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Abstract

We present a new method for the animation and rendering of photo-
realistic water effects. Our method is designed to produce visually
plausible three dimensional effects, for example the pouring of wa-
ter into a glass (see figure 1) and the breaking of an ocean wave, in a
manner which can be used in a computer animation environment. In
order to better obtain photorealism in the behavior of the simulated
water surface, we introduce a new “thickened” front tracking tech-
nique to accurately represent the water surface and a new velocity
extrapolation method to move the surface in a smooth, water-like
manner. The velocity extrapolation method allows us to provide a
degree of control to the surface motion, e.g. to generate a wind-
blown look or to force the water to settle quickly. To ensure that
the photorealism of the simulation carries over to the final images,
we have integrated our method with an advanced physically based
rendering system.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Raytracing;

Keywords: computational fluid dynamics, implicit surfaces, natu-
ral phenomena, physically based animation, rendering, volume ren-
dering

1 Introduction

Water surrounds us in our everyday lives. Given the ubiquity of wa-
ter and our constant interaction with it, the animation and rendering
of water poses one of the greatest challenges in computer graphics.
The difficulty of this challenge was underscored recently through
the use of water effects in a variety of motion pictures including the
recent feature film “Shrek” where water, mud, beer and milk effects
were seen. In response to a question concerning what was the single
hardest shot in “Shrek”, DreamWorks SKG principal and producer
of “Shrek”, Jeffrey Katzenberg, stated, It’s the pouring of milk into
a glass. [Hiltzik and Pham 2001].

The above quote illustrates the need for photorealistic simulation
and rendering of water (and other liquids such as milk), especially
in the case of complex, three dimensional behavior as seen when
water is poured into a glass as in figure 1. A key to achieving this
goal is the visually accurate treatment of the surface separating the

Figure 1: Water being poured into a glass (55x120x55 grid cells).

water from the air. The behavior of this surface provides the visual
impression that water is being seen. If the numerical simulation
method used to model this surface is not robust enough to capture
the essence of water, then the effect is ruined for the viewer. A va-
riety of new techniques for treatment of the surface are proposed in
this paper in order to provide visually pleasing motion and photo-
realistic results.

We propose a new “thickened” front tracking approach to model-
ing the surface, called the ”particle level set method”. It is a hybrid
surface tracking method that uses massless marker particles com-
bined with a dynamic implicit surface. This method was entirely
inspired by the hybrid liquid volume model proposed in [Foster and
Fedkiw 2001], but exhibits significantly more realistic surface be-
havior. This effect is achieved by focusing on modeling the surface
as opposed to the liquid volume as was done by [Foster and Fedkiw
2001]. This shift in philosophy away from volume modeling and to-
wards surface modeling, is the key idea behind our new techniques,
resulting in better photorealistic behavior of the water surface.

We propose a new treatment of the velocity at the surface in order
to obtain more visually realistic water surface behavior. The mo-
tion of both the massless marker particles and the implicit function
representing the surface is dependent upon the velocities contained
on the underlying computational mesh. By extrapolating veloci-
ties across the water surface and into the region occupied by the
air, we obtain more accurate and better visual results. In the limit
as the computational grid is refined, the resulting surface condition
is identical to the traditional approach of making the velocity di-
vergence free, but it gives more visually appealing and physically
plausible results on coarse grids. Furthermore, this velocity extrap-
olation procedure allows us to add a degree of control to the behav-
ior of the water surface. We can add dampening and/or churning
effects forcing it to quiet down or splash up faster than would be



allowed by a straightforward physical simulation.
Our new advances can be easily incorporated into a pre-existing

Navier-Stokes solver for water. In fact, we solve the Navier-Stokes
equations for liquid water along the lines of [Foster and Fedkiw
2001], in particular using a semi-Lagrangian “stable fluid” ap-
proach introduced to the community by Stam [Stam 1999]. Our
approach preserves as much of the realistic behavior of the water
as possible, while at the same time providing a degree of control
necessary for its use in a computer animation environment.

Photorealistic rendering is necessary in order to complete the
computational illusion of real water. In some ways water is an easy
material to render, because unlike many common materials its op-
tical properties are well understood and are easy to describe. In all
but the largest-scale scenes, surface tension prevents water surfaces
from exhibiting the microscopic features that make reflection from
many other materials so complicated. However, water invariably
creates situations in which objects are illuminated through complex
refracting surfaces, which means that the light transport problem
that is so easy to state is difficult to solve. Most widely used render-
ing algorithms disregard this sort of illumination or handle it using
simple approximations, but because water and its illumination ef-
fects are so familiar these approaches fail to achieve realism. There
are several rendering algorithms that can properly account for all
transport paths, including the illumination through the water sur-
face; some examples are path tracing [Kajiya 1986], bidirectional
path tracing [Heckbert 1990; Lafortune and Willems 1993; Veach
and Guibas 1994], Metropolis light transport [Veach and Guibas
1997], and photon mapping [Jensen 1995]. In our renderings of
clear water for this paper we have chosen photon mapping because
it is simple and it makes it easy to avoid the distracting noise that
often arises in pure path sampling algorithms from illumination
through refracting surfaces.

2 Previous Work

Early (and continuing) work by the graphics community into the
modeling of water phenomenon focused on reduced model rep-
resentations of the water surface, ranging from Fourier synthesis
methods [Masten et al. 1987] to parametric representations of the
water surface [Schachter 1980; Fournier and Reeves 1986; Peachey
1986; Ts’o and Barsky 1987]. The last three references are notable
in the way they attempt to model realistic wave behavior including
the change in wave behavior as a function of the depth of the water.
Fairly realistic two dimensional wave scenery can be developed us-
ing these methods including the illusion of breaking waves, but ulti-
mately they are all constrained by the sinusoidal modeling assump-
tion present in each of them. They are unable to easily deal with
complex three dimensional behaviors such as flow around objects
and dynamically changing boundaries. A summary of the above
methods and their application to modeling and rendering of ocean
wave environments can be found in [Tessendorf 2001].

In order to obtain water models which could potentially be used
in a dynamic animation environment, researchers turned towards
using two dimensional approximations to the full 3D Navier-Stokes
equations. [Kass and Miller 1990] use a linearized form of the 2D
shallow water equations to obtain a height field representation of
the water surface. A pressure defined height field formulation was
used by [Chen and Lobo 1994] in fluid simulations with moving
obstacles. [O’Brien and Hodgins 1995] used a height model com-
bined with a particle system in order to simulate splashing liquids.
The use of a height field gives a three dimensional look to a two
dimensional flow calculation, but it constrains the surface to be a
function, i.e. the surface passes the vertical line test where for each
(x,y) position there is at most one z value. The surface of a crash-
ing wave or of water being poured into a glass does not satisfy the
vertical line test. Use of particle systems permits the surface to

become multivalued. A viscous spring particle representation of a
liquid has been proposed by [Miller and Pearce 1989]. An alterna-
tive molecular dynamics approach to the simulation of particles in
the liquid phase has been developed by [Terzopoulos et al. 1989].
Particle methods, while quite versatile, can pose difficulties when
trying to reconstruct a smooth water surface from the locations of
the particles alone.

The simulation of complex water effects using the full 3D
Navier-Stokes equations has been based upon the large amount of
research done by the computational fluid dynamics community over
the past 50 years. [Foster and Metaxas 1996] utilized the work
of [Harlow and Welch 1965] in developing a 3D Navier-Stokes
methodology for the realistic animation of liquids. Further CFD
enhancements to the traditional marker and cell method of Har-
low and Welch which allow one to place particles only near the
surface can be found in [Chen et al. 1997]. A semi-Lagrangian
”stable fluids” treatment of the convection portion of the Navier-
Stokes equations was introduced to the computer graphics com-
munity by [Stam 1999] in order to allow the use of significantly
larger time steps without hindering stability. [Foster and Fedkiw
2001] made significant contributions to the simulation and control
of three dimensional fluid simulations through the introduction of a
hybrid liquid volume model combining implicit surfaces and mass-
less marker particles; the formulation of plausible boundary con-
ditions for moving objects in a liquid; the use of an efficient iter-
ative method to solve for the pressure; and a time step subcycling
scheme for the particle and implicit surface evolution equations in
order to reduce the amount of visual error inherent to the large semi-
Lagrangian “stable fluid” time step used for time evolving the fluid
velocity and the pressure. The combination of all of the above ad-
vances in 3D fluid simulation technology along with ever increasing
computational resources has set the stage for the inclusion of fully
3D fluid animation tools in a production environment.

Most work on simulating water at small scales has not specifi-
cally addressed rendering and has not used methods that correctly
account for all significant light transport paths. Research on the
rendering of illumination through water [Watt 1990; Nishita and
Nakamae 1994] has used methods based on processing each poly-
gon of a mesh that represents a fairly smooth water surface, so
these methods cannot be used for the very complex implicit sur-
faces that result from our simulations. For the case of 2D wave
fields in the open ocean, approaches motivated by physical cor-
rectness have produced excellent results [Premoze and Ashikhmin
2000; Tessendorf 2001].

3 Simulation Method

3.1 Motivation

[Foster and Fedkiw 2001] chose to define the liquid volume be-
ing simulated as one side of an isocontour of an implicit function,
φ . The surface of the water was defined by the φ = 0 isocontour
with φ ≤ 0 representing the water and φ > 0 representing the air.
By using an implicit function representation of the liquid volume,
they obtained a smooth, temporally coherent liquid surface. They
rejected the use of particles alone to represent the liquid surface be-
cause it is difficult to a calculate a visually desirable smooth liquid
surface from the discrete particles alone. The implicit surface was
dynamically evolved in space and time according to the underly-
ing liquid velocity ~u. As shown in [Osher and Sethian 1988], the
appropriate equation to do this is

φt +~u · ∇ φ = 0 (1)

where φt is the partial derivative of φ with respect to time and ∇ =
(∂/∂x,∂/∂y,∂/∂ z) is the gradient operator.



An implicit function only approach to modeling the surface will
not yield realistic surface behavior due to an excessive amount of
volume loss on coarse grids. A seminal advance of [Foster and
Fedkiw 2001] in creating realistic liquids for computer animation
is the hybridization of the visually pleasing smooth implicit func-
tion modeling of the liquid volume with particles that can maintain
the liquid volume on coarse grids. The inclusion of particles pro-
vides a way for capturing the liveliness of a real liquid with spray
and splashing effects. Curvature was used as an indicator for allow-
ing particles to influence the implicit surface representation of the
water. This is a natural choice since small droplets of water have
very high curvature and dynamic implicit surfaces have difficulty
resolving features with sharp corners.

Figure 2(a) shows a notched disk that we rotate for one rigid
body rotation about the point (50,50). The inside of the disk can
be thought of as a volume of liquid. Figure 2(b) shows the re-
sult of using an implicit surface only approach (after one rotation)
where both the higher and lower corners of the disk are erroneously
shaved off causing both loss of visual features and an artificially
viscous look for the liquid. This numerical result was obtained us-
ing a highly accurate fifth order WENO discretization of equation
1 (see e.g. [Jiang and Peng 2000; Osher and Fedkiw 2002]). For
the sake of comparison, we note that [Sethian 1999] only proposes
second order accurate methods for discretizing this equation. Fig-
ure 2(c) shows the result obtained with our implementation of the
method from [Foster and Fedkiw 2001]. The particles inside the
disk do not allow the implicit surface to cross over them and help
to preserve the two corners near the bottom. However, there is lit-
tle they can do to stop the implicit surface from drifting away from
them near the top corners. This represents loss of air or bubbles as
the method erroneously gains liquid volume. This is not desirable
since many complex water motions such as wave phenomenon are
due in part to differing heights of water columns adjacent to each
other. Loss of air in a water column reduces the pressure forces
from neighboring columns destroying many of the dynamic splash-
ing effects as well as the overall visually stimulating liveliness of
the liquid.

While the hybrid liquid volume model of Foster and Fedkiw at-
tempts to maintain the volume of the liquid accurately, it fails to
model the air or more generally the opposite side of the liquid sur-
face. We shift the focus away from maintaining a liquid volume
towards maintaining the liquid surface itself. An immediate advan-
tage of this approach is that it leads to symmetry in particle place-
ment. We place particles on both sides of the surface and use them
to maintain an accurate representation of the surface itself regard-
less of what may be on one side or the other. The particles are not
meant to track volume, they are intended to correct errors in the
surface representation by the implicit function. In [Enright et al.
2002] we showed that this surface only approach leads to the most
accurate 3D results for surface tracking ever achieved (in both CFD
and CG). This was done for analytical ”test” velocity fields. Fig-
ure 2(d) shows that this new method correctly computes the rigid
body rotation for the notched disk preserving both the water and
the air volumes so that more realistic water motion can be obtained.

In this current paper, we couple this new method to real velocity
fields and fluid dynamics calculations for the first time. Represen-
tative results of this new method can be seen in figure 3. A ball
is thrown into a tank of water with the same tank geometry, grid
spacing and ball speed as seen in figure 4 (courtesy of [Foster and
Fedkiw 2001]). The resulting splash after the ball impacts the sur-
face of the water is dramatically different between the two figures.
Our new method produces the well formed, thin sheet one would
visually expect. Note that the distorted look of the ball in our fig-
ure is due to the correct calculation of the refraction of light when
it passes through the surface of the water. To give an indication
of the additional computational cost incurred using our new simu-

(a) Initial Notched Disk (b) Implicit Surface Only

(c) Particles Inside Only (d) Our New Method

Figure 2: Rigid Body Rotation Test

lation method, figure 3 took about 11 minutes per frame, figure 4
took about 7 minutes per frame and a level set only solution takes
about 3 minutes per frame. The rendering time for figure 3 was
approximately 15 minutes per frame.

3.2 Particle Level Set Method

3.2.1 Initialization of Particles

Two sets of particles are randomly placed in a “thickened” surface
region (we use three grid cells on each side of the surface) with
positive particles in the φ > 0 region and negative particles in the
φ ≤ 0 region. There is no need to place particles far away from
the surface since the sign of the level set function readily identifies
these regions gaining large computational savings. The number of
particles placed in each cell is an adjustable parameter that can be
used to control the amount of resolution, e.g. we use 64 particles
per cell for most of our examples. Each particle possesses a radius,
rp, which is constrained to take a minimum and maximum value
based upon the size of the underlying computational cells used in
the simulation. A minimum radius of .1min(∆x,∆y,∆z) and maxi-
mum radius of .5min(∆x,∆y,∆z) appear to work well. The radius
of a particle changes dynamically throughout the simulation, since
a particle’s location relative to the surface changes. The radius is
set according to:

rp =







rmax if spφ(~xp) > rmax

spφ(~xp) if rmin ≤ spφ(~xp) ≤ rmax ,
rmin if spφ(~xp) < rmin

(2)

where sp is the sign of the particle (+1 for positive particles and
-1 for negative particles). This radius adjustment keeps the bound-
ary of the spherical particle tangent to the surface whenever possi-
ble. This fact combined with the overlapping nature of the particle



Figure 3: Our New Method (140x110x90 grid cells).

spheres allows for an enhanced reconstruction capability of the liq-
uid surface.

3.2.2 Time Integration

The marker particles and the implicit function are separately in-
tegrated forward in time using a forward Euler time integration
scheme. The implicit function is integrated forward using equa-
tion 1, while the particles are passively advected with the flow us-
ing d~xp/dt =~up, where ~up is the fluid velocity interpolated to the
particle position~xp.

3.2.3 Error Correction of the Implicit Surface

Identification of Error: The main role of the particles is to de-
tect when the implicit surface has suffered inaccuracies due to the
coarseness of the computational grid in regions with sharp features.
Particles that are on the wrong side of the interface by more than
their radius, as determined by a locally interpolated value of φ at
the particle position ~xp, are considered to have escaped their side
of the interface. This indicates errors in the implicit surface rep-
resentation. In smooth, well resolved regions of the interface, our
dynamic implicit surface is highly accurate and particles do not drift
a non-trivial distance across the interface.

Quantification of Error: We associate a spherical implicit func-
tion , designated φp, with each particle p whose size is determined
by the particle radius, i.e.

φp(~x) = sp(rp −|~x−~xp|). (3)

Any difference in φ from φp indicates errors in the implicit function
representation of the surface. That is, the implicit version of the
surface and the particle version of the surface disagree.

Error Correction: We use escaped positive particles to rebuild
the φ > 0 region and escaped negative particles to rebuild the φ ≤ 0
region as defined by the implicit function. The reconstruction of the
implicit surface occurs locally within the cell that each escaped par-
ticle currently occupies. Using equation 3, the φp values of escaped
particles are calculated for the eight grid points on the boundary of
the cell containing the particle. This value is compared to the cur-
rent value of φ for each grid point and we take the smaller value
(in magnitude) which is the value closest to the φ = 0 isocontour
defining the surface. We do this for all escaped positive and escaped

Figure 4: Foster and Fedkiw 2001 (140x110x90 grid cells).

negative particles. The result is an improved representation of the
surface of the liquid.

3.2.4 When To Apply Error Correction

We apply the error correction method discussed above after any
computational step in which φ has been modified in some way.
This occurs when φ is integrated forward in time and when the
implicit function is smoothed to obtain a visually pleasing surface.
We smooth the implicit surface with an equation of the form

φτ = −S(φτ=0)(|∇ φ |−1), (4)

where τ is a fictitious time and S(φ) is a smoothed signed distance
function given by

S(φ) =
φ

√

φ 2 +(∆x)2
. (5)

More details on this are given in [Foster and Fedkiw 2001].

3.2.5 Particle Reseeding

In complex flows, a liquid interface can be stretched and torn in a
dynamic fashion. The use of only an initial seeding of particles will
not capture these effects well, as regions will form that lack a suffi-
cient number of particles to adequately perform the error correction
step. Periodically, e.g. every 20 frames, we randomly reseed par-
ticles about the “thickened” interface to avoid this dilemma. This
is done by randomly placing particles near the interface, and then
using geometric information contained within the implicit function
(e.g. the direction of the shortest possible path to the surface is

given by ~N = ∇ φ/|∇ φ |) to move the particles to their respective
domains, φ > 0 or φ ≤ 0. The goal of this reseeding step is to pre-
serve the initial particle resolution of the interface, e.g. 64 particles
per cell. Thus, if a given cell has too few or too many particles,
some can be added or deleted respectively.

3.2.6 A Note on Alternative Methods

If we felt that preserving the volume of the fluid was absolutely nec-
essary in order to obtain visually pleasing fluid behavior, we would
have chosen to use a volume of fluid (VOF) [Hirt and Nichols 1981]
representation of the fluid. Although VOF methods explicitly con-
serve volume, they produce visually disturbing artifacts allowing
thin liquid sheets to artificially break up and form “blobbies” and



“flotsam” of liquid. Also, a visually desirable smooth fluid interface
is difficult to construct when using these methods.

Another alternative is to explicitly discretize the free surface with
particles and maintain a connectivity list between particles, see e.g.
[Unverdi and Tryggvason 1992]. This connectivity list is difficult
to maintain when parts of the free surface break apart or merge
together as is often seen in complex flows of water and other liquids.
Our approach avoids the especially difficult issues associated with
maintaining particle connectivity information.

3.3 Velocities at the Surface

Although the Navier-Stokes equations can be used to find the ve-
locity within the liquid volume, boundary conditions are needed for
the velocity on the air side near the free surface. These boundary
condition velocities are used in updating the Navier-Stokes equa-
tions, moving the surface, and moving the particles placed near the
surface. The velocity at the free surface of the water can be deter-
mined through the usual enforcement of the conservation of mass
(volume) constraint, ∇ ·~u = 0, where ~u = (u,v,w) is the velocity of
the liquid. This equation allows us to determine the velocities on
all the faces of computational cells that contain the φ = 0 isocon-
tour. Unfortunately, the procedure for doing this is not unique when
more than one face of a cell needs a boundary condition velocity. A
variety of methods have been proposed, e.g. see [Chen et al. 1995]
and [Foster and Metaxas 1996].

We propose a different approach altogether, the extrapolation of
the velocity across the surface into the surrounding air. As the com-
putational grid is refined, this method is equivalent to the usual
method, but it gives a smoother and more visually pleasing motion
of the surface on coarser (practical sized) grids. We extrapolate the
velocity out a few grid cells into the air, obtaining boundary condi-
tion velocities in a band of cells on the air side of the surface. This
allows us to use higher order accurate methods and obtain better
results when moving the implicit surface using equation 1 and also
provides velocities for updating the position of particles on the air
side of the surface. Velocity extrapolation also assists in the imple-
mentation of the semi-Lagrangian “stable fluid” method, since there
are times when characteristics generated by this approach look back
across the interface (a number of cells) into the air region for valid
velocities.

3.3.1 Extrapolation Method

The equation modeling this extrapolation for the x component of
the velocity, u, is given by

∂u

∂τ
= −~N · ∇ u, (6)

where ~N = (nx,ny,nz) is a unit vector perpendicular to the implicit
surface and τ is fictitious time. A similar equation holds for the
v and w components of velocity field. Since we use an implicit

surface to describe the fluid, ~N = ∇ φ/|∇ φ |. Fast methods exist for
solving this equation in O(n logn) time, where n is the number of
grid points that one needs to extrapolate over, in our case a five grid
cell thick band on the air side of the interface. The fast method is
based upon the observation that information in equation 6 propa-
gates in only one direction away from the surface. This implies that
we do not have to revisit previously computed values of ~uext (the
extrapolated velocity) if we perform the calculation in the correct
order. The order is determined by the value of φ allowing us to
do an O(n logn) sorting of the points before beginning the calcula-
tion. The value of u itself is determined by enforcing the condition
at steady state, namely ∇ φ · ∇ u = 0 where the derivatives are de-
termined using previously calculated values of φ and u. From this
scalar equation, a new value of u can be determined, and then we

proceed to the next point corresponding to the next smallest value
of φ , etc. Further details of this method are discussed in [Adal-
steinsson and Sethian 1999].

3.3.2 Velocity Advection

The momentum portion of the Navier-Stokes equations is:

~ut = −~u · ∇ ~u+ν ∇ · (∇ ~u)−
1

ρ
∇ p+~g, (7)

where ν is the kinematic viscosity of the fluid, ρ is the density of
the fluid, p is the pressure, and ~g is an externally applied gravity
field. We use the semi-Lagrangian “stable fluids” method [Stam
1999] to update the convective portion of this equation, i.e. the
~u · ∇ ~u term. This method calculates the first term on the left hand
side of equation 7 by following the fluid characteristics backwards
in time to determine from which computational cell the volume of
fluid came, and then taking an average of the appropriate veloci-
ties there. This allows one to stably take much larger time steps
than would be allowed using other time advancement schemes for
velocity advection. A consequence of the now allowed large semi-
Lagrangian time step is that near the surface, we might look across
the interface as many as a few grid cells into the air region to find
velocities. In a standard approach, valid velocities are not defined
in this region. However, our velocity extrapolation technique easily
handles this case ensuring that physically plausible velocities exist a
few grid cells into the air region. In fact, we extrapolate the velocity
the maximum distance from the surface that would be allowed dur-
ing a semi-Lagrangian ”stable fluids” time step guaranteeing that a
smooth, physically plausible and visually appealing velocity can be
found there.

3.3.3 Control

Our velocity extrapolation method enables us to apply a newly de-
vised method for controlling the nature of the surface motion. This
is done simply by modifying the extrapolated velocities on the air
side of the surface. For example, to model wind-blown water as a
result of air drag, we take a convex combination of the extrapolated
velocities with a pre-determined wind velocity field

~u = (1−α)~uext +α~u
wind

, (8)

where ~uext is the extrapolated velocity, ~u
wind

a desired air-like ve-
locity, and 0 ≤ α ≤ 1 the mixing constant. This can be applied
throughout the surface or only locally in select portions of the com-
putational domain as desired. Note that setting ~u

wind
= 0 forces

churning water to settle down faster with the fastest settling result-
ing from α = 1. All of the figures shown in the paper used α = 0,
but we demonstrate how α can be used to force a poured glass of
water to settle more quickly in the accompanying video.

3.4 Summary

We divide up the computational domain into voxels with the com-
ponents of ~u stored on the appropriate faces and p, ρ and φ stored
at the center of each cell. This arrangement of computational vari-
ables is the classic staggered MAC-style arrangement [Harlow and
Welch 1965]. The density of a given cell is given by the value of φ
at the center of the cell. The evolution of ~u, p, ρ and φ in a given
time step is performed in a series of three steps as outlined below:

1. The current surface velocity is smoothly extrapolated across
the surface into the air region as discussed in section 3.3.1.
Appropriate control behavior modifications to the velocity
field are made.



2. The water surface and marker particles are integrated forward
in time via an explicit time step subcycling method with the
appropriate corrections to φ as described in section 3.2.3.

3. The velocity field is updated with equation 7 using the up-
dated values for ρ . This is done by first using the semi-
Lagrangian “stable fluid” method to find an estimate for the
velocity. This estimate is further augmented by the viscous
and forcing terms. The spatial derivatives used in calculating
these terms are calculated using a standard centered second
order accurate finite difference scheme. Then a system of lin-
ear equations is assembled and solved for the pressure in or-
der to make this intermediate velocity field divergence free.
The newly calculated pressure is applied as a correction to
the intermediate velocity in order to fully update the water’s
velocity field. Interaction of the liquid with objects, walls,
etc. is treated here as well. For this step, we follow exactly
the method of [Foster and Fedkiw 2001] and refer the reader
there for more details.

This sequence of steps is repeated until a user defined stopping
point is reached. The time step for each iteration of the above steps
is determined using the water’s velocity to calculate an appropri-
ate CFL condition which is approximately five times larger than
the traditional CFL condition used in fluid simulations (the semi-
Lagrangian ”stable fluids” method allows this). Also, any viscosity
related CFL restrictions are locally dealt with by reducing the vis-
cosity in the offending cells in order to allow for our larger time
step.

3.5 Rendering

Our results are rendered using a physically based Monte Carlo ray
tracer capable of handling all types of illumination using photon
maps and irradiance caching [Jensen 2001]. To integrate our simu-
lation system with the renderer we implemented a geometry primi-
tive that intersects rays with the implicit surface directly by solving
for the root of the signed distance along the ray. Depending on
the accuracy required by a particular scene we use either a trilin-
ear or a tricubic filter [Marschner and Lobb 1994] to reconstruct φ .
The normal is computed using trilinearly interpolated central dif-
ferences for the trilinear surface, or simply using the derivative of
the reconstructed tricubic surface.

The properties of φ have two advantages in the rendering con-
text. First, intersecting a ray with the surface is much more efficient
than it would be for an isosurface of a general function. The signed
distance function provides a lower bound on the distance to the in-
tersection along the ray, allowing us to take large steps when the
current point is far from the surface. Second, it is easy to provide
for motion blur in the standard distribution ray tracing framework.
To compute the surface at an intermediate time between two frames
we simply interpolate between the two signed distance volumes and
use the same intersection algorithm unchanged. For the small mo-
tions that occur between frames the special properties of φ are not
significantly compromised.

4 Results

4.1 Pouring Water Into A Glass

Figures 1 and 7 show the high degree of complexity in the water
surface. Note the liveliness of the surface of the water when the
water is initially being poured. The ability to maintain the visu-
ally pleasing thin sheets of water during the turbulent mixing phase
is a consequence of our new method. We do not loose any of the
fine detail with regards to the air pockets formed, since we model

both sides of the water surface. Even though the calculation was
performed on a Cartesian computational grid, the glass was shaped
as a cylinder on the grid, with the grid points outside the cylinder
treated as an object which does not permit the fluid to interpene-
trate it. The glass was modeled as smooth and clear in order to
highlight the action of the water being poured into the glass. The
computational cost was approximately 8 minutes per frame.

To our knowledge, the only other complex, three dimensional
simulation of a liquid being poured into a glass for computer an-
imation is from the Gingerbread Man torture scene in the feature
film “Shrek”. Milk lacks the transparency of water making it diffi-
cult to clearly view the dynamic behavior of the milk surface. Also,
the modeling of a thick polygonal glass with a rough surface does
not provide a clear view of the milk making a direct comparison
difficult.

The scene used to render our result contains just a simple cylin-
drical glass, the simulated water surface, and a few texture mapped
polygons for the background. Illumination comes from a physically
based sky model and two area sources. Because water only reflects
and refracts other objects, the scene including the sky is very impor-
tant to the appearance. The glass and the water together create three
dielectric interfaces: glass-air, water-air, and air-water, so the inside
surface of the glass has two sets of material properties depending on
whether it is inside or outside the implicitly defined surface (which
is easy to determine by checking the sign of φ ). The illumination
in the shadow of the glass is provided by a photon map, and illu-
mination from the sky on diffuse surfaces in the scene is computed
using Monte Carlo integration. We also note that milk would not
present as difficult a global illumination problem due to its lack
of transparency. Motion blur was included for these renderings.
The rendering time for the glass was approximately 15 minutes per
frame.

4.2 Breaking Wave

As a second example, we have performed a breaking wave calcu-
lation in a numerical wave tank as shown in figure 8. To begin to
model this phenomenon, we needed to chose an initial condition for
the wave. We chose to use the theoretical solution of a solitary wave
of finite amplitude propagating without shape change [Radovitzky
and Ortiz 1998]. The initial velocities u and v in the x and y direc-
tions respectively and surface height η are given by:

u =
√

gd
H

d
sech2

[

√

3H

4d3
x

]

(9)

v =
√

3gd

(

H

d

)3/2
y

d
sech2

[

√

3H

4d3
x

]

tanh

[

√

3H

4d3
x

]

(10)

η = d +H sech2

[

√

3H

4d3
x

]

, (11)

where g is the gravitational constant 9.8 m/s. For our simulations,
we set H = 7 and d = 10. We used the same initial conditions
in three spatial dimensions, replicating the two dimensional initial
conditions along the z-axis.

Next, we needed to introduce a model of a sloping underwater
shelf in order to cause the propagating pulse to actually pile up on
itself and form a breaking wave. We performed a variety of two di-
mensional tests to determine the best underwater shelf geometry to
generate a visually pleasing breaking wave. Figure 5 is a sequence
of frames from one of the two dimensional tests we ran with the
same x-y cross section as can be found in our 3D example. We
found this prototyping technique to be a fast and easy way to ex-
plore possible breaking wave behaviors in a fraction of the time it
would take to run a fully three dimensional test case.



Figure 5: Two Dimensional Breaking Wave

After determining the best submerged shelf geometry to generate
a breaking wave, we generated a slight tilt in the geometry in order
to induce a curl in the break of the wave and enhance the three
dimensional look. A sketch of the shelf geometry used in our three
dimensional calculations is shown in figure 6. An incline of slope
1:7 rises up from the sea bottom to a depth of 2 m below the surface
of the water. Instead of allowing the incline to go all the way to
the surface we chose to have it flatten out at this depth in order to
illustrate the splash up effects after the initial breaking of the wave.

Next we ran a fully three dimensional simulation, the results of
which can be seen in figure 8. The wave has the intended curling
effect. The formation of a tube of air is clearly seen after the wave
splashes down, with the “air” particles maintaining the tube even af-
ter the wave begins a secondary splash up. We observe some solely
three dimensional effects including the fingering of the breaking
wave. The computational cost was approximately 13 minutes per
frame.

Figure 6: Submerged Shelf

The simulation shown captures the basic phenomena of the
breaking wave on a very coarse grid, but in real waves there are
small-scale features that, while not important to the behavior of the
large wave, are very important for its appearance. Coupling a 2D
simulation for the small scale features to the wave simulation is a
promising avenue for future work. Once those waves are incorpo-

rated it will become important to treat diffusion of light through
the water more correctly. Also, texture mapping of the wave, e.g.
use of a Philips spectrum [Tessendorf 2001] or a bump mapping
technique [Fournier and Reeves 1986], needs to be explored fur-
ther. Another challenge will be to augment our method to naturally
handle spray and foam.

5 Conclusion and Future Work

We have presented some novel computational methods for en-
hanced surface tracking and modeling of the surface motion. Com-
bining these leads to the possibility of creating photorealistic be-
havior in 3D water simulations for the purpose of computer graph-
ics animation. We discussed some advances in rendering the sim-
ulated photorealistic behavior in order to complete the illusion that
real water is being seen. The computational methods presented can
easily be included into an existing three dimensional fluid simula-
tion animation tool. Also, we believe that our “thickened” front
tracking approach should enable texture mapping of an implicitly
defined fluid surface, and we will pursue this as future work.
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Figure 7: Water being poured into a clear, cylindrical glass (55x55x120 grid cells). Our method makes possible the fine detail seen in
the turbulent mixing of the water and air.

Figure 8: View of wave breaking on a submerged shelf (540x75x120 grid cells). Note the ability to properly model the initial breaking
(top two frames) and secondary splash up (bottom two frames) phases. Rendered by proprietary software at ILM.


