complex modes that
are capable of describing propagating phenomena. In principle, the
real and imaginary parts of the complex eigenvector will share an
eigenvalue, so it should be possible to join them automatically, but

numerical issues may make it difficult to bring these pairs of real
modes together.

A second and more fundamental limitation of extracting modes di-
rectly from the stiffness matrix is that they are based on small-
deflection approximations. In many cases we are concerned with
large enough deformations that the small-deflection approximation
is not very good. Instead, a much better result is obtained by cre-
ating the best linear approximation to the behavior of the system
under large deflections. For these purposes, we propose a different
technique.

To approximate the linear behavior of a non-linear finite-element
simulation under large displacements, we suggest forcing the sys-
tem into large displacements of interest and then look for statistical
linear relationships in the resulting motion. From this we can ex-
tract appropriate modes. We have done this with a variety of CG
character models including the character in figure 8.

The most widely-used statistical analysis technique for extracting
linear relationships from time-series data is Principle Component
Analysis (PCA), but like the technique of computing modes di-
rectly from a stiffness matrix, it generates only real-valued eigen-
vectors. In order to capture complex modes corresponding to prop-
agating motion, we choose a modified version of PCA that does
all its arithmetic over the complex domain. Developed by climate
researchers in the early 1980s [Rasmusson et al. 1981] [Anderson
and Rosen 1983], it has become known as Complex Principal Com-
ponents Analysis. An accessible review of these techniques appears
in [Horel 1984].

The basic structure of the Complex PCA technique is to take the
real data Si, j and extend it to a complex representation by using a
finite impulse response Hilbert transformer to add an imaginary part
to the real-valued time series for each point. Details on the design
of Hilbert transformers can be found in [Oppenheim and Schafer
1975].

A standard PCA analysis is then performed on the complex data set.
The resulting complex eigenvectors represent both the amplitude
and phase propagation of the motions in the original data set. To
the best of our knowledge, this represents the first use of Complex
PCA in the field of computer graphics.

Many of our ideas about the use of complex PCA to provide an
editable representation of simulations derive from our experience
attempting to simulate the character presented in this section for
the short film ”Lifted”. We found that using an editable phase-
amplitude representation of the key simulation behavior was a much
more effective way of achieving the desired look and feel of the
character than trying to find a ”sweet spot” in the simulation pa-
rameter space.

In order to demonstrate the use of the Complex PCA technique
we have simulated an animated character by impulsively forcing
it in the vertical direction using the physical volumetric model de-
scribed in [Irving 2004]. The first complex mode of this simulation
is shown in figure 8.

The animation of the character shown in the accompanying video
is constructed following equation 21 where the complex mode ap-
pears as A(p) and φ(p) and the excitation factors r and θ are given
by the product of the Wiggly Spline and a complex coupling con-
stant representing the relative phase and amplitude relationship be-
tween the wiggly spline and the mode excitation.

When only the real part of the Wiggly Spline is used to drive the
mode, corresponding to s = 0, the motion is stiff and uninteresting,
resembling the motion of a nutcracker. This is the result of a com-
plete lack of overlap. When both the real and imaginary compo-

nents of the Wiggly Spline are used, s = 1, the propagating behav-
ior approximates the phase propagation of the training simulation,
completely changing the impression of the motion. Instead of being
rigid and “computery,” it achieves a much more fluid appearance.

As with the previous example in section 6.2 it is also possible to
exaggerate the fluidity of the motion by using scale factors: s > 1
which can yield sloshy effects that might be very difficult to simu-
late with physical models.

We performed an additional Complex SVD analysis of a second
simulation, forced with side to side impulsive forcing. In the video
these two modes have been combined, driven by the same Wiggly
Spline but with two separate complex coupling coefficients to gen-
erate the hula dancing alien clip.

By extracting the complex mode from this character’s simulation,
we have characterized much of the feel of a reference simulation
into a single vector. We can alter its frequency or its damping, and
we can change the apparent stiffness of the material from which it
is made by scaling the phase differences. We can vary all of these
parameters continuously through time, and the Wiggly Spline will
blend their effects together. With a collection of modes like this, we
can essentially piece together generalized simulations like visual
composites, mixing the realism of simulation with the expressive
power of direct manipulation.

Figure 8: First complex (phase-amplitude) PCA mode of a simulation of a de-

formable character driven by up-down oscillations. For this figure the phase is encoded

in the hue and the amplitude in the saturation.

7 Discussion and Conclusions

Animators have known for a long time that overlap is critical to
creating pleasing animation. The term overlap, however, has never
had a precise definition. In our examples, we show that the notion
of overlap correlates very well with the degree of phase difference
between the motion of different degrees of freedom in a model.
We also show that Wiggly Splines provide direct control over these
phase differences, allowing this animation application to “speak”
the language of animators.

With their ability to control overlap, Wiggly Splines provide a prac-
tical animation method for oscillatory phenomena. They combine
the strength of physical simulation with the high degree of control

present in traditional splines. We have used them successfully in a
variety of tests and anticipate using them extensively in production.
Yet we believe the value of this paper goes beyond Wiggly Splines
themselves. In the course of developing the splines, we have intro-
duced:

• The representation of animation curves with complex values.

• The characterization of “overlap” by phase differences.

• The use of DSP analysis to improve the stability of spacetime
solution methods.

• The use of Complex PCA to extract propagating phenomena
from graphics simulations.

• The approach of extracting a canonical motion from a simu-
lation and then generalizing it by altering parameters such as
frequency, damping and rate of propagation.

We hope these ideas will find applications beyond the scope of this
paper.

Acknowledgements

We would like to thank Geoffrey Irving for his assistance with the
Physbam simulations used to create the modes in section 6.3.

References

ANDERSON, J. R., AND ROSEN, R. D. 1983. The latitude-height
structure of 40-50 day variations in atmospheric angular momen-
tum. Journal of the Atmospheric Sciences 40, 6, 1584–1591.

BARTELS, R., BEATTY, J., AND BARSKY, B. 1987. An Intro-
duction to Splines for Use in Computer Graphics and Geometric

Modeling. Morgan Kaufmann.

BARZEL, R. 1997. Faking dynamics of ropes and springs. IEEE
Computer Graphics and Applications 17, 3, 31–39.

BRUDERLIN, A., AND WILLIAMS, L. 1995. Motion signal pro-
cessing. In Proceedings of SIGGRAPH 2001, 97–104.

COHEN, M. 1992. Interactive spacetime control for animation. In
Proceedings of SIGGRAPH 1992, 293–302.

FANG, A., AND POLLARD, N. 2003. Efficient synthesis of physi-
cally valid human motion. In Proceedings of SIGGRAPH 2003,
417–426.

GLEICHER, M. 1997. Motion editing with spacetime constraints.
In Proceedings of the 1997 Symposium on Interactive 3D Graph-
ics, 139–148.

GODUNOV, S., AND RYABENKII, V. 1987. Difference Schemes:
An Introduction to the Underlying Theory. Elsevier.

GOLDSTEIN, H. 1980. Classical Mechanics, Second Edition. Ad-
dison Wesley.

GOLUB, G. H., AND VAN LOAN, C. F. 1983. Matrix Computa-
tions. Oxford Pressl.

HOREL, J. D. 1984. Complex principal component analysis: The-
ory and examples. Journal of Climate and Applied Meteorology
23, 12, 1660–1673.

IRVING, G., TERAN, J., AND FEDKIW, R. 2004. Invertible fi-
nite elements for robust simulation of large deformation. In
Proceedings of Eurographics/ACM SIGGRAPH Symposium on
Computer Animation, 131–140.

JAMES, D., AND PAI, D. 2002. Dyrt: Dynamic response textrues
for real time deformation simulation with graphics hardware. In
Proceedings of SIGGRAPH 2002, 582–585.

LASSETER, J. 1987. Principles of traditional animation applied
to 3d computer animation. In Proceedings of SIGGRAPH 1987,
35–44.

LITWINOWICZ, P. 1991. Inkwell: A 2-d animation system. In
Proceedings of SIGGRAPH 1991, 113–22.

LIU, Z., GORTLER, S., AND COHEN, M. 1994. Hierarchical
spacetime control. In Proceedings of SIGGRAPH 1994, 35–42.

MCMAHON, T. 1984. Muscles, Reflexes, and Locomotion. Prince-
ton University Press.

NGO, T., AND MARKS, J. 1993. Spacetime constraints revisited.
In Proceedings of SIGGRAPH 1993, 343–350.

OPPENHEIM, A., AND SCHAFER, R. 1975. Digital Signal Pro-
cessing. Prentice Hall.

PENTLAND, A., AND WILLIAMS, J. 1989. Good vibrations:
model dynamics for graphics and animation. In Proceedings of
SIGGRAPH 1989, 215–222.

POPOVIĆ, Z., AND WITKIN, A. 1999. Physically based motion
transformation. In Proceedings of SIGGRAPH 1999, 11–20.

POPOVIĆ, J., SEITZ, S., ERDMANN, M., POPOVIĆ, Z., AND

WITKIN, A. 1999. Physically based motion transformation.
In Proceedings of SIGGRAPH 1999, 11–20.

PRESS, W., FLANNERY, B., TEUKOLSKY, S., AND VETTERLING,
W. 1986. Numerical Recipes: The Art of Scientific Computing.
Cambridge University Press.

RASMUSSON, E., ARKIN, P., CHEN, W., AND JALICKEE, J.
1981. Biennial variations in surface temperature over the united
states as revealed by singular decomposition. Mon. Wea. Rev.
109, 587–598.

ROSE, C., GUENTER, B., BODENHEIMER, B., AND COHEN,
M. F. 1996. Efficient generation of motion transitions using
spacetime constraints. In Proceedings of SIGGRAPH 1996, 147–
154.

SAFONOVA, A., HODGINS, J., AND POLLARD, N. 2004. Syn-
thesizing physically realistic human motion in low-dimensional,
behavior-specific spaces. In Proceedings of SIGGRAPH 2004,
514–521.

TREUILLE, A., MCNAMARA, A., POPOVIĆ, Z., AND STAM, J.
2003. Keyframe control of smoke simulations. In Proceedings
of SIGGRAPH 2003, 716–723.

UNUMA, M., ANJYO, K., AND TAKEUCHI, R. 1995. Fourier
principles for emotion-based human figure animation. In Pro-
ceedings of SIGGRAPH 1995, 91–96.

WANG, J., STEVEN DRUCKER, M. A., AND COHEN, M. 2006.
The cartoon animation filter. In Proceedings of SIGGRAPH
2006, 1169–1173.

WITKIN, A., AND KASS, M. 1988. Spacetime constraints. In
Proceedings of SIGGRAPH 1988, 159–168.

WITKIN, A., AND POPOVIĆ, Z. 1995. Motion warping. In Pro-
ceedings of SIGGRAPH 1995, 105–108.

