
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Technical Reports (CIS) Department of Computer & Information Science 

3-1-1990 

Animation From Instructions Animation From Instructions 

Norman I. Badler 
University of Pennsylvania, badler@seas.upenn.edu 

Bonnie L. Webber 
University of Pennsylvania, bonnie@inf.ed.ac.uk 

Jeffrey Esakov 
University of Pennsylvania 

Jugal Kalita 
University of Pennsylvania 

Follow this and additional works at: https://repository.upenn.edu/cis_reports 

Recommended Citation Recommended Citation 

Norman I. Badler, Bonnie L. Webber, Jeffrey Esakov, and Jugal Kalita, "Animation From Instructions", . 

March 1990. 

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-90-17. 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/533 
For more information, please contact repository@pobox.upenn.edu. 

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F533&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/533
mailto:repository@pobox.upenn.edu


Animation From Instructions Animation From Instructions 

Abstract Abstract 
We believe that computer animation in the form of narrated animated simulations can provide an 
engaging, effective and flexible medium for instructing agents in the performance of tasks. However, we 
argue that the only way to achieve the kind of flexibility needed to instruct agents of varying capabilities to 
perform tasks with varying demands in work places of varying layout is to drive both animation and 
narration from a common representation that embodies the same conceptualization of tasks and actions 
as Natural Language itself. To this end, we are exploring the use of Natural Language instructions to drive 
animated simulations. In this paper, we discuss the relationship between instructions and behavior that 
underlie our work and the overall structure of our system. We then describe in some what more detail 
three aspects of the system - the representation used by the Simulator, the operation of the Simulator and 
the Motion Generators used in the system. 

Comments Comments 
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-90-17. 

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/533 

https://repository.upenn.edu/cis_reports/533


Animation From Instructions 

MS-CIS-90-17 

GRAPHICS LAB 33 
LINC LAB 165 

Norman I. Badler 

Bonnie L. Webber 

Jeffrey Esakov 
Jugal Kalita 

Department of Computer and Information Science 

School of Engineering and Applied Science 

University of Pennsylvania 
Philadelphia, PA 19104-6389 

March 1990 



Animation from Instructions 

Norman I. Badler Bonnie L. Webber Jugal Kalita 
Jeffrey Esakov 

Department of Computer and Information Science 
University of Pennsylvania 

Philadelphia, PA 19104-6389* 

Abstract 

We believe that computer animation in the form of narrated animated simulations can 

provide an engaging, effective and flexible medium for instructing agents in the performance 

of tasks. However, we argue that the only way to achieve the kind of flexibility needed to 

instruct agents of varying capabilities to perform tasks with varying demands in work places 

of varying layout is to drive both animation and narration from a common representation 

that embodies the same conceptualization of tasks and actions as Natural Language itself. 

To this end, we are exploring the use of Natural Language instructions to drive animated 

simulations. In this paper, we discuss the relationship between instructions and behavior 

that underlie our work and the overall structure of our system. We then describe in some  

what more detail three aspects of the system - the representation used by the Simulator, 

the operation of the Simulator and the Motion Generators used in the system. 

1 Introduction 

The enterprise we have embarked upon rests on a two-part argument: 

Narrated animations are an engaging and extremely effective medium for instructing agents 

in task performance. Moreover, coupled with the emerging technology of virtval reality 

[29], narrated animations can provide a low-cost way of giving learners "personal" trainers 

and "on-site" environments in which to train. 

The only way to create the kind of flexible narrated animations needed to instruct agents of 

varying capabilities to perform tasks with varying demands in work places of varying layout 
is to drive both animation and narration from a common representation that embodies the 

same conceptualization of tasks and actions as Natural Language itself. 

*This research is partially supported by Lockheed Engineering and Management Services (NASA Johnson 

Space Center), NASA Ames Grant NAG-2-426, FMC Corporation, Martin-Marietta Denver Aerospace, NSF 

CISE Grant CDA88-22719, and ARO Grant DAAL03-89-C-0031 including participation by the U.S. Army Human 

Engineering Laboratory. The authors would like to thank Mark Steedman for his comments and advice on earlier 

versions of this paper. 



Here we explain and elaborate this argument, before describing our own efforts towards creating 

narrated animations. 

To argue the first point - that narrated animations are an engaging and extremely effective 

medium for instructing agents in task performance - we need to answer three questions: 

1. Why narrated animations? Why not just annotated or captioned still images? 

2. Why narrated animations? Why not just movies or videotapes of human agents carrying 

out the tasks? 

3. Why narrated animations? Why not animation alone? 

Annotated or captioned stills are clearly useful in grounding the referents of terms in instructions 

such as "the pipe and ball assembly" and "four blade flanges" (to take two examples from a 

ceiling fan installation manual) and in demonstrating what the end results of particular actions 

should look like. However, they cannot show the agent how to  achieve those results. Narrated 

animations can do both. As to why animation should be preferred to  live-action videotapes, 

it is simply that graphics (and schematic renderings, in general) can abstract away (as well 

as visually carve away) what is irrelevant, demonstrating only what is relevant t o  the task at 

hand. As to why narrated animation is better than animation alone, researchers studying plan 

inference have shown just how hard it is to infer an agent's intentions from his or her observed 

actions alone [19]. To effectively instruct an agent to do a task, the communication of intentions 

is as important t o  effective performance as the communication of actions. Such intentions cannot 

be effectively communicated through images alone. For example, consider the following excerpt 

from instructions for installing a diverter spout on a bath tub faucet: 

Install new spout. When doing so, DO NOT use lift knob or hose connection for 

leverage. Damage may result! Tighten by hand only. 

While red-slashed icons on warning signs may be effective in reminding people of what behavior 

is forbidden ("no smoking", "no wearing high-heeled shoes", even "no haunting"), they cannot 

unambiguously convey the reason for forbidden or otherwise discouraged behavior. Commu- 

nication of both the hows and the whys of task performance requires a union of both visual 

presentation and language. 

The second part of our argument is that the only way to create the kind of flexible nar- 

rated animations needed to  instruct agents of varying capabilities to  perform tasks with varying 

demands in work places of varying layout is to drive both animation and narration from a com- 

mon representation that embodies the same conceptualization of tasks and actions as Natural 

Language itself. 

Of course, we are not claiming that animation can be driven solely from that common 

representation: other types of knowledge are clearly needed as well - including knowledge of 

motor skills and other performance characteristics (cf. Section 7). Nor are we claiming that these 

types of knowledge could in any way be provided through Natural Language. That too is clearly 

false. For example, the gross underspecification of Natural Language communication comes out 

most strongly when attempting to  describe motion: the relation between language and the world 
appears to  be a t  its most tenuous where motion specification is concerned. Existing means of 



specifying motor skills such as direct manipulation, skill learning and algorithmic determination 

are clearly more appropriate. 

The second part of our argument raises the following further questions: 

1. Why should animation and narration be driven from a common representation? Why not 

just create them separately - for example, through direct manipulation and text provided 

by some commentator? 

2. Why should that representation embody the same conceptualization of tasks and actions 

(i.e., reflect the same ontology) as Natural Language itself? 

3. Where are we going to get that common representation? 

The point of driving animation and narration together from a common representation is flexibility 

and accuracy. How an agent should carry out a task may depend on both his/her capabilities 

and features of the given workplace. Veridical narration must reflect both the agent's actions 

and the conditions motivating them. This can be provided by an outside commentator, but 

he or she will have to  comment afresh (and in a consistent manner) for each "version" of the 

task simulation. Moreover any changes in the task (for example, those arising from minor model 

changes in the device whose use is being portrayed) are likely also to require fresh commentary in 

order to remain veridical. As we and others have argued regarding explanation of expert system 

behavior, it is desirable that the explanation derive from the same underlying specification as 

the system's reasoning, if that explanation is to truthfully represent why the system came to its 

concl~sions.~ 

As to why that common representation should embody the same ontology of tasks and actions 

as Natural Language (including the range of causal and otherwise contingent relations between 

actions assumed by language), the reasons are separate for animation and narration, but the 

conclusion is the same. On the one hand, if the representation is to drive the generation of 

Natural Language, the structure of the representation should be directly related to Natural 

Language semantics. On the other, since Natural Language semantics is directly related to 

natural cognition, it is likely that a representation which embodies it will be maximally helpful 

to (human) graphics systems designers developing and modifying the animation side of the 

system. 

Finally, as to where we can get that common representation, we would like to argue against 

creating it by hand and for acquiring as much as possible through the medium most often used 

for conveying the whats and whys of actions and tasks - Natural Language Instructions. The 

alternative of encoding the driving representation directly by hand has all the disadvantages 

that have pulled the Programming Language community in the direction of higher and higher 

level programming languages and the "smarter", more powerful compilers they demand.2 That 

such higher-level tools should include Natural Language instructions comes in part from the 

vast body of such data we have around and in part, what we can learn from them vis-a-vis the 

This is not to say the reasoning and explanation must be st~~uctz lral ly  identical: clarity and communicativeness 

often argue against such an isomorphism. 

21n the case of animation, higher-level tools will enable a widening of the user community beyond current 

manually skilled (or programming-wise) animators, to include for example, human factors engineers with tasks 

to design or evaluate and trainers with new personnel to instruct. 



production of the narrative that accompanies animation (or even live instructional material) to  

clarify and explain the action. 

This paper describes some of our work to  date on producing narrated animations from 

Natural Language instructions. Its structure is as follows: 

Section 2 briefly describes previous efforts to connect Natutal Language instructions with 

computer graphics animations. 

Section 3 discusses instructions as given in Natural Language and characterizes computa- 

tional models for understanding them. 

Section 4 outlines the structure and components of the system we are developing here 

a t  the University of Pennsylvania to  study instructions and their animation by synthetic 

(human) agents. 

Section 5 elaborates the portion of the system between the planned actions and semanti- 

cally valid primitives that may be characterized computationally. 

Section 6 describes the simulator and temporal constraint planner that organizes the prim- 

itives into a sequential stream of executable motions. 

Section 7 outlines the available motion generators. 

Section 8 summarizes agent performance issues that arise at various places in the system. 

Section 9 offers some observations and conclusions. 

2 Background 

Because there has been so little substantive work published (or, to our knowledge, done) on 

controlling and augmenting animation with Natural Language (but cf. [24, 32, 36, 71, 76]), it is 

important to  state clearly why we believe this route will prove successful. Several developments 

have occurred in animation technology that are enabling us to realize the "Natural Language 

connection". 

Task-level specifications are one of the three levels of animation control described by Zeltzer 

in his insightful analysis [91]. He recognized the need for planning and the requirement that 

tasks be executable as skills known to  the animated agent. In 1983 we outlined a system designed 

to translate task descriptions into animation [5] that has evolved into the structure presented 

here. 

Previous attempts to  animate Natural Language have been weakened by a limited or arbi- 

trary set of motion control schemes available to implement task semantics. Prior to 1978, Badler 

et  a1 [lo, 811 tried to design a suitable architecture but were stymied during implementation by 

large numbers of particular animation process problems requiring clarification and solution [9]. 

Later, problems of locomotion control, essential to  action of a mobile agent, were addressed by 

others 118, 34, 901 yielding managable models. Inverse kinematics for end-effector goal posi- 
tioning were adopted from robotics or invented for biomechanical models [8, 34, 50, 49, 52, 931. 



More recently, dynamics simulation have allowed objects to move in physically correct mo- 

tions [3, 40, 43, 44, 55, 86, 871, and geometric constraints resolved by kinematic, force, or 

energy considerations have freed animators from having to  specify the details of object trajec- 

tories [13, 17, 33, 88, 891. 
Zeltzer [go], Reynolds [67], and Ridsdale [68] have explored behavioral models which tried to  

control the complexity of interaction between many individuals or parts of the same object. By 

putting together enough animation processes, the Thalmanns have even used "synthetic actors" 

to animate the personalities, expressions, and actions of life-like figures of Marilyn Monroe and 

Humphrey Bogart [78]. 

Coming even closer to Natural Language-level instructions, high level action descriptions have 

been compiled into simple animations based on a small number of pre-defined actions [22, 30, 761 

or motor skills [56, 921, and Berk et a1 [15] have used English to specify colors for animation, 

and Becket [14] has used English to select and modify texture map parameters, to  make more 

realistic and "imperfect" pictures. 

3 Instructions 

The jumping off point for our view of instructions - what they are, what it means to understand 

them and what it means to use them in the context of animation from instructions - is the 

view of plans we have adopted from the work of Pollack [65, 661, Suchman [75], and Agre and 
Chapman [2]. What this view of plans gives us is a simple and uniform way to talk about 

instructions: it does not, by itself, solve the problem of fully linking understood instructions to  

agent behavior - the behavior we hope to demonstrate through our animated simulations. That 

linkage we are undertaking gradually, by considering instructions of increasing richness, in the 

sense to be described in Section 3.3. 

3.1 Plan as Data Structure 

In [65], Pollack contrasts two views of plan: plan as data structure and plan as mental phe- 

nomenon. (The former appears to be the same view of plans that Agre and Chapman have 

called plan as program.) Plans produced by Sacerdoti's NOAH system [69] are a clear example 

of this plan as data structure view. Given a goal to achieve (i.e., a partial state description), 

NOAH uses its knowledge of actions -their preconditions, the conditions they are able to achieve, 

and their elaborations in terms of (partially-ordered) aggregates of other actions - to  create a 

data structure ( a  directed acyclic graph) whose nodes represent goals or actions and whose 

arcs represent temporal ordering, elaboration, or entailment relations between nodes. This data 

structure represents NOAH's plan to achieve the given goal. 

As Suchman points out, NOAH's original intent was to provide support for novice human 

agents in carrying out their tasks. Given a goal that an apprentice was tasked with achieving, 
NOAH was meant to form a plan and then use it to  direct the apprentice in what to do next. To 

do this, it was meant to generate a Natural Language instruction corresponding to the action 

associated with the "current" node of the graph. If the apprentice indicated that he didn't un- 

derstand the instruction or couldn't perform the prescribed action, NOAH was meant to "move 



down" the graph to direct the apprentice through the more basic actions whose performance 

would entail that of the original. The result is a sequence of instructions that corresponds di- 

rectly to the sequence of nodes encountered on a particular graph traversal. This also shows why 

Agre and Chapman have labelled this the plan as program approach, since the plan effectively 

corresponds to a sequence of commands in the "instruction set" of the device (here, the human 

agent) intended to execute them. 

To a great extent, this is the view of plans that has been taken by Mellish and Evans [53], 

by Dale [21] and by Feiner and McKeown [28] in their respective work on generating Natural 

Language instructions from plans. Feiner and McKeown's system COMET uses schemata hand- 

encoded from radio repair instructions and produces coordinated graphics images and Natural 

Language texts t o  convey instructions that are demonstrably clearer and more understandable 

than either Natural Language or images alone ever could be. Although Mellish and Evans 

produce text based on (non-linear) plans, the text structures they produce diverge from the 

structure of the corresponding plans, in order to cleanly separate a specification of what needs 

doing from a justification of why it needs doing in a particular way or a particular order. We 

will have more to say about Dale's system EPICURE in Section 3.3. 

3.2 Plans as Mental Phenomena 

The alternative view of plans presented by Pollack [65, 661 is the plan as mental phenomenon 

view, which builds upon earlier ideas about plans put forth by Bratman [16]. In this view, 
having a plan to do some action ,B corresponds roughly to 

a constellation of beliefs about actions and their relationships; 

beliefs that their performance, possibly in some constrained order, both entails the per- 

formance of ,f3 and plays some role in its performance; 

an intention on the part of the agent to act in accordance with those beliefs in order to 

perform p. 

In order to describe the consequences of this approach for our view of instructions, we need 

to say more about such beliefs. Pollack draws a three-way distinction between act-types, actions 

(or acts) and occurrences. Act-types are, intuitively, types of actions like playing a chord, playing 

a D-major chord, playing a chord on a guitar, etc. Act-types, as these examples show, can be 

more or less abstract. Actions can be thought of as triples of act-types, agents, and times 

(relative or absolute intervals) like Mark playing a D-major chord last Sunday afternoon on 

his Epiphone. Because it is useful t o  distinguish an action from its occurrence in order to talk 

about intentions to act that may never be realized, Pollack introduces a separate ontological type 

occurrence that corresponds to the realization of an action. (Pollack represents an occurrence 

as OCCUR(P), where ,B is an action. Thus an occurrence inherits its time from the associated 

time of its argument.) 

Agents can hold beliefs about entities of any of these three types: 

act-types- An agent may believe that playing a D-major chord involves playing three notes 

(D,F# and A) simultaneously, or that s/he does not know how to perform the act-type 



playing a D-major chord on a guitar, etc. Any or all of these beliefs can, of course, be 

wrong. 

actions - An agent may believe that some action cr1 must be performed before some other 

action in order to do action or that crz must be performed before a1 in order to do 

,Bz. Here too, the agent's beliefs can be wrong. (It was to allow for such errors in beliefs 

and the Natural Language questions they could lead to that led Pollack to  this Plan as 

Mental Phenomenon approach.) 

occurrences - An agent may believe that what put the cat to sleep last Sunday afternoon 

was an overdose of catnip. S/he may also have misconceptions about what has happened. 

(While Pollack does not discuss necessary or default relationships between beliefs about particu- 

lar act-types or between particular act-types, actions and occurrences - for example, what beliefs 

about act-types are inheritable by more specific act-types or by the actions they participate in, 

this would seem a useful area to explore, for its applicability to planning [77], plan inference, 

and instruction understanding.) 

In contrast with the previous view of instructions as lexicalized graph traversals, the plan as 

mental phenomenon approach allows one to view instructions as being given to an agent in order 

that s/he develops appropriate  belief^,^ which the agent may then draw upon in attempting 

to  "do ,B". Depending on the evolving circumstances, different beliefs will become salient at 

different times. This appears to be involved in what Agre and Chapman and what Suchman 

mean by wing plans as a resource. Beliefs are a resource an agent draws upon in deciding what 

to do next. 

3.3 Behavior 

Given this view of plan as mental phenomenon, we can now consider possible relationships 

between instructions and an agent's behavzor. At one extreme is a direct relationship, as in the 

game "Simon Says", where each command issued by the leader ("Simon says put your hands on 

your ears") is meant to  lead directly to  particular behavior on the part of the player. That is, 

Instruction + Behavior 

The fact that such instructions are given in Natural Language is almost (but not quite) irrelevant. 

That one can drive animated simulations from such instructions has been demonstrated by 

Esakov and Badler [24]. Key frames from an animated simulation of two agents (John and 

Jane) at a control panel following an instruction sequence that begins 

John, look a t  switch twf-1. 

John, turn twf-1 to  state 4. 

Jane, look a t  twf-3. 

Jane, look a t  tglJ-1. 

Jane, turn tglJ-1 on. 

3Since instructions may be presented as applicable until a particular event occurs ("Twist the blade until it 

clicks into place") or ajter a particular event has occurred ("After 1988, you have to depreciate X using revised 
schedule Y"), one might also assume they are meant to instill beliefs about particular occurences as well. 

7 



Figure 1: Control Panel Animation 

are shawn in Figure 1. 
In camtrash, & corn- btruetioa seks (sqwddy ones canposed as texts rather than 

given inaemmtdly "on-line") depsat &om ti& ''- %ys" model in many ways, including: 
1, The mope or m e r  at an o c t h  become clear d y  thFosyh u n u m d i n g  several 

erentmcm in the iaetmetia set. Foll exmaple, the hi&mded crlmkatiotr of an action may not 
be ~~ to that &n, but only ~0n.Oiqpnt on the sbmt of the action preacribgd next.4 A 
simple egaaabple of this appeam in the instmctioBe that Agre and Chapman [2] gave to several 
friend# for &&tig to the Washington Street Subway Station. 

Left ant the door, down 60 the end d the street, cross straight over E k m  then left 
up the hill, take the first right and it'll be on your left. 

W& the s c t h  description "le;o] left. up the Elln may haw tm drineic end point (i.e., when the 
ageat pta to the top of the hill), it i~ B& khe b d e d  kminath  d the action in the context 
of these i&w&r&h. I b  i&t~&d is the g&t et w&h the action of %king the 
finrt r@k" tmmmences - that is, when tbe ag~gsat mmg&ea t k t  s/he has reached the Arst right. 

The plevicpw example illurstrated the ecep of sn action provided by subsequent utterances. 
hfmner e9n be specW as wed - f a  example, where esukiom or warnings in btructions 
prmwide infamation on how not fo clo an actlan, or what to avoid while doing it. For example, 
the fo1101~bilg are part of insfructioas fa b t a h g  a divert= spout on a bath tub faucet: 

l[martd new spomt. When doing eo, DO NOT urae li& knob or hose connection for 
leverage. Damage may r d t !  Tighten by hand ody. 

"b i. *st Chc cam in ~~ Sep" typa ~~, where each a d h  description coptbna an intrinsic - IMI. 



2. The instructions may describe a range of behavior appropriate under different circum- 

stances. The agent is only meant t o  do that which s/he recognizes the situation as demanding 

during its performance. For example, the following are part of the same instructions for installing 

a diverter spout: 

Diverter spout is provided with insert for 1/2" pipe threads. If supply pipe is larger 

(3/4"), unscrew insert and use spout without it. 

In the above case, the relevant situational features can be determined prior to  executing the 

instructions. In other cases, they may only be evident at the branchpoint itself. For example, 

the following are part of instructions for filling holes in plaster over wood lath: 

If a third coat is necessary, use prepared joint compound from a hardware store. 

Here, the agent will not know if a third coat is necessary until s/he sees whether the first two 

coats have produced a smooth level surface. 

3. As in the plan as data structure model, instructions may delineate actions a t  several levels 

of detail or in several ways. For example, the following are part of instructions for filling holes 

in plaster where the lath has disintegrated as well as the plaster: 

Clear away loose plaster. Make a new lath backing with metal lath, hardware cloth, 

or, for small holes, screen. Cut the mesh in a rectangle or square larger than the 

hole. Thread a 4 to  5- inch length of heavy twine through the center of the mesh. 

Knot the ends together. Slip the new lath patch into the hole . . . 

Here the second utterance prescribes an action at a gross level, with subsequent utterances 

specifying it in more detail. 

4. Some actions change significant features of objects; others result in their creation (or 

destruction). I t  has often been observed that a referring term in an instruction reflects the state 

of its referent at the point a t  which the instruction would be carried out. For example, in the 

following, the effect of the prescribed mixing action is to  convert a powder into a paste. 

Mix plaster compound according to package directions. With a flexible putty knife 

or scraper, force the thick creamy plaster into the opening. 

Recognizing co-reference and other relationships between referring expressions is necessary for 

understanding instructions (or producing understandable ones [21]). Thus, there is a level at 

which action-describing utterances in instructions must be modelled, in order t o  understand 

them, prior to  behaving in accordance with them. Dale's EPICURE system for generating 

Natural Language instructions contains such a "world model" [21]. 
5 .  Instructions may only provide circumstantial constraints on behavior but not specify when 

those circumstances will arise. For example, the following comes from instructions for installing 

wood paneling: 

When you have t o  cut a sheet [of paneling], try t o  produce as smooth an edge as 

possible. If you're using a handsaw, saw from the face side; if you're using a power 

saw, saw from the back side. Otherwise you'll produce ragged edges on the face 
because a handsaw cuts down and a power saw cuts up. 



Such cases as these illustrate an indirect relation between instructions and behavior through 

the intermediary of an agent's beliefs and evolving plan. That is, 

Instruct ions + Beliefs H Plan Behavior  

3.4 Implementing these Ideas 

If we adopt this plan as mental phenomenon view in our animation from instructions work, then 

not only must we be able to derive from the Natural Language instructions an appropriate set 

of beliefs, we must have an account of the behavior that follows from an agent's beliefs and the 

intention of performing some action P .  The latter is the goal of much research in the plans as 

mental phenomenon paradigm. For the most part here, we hope to draw upon advances made 

by others -for example, Pollack's work on inferring what she has called simple plans, ones whose 

actions are only linked by Goldman's generation relation [35], from questions of the form 

How do I do p. I want to do a. 

At the Natural Language end of our animation from instructions work, we have begun to analyze 

several constructions commonly found in Natural Language instructions [84], in order to expand 

the range of instruction texts from which we can accurately derive appropriate agent beliefs about 

the actions involved and their relationships, which can then be used to drive our (incremental) 

simulator. Changes in the (simulated) environment resulting from (simulated) actions on the 

agent's part will then feed back through the agent's (simulated) perceptions, thereby possibly 

changing the set of beliefs informing the agent's decisions about subsequent actions. 

In this way, we hope to  produce veridical simulations of tasks performed in response to in- 

structions, thereby enabling animation from dnstructions to  be used more and more as a tool in 

task design and instruction. To this end, we will assume (at least initially) that the instructions 

cover all contingencies: if the simulator has to simulate an event that is impossible in the en- 

vironment (because of unforeseen circumstances), the simulation will just stop, indicating why 

things cannot proceed. Not limiting ourselves in this way would require us to address the full 

scope of the A1 planning problem, taking us away from a useful enterprise even with this limita- 

tion. For this reason, we will also be assuming there is only one intentional a g e d  t o  avoid both 

the issues involved in achieving successful coordination 1391 and the unforeseeable contingencies 

that can arise because of mis-communication, mis-understanding, and mis-coordination among 

multiple intentional agents. 

3.5 Summary 

In this section, we have tried to make clear precisely what we mean when we use the term 

instructions and what we take to be the relationship between dnstructions, plans and behavior 

that are embodied in our system design. In the next section, we will present this design, stressing 

the several architectural features that reflect this plans a s  mental phenomena approach. 

5We distinguish three kinds of agents: intentional agents, mechanistic agents, and the world. Mechanistic 

agents like washing machines and cars can act and change the world, but only when acted upon by an intentional 

agent or the world. The system we are developing assumes a single intentional agent, an independently changing 

world, and any number of mechanistic agents. 

10 



4 System Design 

We have been working on the development of an anamatdon from instructions system in the 

framework of the architecture shown in outline in Figure 2. Here we briefly describe the various 

components, with the representation produced by the Semantic Mapper discussed further in 

Section 5, the Simulator, in Section 6, and the Motion Generators in Section 7.  General human 

performance issues that cut across several of these components are highlighted in Section 8. 

4.1 System Overview 

In Figure 2, filled ovals represent data structures and boxes represent processes. The overall 

structure of the system is much like a pipeline in that Natural Language instructions enter at 

the top and complete animations emerge at  the bottom. Unlike a pipeline, however, the system 

may be entered at any level and must be so designed for modularity, testing, and expansion. 
Portions of the system are used independently of the levels above. For example, the Display 

Process is a software base for direct graphical manipulation needed for real-time interactive 

task evaluation and geometric design, and the Motion Generators are the subject of on-going 

algorithm development and refinement. 

Various sorts of world and agent information is stored in Knowledge Bases; for diagrammatic 

simplicity we have omitted most of the specific connections and focused instead on general 

content categories such as the Object Knowledge Base, the (geometric) Workplace Specification, 

the Agent Specifications, and so on. One exception is the explicit connection between Natural 

Language instructions and an Incremental Planning level which involves the specific creation of 

Task-Related Actions and Conditaons in the Knowledge Base. Note, however, that the diagram 

is not meant to imply that all knowledge is embedded in a single representation; rather, we have 

collected the different types together to emphasize their presence and availability to all stages 

of the system. 

The remainder of this Section outlines the principal components of the system: the Natural 

Language Processor, the Incremental Planner, the Semantic Mapper, the Simulator, the Motion 

Generators, the Display Process, and the Narrative Planner and Generator. 

4.2 Natural Language Processor 

When the Natural Language Processor is complete, it will consist of a parser, semantic inter- 

preter, and discourse processor (the latter t o  resolve with respect t o  a discourse model of the 

instructions, rather than the actual environment, the referring expressions used in the instruc- 

tions). Up to now, we have been using a rather simple bottom-up parser called BUP in our 

language-to-animation research [32]. There seems to be value now in going to a much simpler 

lexicalized system (one in which the lexicon essentially is the grammar) such as one based on 

lexicalized Tree Adjunction Grammars (TAGS) [I, 701 or Combinatory Categorial Grammars 

(CCGs) [59, 721. 
The output of Natural Language Processing will be a set of descriptions of actions involved 

in performing the task, relationships among those actions, and conditions/constraints on their 

performance. The descriptions can be viewed as either the beliefs of the animated agent or the 



Figure 2: Design Framework 



beliefs of the system, which controls the animated agent, much like a marionette: The effect is 

the same. The language of these descriptions must combine features of procedural programming 

languages (including conditional, iterative and while constructions), features of first-order logic 

representations, and features of frame/schema representations. 

In developing appropriate descriptions of the intended relationships between actions, the 

discourse processor will make use of ideas about tense, aspect, and temporal and contingent 

modifiers presented in [54, 60, 831, as well as information contained in the system's several 

knowledge bases. 

4.3 Incremental Planner 

At this point, the system must begin to make a connection between the action descriptions 

computed by the Natural Language Processor and the behavior of its animated agent. Because, 

as has so often been noted, the world (here, the workplace and even the agent's capabilities) 

can change over time, independent of the agent's behavior and 'Lintentions", we have chosen 

to use an Incremental Planner (cf. Figure 2 )  to develop a plan over time much like an Earley 

parser [23] develops a parse tree over time: it focusses its analysis in an initial window that 

gradually moves rightward. Just as, a t  an intermediate step, the analyses computed by an 

Earley parser are global in assuming an eventual full analysis as a sentence but only partial in 

having completely analysed only an initial substring, so the output of the Incremental Planner 

should be taken to be a partial global plan: it is global in reflecting the overall goal of "doing P" 
but only partial in having elaborated in detail the actions related to  its upcoming behavior. 

To this end, the Incremental Planner must be able to augment the set of beliefs about the 

actions whose performance is being considered next with: 

beliefs about other actions that may have not have been made explicit in the instructions 

(because they were in some way "obvious"), and 

the expansion of all the action descriptions to a level of detail and vocabulary appropriate 

for the Semantic Mapper. 

The information required to elaborate beliefs about actions in this way comes from the system's 

knowledge base, which includes information about actions, objects, the current state of the 

workspace, and the current state of the agent. 

Before going on to describe briefly the properties and responsibilities of the Semantic Mapper, 

we must say a bit more about the way that incremental planning takes account of the current 

state of the"worldn (here, the current state of the workplace and the agent). There is a two-step 

feedback loop from the Motion Generators back to the Simulator and from there, back to the 

Workplace Speczfications and Agent Specifications in the system's knowledge base, both of which 

are consulted during the planner's decisions about the next actions to consider. This enables 

"actual" performance features to percolate back through higher levels of symbolic interpretation 

and affect decisions at  more than one level. 

For example, some events and situations can only be detected by the Motion Generators 

since they are tied to particular instantiated behaviors and coincidental relationships discovered 

during nlotion execution. For example, later in Section 6 we will show a "preening" event 



which is precipitated solely by the agent's passing before a mirror. While not part of some 

overall plan, the interruption is as much a part of the animated behavior as the task that 

caused the agent to accidentally pass the mirror in the first place. Likewise, conditions that 

depend on changing workplace characteristics can affect the selection or completion of events. 

For example, "apply a quantity of patching compound" will affect both the decisions of the 

Simulator and the Incremental Planner. the Simulator must decide whether or not to send the 

Motion Generators  another "apply a quantity of patching compound" action6; the Incremental 

Planner must monitor changes to the Workplace Specificataons to determine the need for a third 

coat of patching, depending on whether the second coat has resulted in a smooth level surface. 

4.4 The Semantic Mapper 

At any point, output from the Incremental Planner to the Semantic  Mapper consists of the 

next elaborated actions from the partial global plan. As described in Section 5, the output of 

the Semantic  Mapper is a set of parameterized event templates which combine the temporal 

constraints, kinematic and dynamic features, and geometric constraints related to individual 

simulatable events. The Mapper operates compositionally, building specifications of the features 

and constraints associated with the event description as a whole from those associated with its 

various parts 1461. A parameterized event template is therefore a specific instance of an event 

class (already known to the Semantic Mapper) where as much information as possible is filled in 

from the Knowledge Base and the given instructions in the partial global plan. The event classes 

known to the Semantic  Mapper therefore comprise a unique lexicon which enables the meaning 

of an instruction to be expressed by animatable event primitives. 

4.5 The Simulator 

The simulator does several things: it solves a temporal constraint satisfaction problem (TCSP) 

among the current parameterized event templates, maintains an event queue, schedules the ac- 

tive events, and outputs basic animation commands which are then interpreted by the Motion 

Generators. 

The temporal CSP involves both imposing consistency on the elements of the temporal con- 

straint set  (which may reference any nodes of the partial global plan) and "percolating" consistent 

relations down to the leaf nodes. The solution then is a partial linear ordering of the events 

that make up the leaves of the partial global plan. Our current TCSP solution methodology 

uses spring-like constraints to model the temporal relations and an iterative numerical process 

to obtain a candidate partial ordering [7]. 
The simulator itself runs a conventional discrete simulation cycle by maintaining an event 

queue, incrementing a discrete clock, and interpreting the currently active parameterized event 

templates. During event simulation, changes to the world model (geometry, resources, agent 

capability, etc.) may result in the activation of other event templates leading to contextually- 

dependent future actions. Feedback signals from the Motion Generators may also affect current 

events: for example, spatial difficulties (such as collisions) or agent capability failures (such as 

'Actions are of course specified to the Motion Generators as temporally ordered sequences of geometric, 

kinematic, and dynamic constraints that must be met, not as Natural Language utterances. 



insufficient strength). Such features are mostly missing from other knowledge base simulation 

schemes [4 11. 

4.6 The Motion Generators 

A basic animation command provides sufficient data  to  execute one of the available Motion 

Generators (Section 7). The current animation command set includes motion paths (as key 

parameters), end effector goals, forces and torques, geometric constraints, simple locomotion, 

and facial muscle actions. Each command is executed by a corresponding motion generator: 

for example, forward kinematics by parametric interpolation; reach goals by inverse kinematics 

or a strength-guided reach; forces and torques by dynamics; geometric constraints by inverse 

kinematics; and facial muscles by a facial action model. 

Since multiple animation commands may affect the same body part we use a merging method 

t o  maintain physical consistency in the object location database [20]. The selection of the weight- 

ing parameters for this model has not been extensively studied and more robust methods will 

be examined. We expect that the modifiers used in the original Natural Language instructions 

will be realized in the most appropriate terms in the Semantic Mapper, thereby limiting conflict 

between alternative specifications. 

The actual performance (motion, timing, and success) of basic animation commands will 

vary due to: 

different physical characteristics and anthropometry of the agents (e.g. strength, speed, 

size, workload capacity, etc.) 

different environmental characteristics (e.g. actual scene geometry, object placement) 

prior event processing (posture resulting from previous task), 

immediate event contingencies (e.g, collision avoidance), 

external events in the world that bring about change independently of the agent, thereby 

undoing the needed effect of some action, eliminating the need for some action, or neces- 

sitating a goal be achieved by some other procedure, if that procedure is contingent on 

some state holding in the world over its course. 

The information for some of the performance models are stored within various Knowledge Bases 

(Section 8). 

While executing a basic animation command, any of the unexpected occurences will feedback 

information t o  be considered by the simulator. The result may change the evaluation of the 

current parameterized event templates during subsequent simulation cycles. 

4.7 Display Process 

The Display Process is based on Jack, a powerful interactive graphics system for the manipu- 

lation and display of articulated figures E62). Jack is used t o  define and execute a visualization 

plan (see Figure 2 ) ,  which is the sequence of scenes, cuts, and camera views used t o  show the 



agent action. Presently this is totally under manual control of the animator, although we in- 

tend to (semi-)automate its production based on the agent plan augmented with the intention 

and focus of the action [68]. Establishing an effective visualization plan is non-trivial future 

effort, requiring cinematic knowledge, artistic design, and (ultimately) understanding of visual 

communication. Presently, default views may be manually defined based on an observer-agent 

who is in the scene but who may or may not be visible7. Establishing the line of view and 

the size of the viewed scene can be accomplished through spatial constraints. Knowledge of 

the intentions of the agents is necessary to form an appropriate view [27]. The observer may 

need to be positioned by a language-based description or manual methods. Preliminary study 

of cinematography terms indicates that language-based control of the camera is feasible. 

4.8 Narrative Planner and Generator 

Because of the important role that narration plays in comlementing animation, the system as 

a whole is being designed with a Narrative Planner and Generator component firmly in mind. 

There are two reasons for this: 

Without text explaining the reasons for observable actions, as researchers in plan recog- 

nition have noted [19], such actions may be incomprehensible to observers. Exaggerating 

behavior to make it more communicative may have the adverse effect of making it less 

veridical? Sharing the burden of communication between Natural Language and graph- 

ics, as Feiner and McKeown have noted [28], takes advantage of the best of both possible 

worlds. 

A frequent criticism levelled at automatic text generation is that it requires hand-crafted 

representations as input: even the increased customizability offered by text generation 

systems has not been accepted as an adequate counter-argument to this criticism. Here, 

narration and animation are driven from common representations - a combination of the 

representations produced in the context of understanding the original instructions, plus 

the Visualization Plan used in producing the animation. 

To satisfy the joint goals of providing an overall context in which to view the events on 

the "screen" and explaining the reasons for particular events that are happening, the Narrative 

Planner and Genemior require information from the partial global plan (for the "whys"), the 

basic animation commands (for particulars of what's happening "now") and the vasualzzation 

plan (for what can the viewer see - in particular, what is centrally visible as opposed to being 

off-center or invisible, as the latter may have to be brought to the viewer's attention verbally, 

through the narration). 

'When the observer is visible, the resulting views are of great importance in task analysis as they show the 

world as a real observer would see it; i.e. with self perception of other body parts. The typical movie, however, 

uses an "invisible" camera disembodied from any part of the environment. The camera may be attached to 

something moving, but is itself unseen. 

8A situation inversely turned advantageous by the skilled cartoon animator [79]. 



4.9 Summary 

This overview has shown the connections and scope of each of the components of the system. 

In particular, we described the major "pipeline" of information from the language instructions 

through an incremental planner to a representational level semantically interpreted and then 

simulated. The output of the simulator is a time-ordered sequence of explicit animation com- 

mands to be executed by various motion generators. Additional issues of information feedback to 

guide and control both the incremental planner and simulator were mentioned. A visualization 

plan and a narrative generator format the final presentation to the viewer. 

5 Between Action Descriptions and Actions 

Of fundamental importance to driving animation from Natural Language is an appropriate 

interface between Natural Language descriptions of actions and the primitive action elements 

that a simulator can animate. In English, action descriptions are not conveyed solely by the 

main verb but are distributed over the verb, its arguments and its modifiers. The work here 

assumes that a description of the action can be built compositionally from features associated 

with its component elements. A more detailed description of this work is given in [46]. 

5.1 Relevant Features 

For a significant class of Natural Language verbs, it appears that their link to simulatable action 

elements can be based on an analysis of the movements they represent, taking into consideration 

physical attributes alone. The ones we consider are: geometric constraints, aspectual features, 

and kinematic/dynarnic distinctions. 

5.1.1 Geometric constraints 

Geometric constraints provide information regarding how one or more objects or sub-parts of 

objects relate to one another in terms of physical contact, absolute or relative location, inter- 

object distance, absolute and relative orientation, or path of motion. 

Verbs dealing with geometric constraints may denote their establishment and maintenance 

(e.g., attach, hold, fix, grab, grasp, hook), their elimination (e.g., detach, disconnect, disengage, 

release) or their modification (e.g., loosen, tighten). These constraints may be positional or 
orientational. 

1. Positional constraints: This refers to situations in which a 0-, 1-, 2- or 3-dimensional object 

is constrained to a 0-, 1-, 2- or 3-dimensional region of space. For example, in order to  
execute the command Put the ball on the table, a point on the surface of the ball has to 

be brought in contact with (or constrained to) a point on the surface of the table. To 
execute the command P u t  the block in the box, the volume occupied by the block must be 

constrained to the interior volume of the box. 



2. Orientational constraants: The meaning of the preposition across in the sentence Place the 

ruler across the table requires, inter alia, that the longitudinal axis of the ruler and the 

longitudinal axis of the table top be perpendicular to  each other. 

5.1.2 Aspectual components 

Aspect involves inherent semantic features of a lexical item pertaining t o  the temporal structure 

of the situation denoted by the lexical item, independent of context [60]. These features include 

repetition and termination. 

Repetition: Some verbs denote underlying motions that require repetitions of one or more 

sub-motions - for example, roll, screw, scrub, shake, rock. For other verbs, repetitions may or 

may not be performed (i.e., their performance depends on the object(s) involved, information 

gathered from linguistic input, etc). Such verbs include cut, fill, lace, load. 

Termination conditions: Some verbs denote underlying motions which have intrinsic terminal 

conditions that are reached in the normal course of events and beyond which the processes cannot 

continue. Some examples are: align, assemble, attach, close, detach, drop, engage, fix, fill, place, 

release. 

Other verbs do not denote motions with intrinsic end conditions. The termination point may 

be determined by accompanying linguistic expressions or by context-dependent, task-dependent 

criteria such as default resulting states of affected object(s), or obtained through reasoning from 

commonsense knowledge, or knowledge of the goal t o  achieve, or defined by explicit feedback 

from simulation. Examples of such verbs are: hold, press, scrub, shake. 

5.1.3 Kinematic-dynamic characterization of actions 

Dynamics describes the force or effort influencing motion. Kinematics deals with direct path or 

goals, and motion specification. Often movements along the same spatial path and toward the 

same spatial goal may be represented by different verbs such as touch, press and punch. These 

distinctions can be formulated in terms of dynamic specification. 

1. Kinematic: These are verbs whose underlying motions can be expressed as a movement 

along an arbitrary path or at an arbitrary velocity. Some examples are turn, roll, rotate. 

2. Dynamic: For a verb in this category, its underlying motion can be characterized by 

describing the force which causes it. Examples include: push, shove, pull, drag, wring, hit, 

strike, punch, press. 

3. Both kinematic and dynamic: These are verbs which have strong path as well as force 

components: swing, griplgrasp (vs. touch), twist. 

In practice, more control over the execution phase of the motion is obtained if the need 

for dynamics is converted into a strength requirement for the agent. This replaces the prob- 
lem of absolute force specification with a relative specification as a fraction of the maximum 

performance rate (Section 8. 



5.2 Obtaining a Representation for the Verbs: Primitives 

The Semantic Mapper must output sets of Parameterized Event Templates describing the actions 

to be simulated. These templates have slots for geometric relations and constraints, kinematics, 

and dynamics informationg. 

5.2.1 Geometric relations and geometric constraints 

We specify geometric relations in terms of the following frame structure. 

Geometric-relation: spatial-type: 

source-constraint-space: 

destination-constraint-space: 

selectional-restrictions: 

Spatial-type refers to the type of the geometric relation specified. It may have one of two val- 

ues: positional and orientational. The two slots called source-constraint-space and destinaiion- 

constraint-space refer to one or more objects, or parts or features thereof which need to be 

related. For example, in order to execute the command Put the cup on the table, one normally 

brings the bottom surface of the cup into contact with the top surface of the table. The com- 

mand Put the ball on the table requires bringing an arbitrary point on the surface of the ball 

in contact with the surface of the table top. Since, the items being related may be arbitrary 

geometric entities (i.e., points, surfaces, volumes, etc.), we call them spaces; the first space is 

called the source space and the second the destination space. The slot selectional-restrictions 

refers to conditions (static, dynamic, global or object-specific) that need to be satisfied before 

the constraint can be executed. 

Geometric constraints are geometric goals; they are specified as follows: 

Geometric-constraint: execution-type: 

geometric-relation: 

Geometric constraints are of four types. They are distinguished by the execution-type component. 

The execution class or type of a constraint may be achieve, break, maintain or modify. 

5.2.2 Kinematics 

The frame used for specifying the kinematic aspect of motion is the following: 

Kinematics: motion-type: 

source: 

destination: 

path-geometry: 

velocity: 

axis: 

'The dynamics case is not discussed here as  it  is presently being elaborated both in terms of classical physical 

forces and as agent strength requirements [52]. 



Motions are mainly of two types: translationaland rotational. In order to describe a translational 

motion, we need to specify the source of the motion, its destination, the trajectory of the path, 

and the velocity of the motion. In the case of rotational motion, the path-geometry is always 

circular. The velocity, if specified is angular. An axis of rotation should be specified; otherwise, 

it is inferred by consulting geometric knowledge about the object concerned. 

5.2.3 Temporals  and aspectuals  

The central part of an object's motion consists of one or more components: dynamics, kinematics 

and geometric-constraints-along with control structures stating aspectual or other complexities 

involved in the execution of an action. The constructs we presently use are: repeat-arbitrary- 

times and concurrent. The keyword concurrent is specified when two or more components need to 

be satisfied or achieved at the same time. The keyword repeat-arbitrary-times provides a means 

for specifying the repetitiveness property of certain verbs. A verb's semantic representation need 

not specify how many times a motion or sub-motion may need to be repeated. However, since 

every motion is presumed to end, the number of repetitions will have to be computed during 

the simulation (based on tests for some suitable termination conditions), or by inference unless 

specified linguistically as  in Shake the block about fifty times. Other temporal information is 

carried along from the padial global plan. 

5.2.4 Representa t ion  of verbal  a n d  sentential  meaning  

Since our meaning representation is verb-based, the template for the representation of the mean- 

ing of a verb is also the frame for representation of meanings of sentences. The representation 

for a sentence has the following slots. 

Verbal-representation: agent: 

object: 

kernel-actions: 

selectional-restrictions: 

Selectional restrictions may refer to dynamic or static properties of objects or the environment. 

5.3 An Example 

Here we show how individual representations of the verb pet and a prepositional phrase headed 

by on combine t o  link the action description put the block on the table with executable actions. 

5.3.1 Put: establishing positional constraints  

Webster's dictionary [85] defines one sense of the meaning of the verb put as to place in a specified 

position or relationship. We consider only the positional aspect of the meaning to obtain a lexical 

definition. The lexical entry is 



put (1-agent, 1-ob ject, 1-locative) - agent: 1-agent 
object: 1-object 

kernel-action: 

geometric-constraint: 

execution-type:achieve 

spatial-type: positional 

geometric-relation: 1-locative 

This representation tells us that put requires us to achieve a positional constraint between two 

objects, parts or features thereof. It  does not indicate the type of positional relation to be 

achieved. The details of the geometric relation to be achieved have to be provided by the 

locative expression used which may be in terms of prepositions such as an, on or across. 

5.3.2 On: Support by a physical object 

In our attempt to provide precise, implementable meanings of prepositions, we have been influ- 

enced by Badler [4], Gangel [32] and Herskovits [42]. They are currently limited in that they 

work with simple, solid, non-deformable geometric objects. 

Among the senses of on defined by Herskovits [42] is the one we are interested in here: spatial 

entity supported by physical object. Examples of its use are seen in sentences such as Put the 

block on the table and Put the block on the box. One support situation which is commonplace 

is where the located object rests on a free, horizontal, upward facing surface of the reference 

object. This need not be a top surface of the reference object, though it almost always is an 

outer surface (otherwise in is preferred). We describe this meaning of on as 

on (X,Y) - geometric-relation: 

spatial-type: positional 

source-constraint-space: any-of (self-supporting-spaces-of (X)) 

destination-constraint-space: any-of (supporter-surfaces-of (Y))) 
selectional-restrictions: 

horizontal (destination-constraint-space) 

equal ((direction-of (normal-to destination-constraint-space) "global-up") 

area-of (source-constraint-space) < area-of (destination-constraint-space) 

free-p (destination-constraint-space) 

Given a geometric object, the geometrical function self-supporting-spaces-of obtains a list con- 

taining surfaces, lines or points on the object on which it can support itself. For example, a 

cube can support itself on any of its six faces, and a sphere on any point on its surface. The 

function supporting-surfaces-of finds out the surfaces on an object on which other objects can 

be supported. The functions direction-of, normal-to, horizontal-p and area-of are self-evident. 

The two directional constants global-up and global-down are defined with respect to a global 

reference frame. 



5.3.3 Composing descriptions: Put the block on the table 

The sentence consists of the action verb put, a prepositional phrase headed by on and a referent 

noun phrase. The meaning of the whole sentence, obtained by composing the meanings of its 

constituent parts is as follows: 

agent: "you" 

object: block-1 

kernel-action: geometric-constraint: 

execution-type: achieve 

spatial-type: positional 

geometric-relation : 

spatial-type: positional 

source-constraint-space: any-of (self-supporting-spaces-of (block-1)) 

destination-constraint-space: any-of (supporter-spaces-of (table-1))) 

selectional-restrictions: 

horizontal-p (destination-constraint-space) 

equal (direction-of (normal-to destination-constraint-space) "global-up") 

area-of (source-constraint-space) 5 area-of (destination-constraint-space) 

free-p (destination-constraint-space) 

In order to execute the action dictated by this sentence, the system looks at the knowledge 

stored about the block to find a part or feature of the block on which it can support itself. 

It can be supported on any one of its faces and no face is more salient than any other for 

supporting purposes. A cube (the shape of the block) has six faces and one is chosen randomly 

as the support areal0. The program searches the knowledge stored about the table for a part 

or feature which can be used to support other objects. It gathers that the table's function is to 

support "small" objects on its top which is also horizontal as required by a selectional restriction. 

Finally, the system concludes that one of the sides of the cube has to be brought in contact with 

the top of the table. 

5.4 Semantic Mapper Output 

The Semantic Mapper produces parameterized event templates, which are instances of event 

classes in a pre-defined hierarchy known to the Semantic Mapper and the Simulator via the 

shared Knowledge Base. Thus the Semantic Mapper outputs instances of the event classes with 

certain kinematic, temporal, etc., constraints. We have seen that some constraints come from 

the Knowledge Base workplace model, some aspectuals provide temporal constraints from the 

partial global plan, and other slots are dependent on the class definition of the verb. 

l0Of course, the program could select the face which is already in the most appropriate orientation. It is 
therefore easy to see how modifiers such as sideways or upside-down could be interpreted as variations from this 

default. 



6 The Simulator 

Input to the simulator consists of instantiated parameterlzed event templates, which represent 

the tasks known to it [24, 261. Instantiation involves the creation of a specific template from the 

class definition, which may be done either by the Semantic Mapper or by pre-definition in the 

Knowledge Base. 
The simulator has two basic parts: an euent scheduler and a discrete event simulator. The 

event scheduler is a temporal constraint satisfier which binds any constraints on start, stop or 

duration times given in the templates to suitable clock times. Our implementation allows con- 

straint specifications to include "fuzziness" terms such as about, around, exactly, and preferred 

which places a weight on the relative importance of the constraint. This binding then results 

in a partial ordering of the instantiated events. The discrete event simulation employs symbolic 

and quantitative world knowledge to "execute" the partially ordered events by mapping them 

to  "basic animation commands" that actually drive the motion generation process. 

An important feature of the simulator is that the progress of the Motion Generators (which 

are invoked "outside" the simulator - cf. Section 7) can in fact affect the course of the simulation. 

This is done through the use of daemons which examine the motion database and through the 

support of interrupts and continuations within an event template. This separation of motion 

from event simulation permits more modular and efficient construction of the motion generators 

and focusses temporal control and exception handling in the simulator. 

6.1 Event Scheduler*' 

The event scheduler is governed by a clock which represents the time within the simulated 

domain. Currently, the syntax used to represent time is based upon the 24-hour clock metaphor 

where a time is represented as a string of the form: HH:MM:SS.DDD (with as many decimal 

places as desired), or as a quoted LISP form: '(n ad), where n is a number and, id is hr, min ,  

sec representing hours, minutes and seconds, respectively. 

It  is possible to indicate constraints on start, stop and duration times of an event. These 

constraints can be to  particular "clock" times or to the stop/start/duration times of another 

event. Furthermore, temporal adverbials (noted above) can be used to indicate the importance 

associated with achieving a particular temporal constraint. 

The following two examples illustrate how temporal constraints (:time-constraints) in pa- 

rameterized event templates (of some unspecified event class) are resolved to specific times and 

partially ordered by their start times. Only the relevant slots of the templates are shown here. 

Example  1: 

(instantiate EVENT () 

: instancename ' A  

: time-constraints ((start "10: 00") 

(duration (about (5 min))) 

llFor the sake of brevity, the examples do not represent the full functionality of the simulator, nor do they 

represent a semantically complete input set. 



(end ((10 min) before (start b))))) 

(instantiate EVENT () 

:instancename 'B 

:time-constraints ((duration (I hour)) 

(end "11:001'))) 

The result of temporal constraint satisfaction here is: 

Example 2: 

(instantiate EVENT () 

:instancename ' A  

: time-constraints ((start "10:OO") 

(duration (about (5 min) ) ) 

(end ((10 min) before (start b))))) 

(instantiate EVENT 

:instancename 'B 

: t ime-constraints ( (duration (I hour) ) 

(end (exactly "11: 00") 1)) 

Event 

A 

B 

The result of temporal constraint satisfaction is now: 

Duration 

00:04:55.522 

00:56:16.119 

Start 

09:56:16.121 

10:07:27.762 

End 

10:01:11.641 

11:03:43.879 

As can be seen, the event scheduler resolves the constraints to  specific times a t  which the 

events should begin and end. In the second example, the qualifier exactly caused a shifting so 

that the constraint that task B should end a t  11:OO is given a higher priority. 

Event 

A 

B 

6.2 Discrete Event Simulation 

Once temporal constraints are satisfied, the simulator may begin the actual advancement of its 

time clock t o  execute scheduled events. The discrete event simulation algorithm is based on an 

event queue from which the current (active) events are selected at each clock tick, then converted 

into basic animation commands [26]. The event queue is "dynamic" in that (1) as events are 

finished, they are deleted, and (2) as new events are instantiated and scheduled (as output of 

the Semantic Mapper, based on the evolving partial global plan), they are added to the queue 
in the correct partial order. Interruptions (by message-passing) from an event or a feedback 

Start 

09:55:02.184 

10:04:58.410 

Duration 

00:04:54.044 

00:55:02.184 

End 

09:59:56.227 

11:00:00.594 



signal from a motion generator may also add (or delete) events. (In addition, the simulator is 

responsible for managing available resources so that,  for example, the agent's right arm is not 

given more than one task at  a time. 

Example 3 shows a single-direction information flow from the discrete event scheduler to 

basic animation commands. The task consists of generating the motion of the hands of a clock 

by changing orientation goals: 

Example  3: 

(deft emplate show-time (start end) 

(def ault-durat ion (- end start) ) 

(precondition t) 

(runcondit ion t ) 

(successcondition (= (send-message *clock* :real-clock) end)) 

(on-success 

(progn 
(cancel-event-constraints) 

(instantiate yaps::show-time ((send-message *clock* :real-clock) 

(+ (send-message *clock* :real-clock) 60)) 

: instancename 'clock 

:step ' (60 sec)))) 
(on-delet ion 

(cancel-event-constraints)) 

(body 

(let ((minutehand (send-message *clock* :minute-hand-orientation)) 

(hourhand (send-message *clock* :hour-hand-orientation))) 

(if (= minutehand 360) (setf minutehand 0)) 

(if (= hourhand 360) (setf hourhand 0)) 

(achieve-orientation (send-message *clock* :second-hand-referent) 

360 :startvalue 0) 

(achieve-orientation (send-mesaage *clock* :minute-hand-referent) 

(+ minutehand 6) :startvalue minutehand) 

(achieve-orientation (send-message *clock* :hour-hand-referent) 

(+ hourhand . 5 )  :startvalue hourhand)))) 

This event template show-time has two parameters, start time and stop time. The default 

duration of an event is the difference between the two times. There is no precondition to 
firing this event and once fired, there is no condition that must be true during its duration 

(the runcondition). The definition of success of this event is that its simulation time equals its 

end time. Upon successful completion, the current animation command (achieve-orientation) 

constraints are cancelled and a new instantiation of the show-time template is created which 

will generate the motion for the next 60 seconds. The given time values are bound to  the 
parameters upon instantiation, and temporal constraint satisfaction is trivially able to schedule 

this new instance of show-time for the next cycle. 



The body of the template shows the achieve-orientation commands which are used to 

generate the motions for the second, minute and hour hands of the clock. In a minute, the 

second hand will move 360 degrees, the minute hand 6 degrees and the hour hand a half of a 

degree. Were a digital clock to be used, a different set of animation commands would be used. 

Example 4 demonstrates the interruption and continuation capabilities of the simulator, as 

well as  a command for a more complex motion generator. Here a "walk" generator provides 

locomotion for an agent, and a daemon keeps track of when the agent passes in front of a mirror. 

When this occurs, an interrupt is generated temporarily blocking the "walk" event in favor of 

the "look in the mirror" event. 

Example 4: 

(deftemplate preen-daemon (figure reflector) 

"Generate a series of preening commands for figure." 

(variables daemon-name) 

(precondition (not (in-front figure reflector))) 

(def ault-durat ion t ) 

(on-interruption 

;; An interrupt, must be because figure is in front of a reflector 

(progn 

(send-to-event-class :locomotion :interrupt) 

(instantiate preen (figure ref lector) 

:on-success 

( progn 

(send-to-event-class :locomotion :continue) 

(send-message self :continue))))) 

(on-cont inuat ion 

(setf daemon-name (generate-daemon :front-of figure reflector 

: interrupt -name : front) ) ) 

(on-deletion (delet e-daemon daemon-name) ) 

(body 

(setf daemon-name (generate-daemon :front-of figure reflector 

:interrupt-name :front)))) 

(deftemplate walk (figure destination) 

"Generate commands for figure to walk to destination. The hard work is 

done in the walk motion generator." 

(event-class :locomotion) 

(precondition (not (at figure destination))) 

(on-interruption 

(progn 

(cancel-event-constraints) 

(send-message self :block))) 

(on-continuation (send-message self :unblock)) 



(success-condition (at figure destination)) 

(on-f ailure 

(send-to-parent self :failure :walk)) 

(body 

(locomote figure (send-message destination :full-geometric-reference)))) 

This example starts by defining12 a preen-daemon event template which monitors the 
motion database for a particular condition: front-of figure reflector. If that condition occurs, 

the daemon will interrupt this event instance and delete itself so that it will not continually report 

the same condition. 

The template walk is a member of the event class called :locomotion. When an interrupt 

(as generated by an instance of   re en-daemon) is received by an instance of this walk template, 

the associated animation commands are cancelled and the event blocks. The :block message 

causes the interrupt to be applied to each of the parent events of a sub-event. Conversely, when 

an event sends a continuation signal and unblocks, the message travels up to the parent events. 

When an event is continued, the body is re-evaluated; however, it is not always necessary to 

re-execute an entire event hierarchy. The hierarchy tree is traversed (up toward the parents) 

and re-executed from the event highest in the tree with a false precondition. Thus our agent 

may continue to walk, but not necessarily exactly on the same cycle, at the same pace, or even 

to  the same target that was active on interruption. 

The input to the simulator must fully specify how to handle interrupts. That  is, each event 

within a simulation must explicitly define its interrupts and the corresponding handler. There 

are many different types of daemons which can be defined. Daemons such as i n  front of,  nex t  t o ,  

t o  the  left of, t o  the right of are typical, and new daemons are being defined as needed. Presently 

our simulator restricts a given daemon to monitor only a single type of event with a single set of 

parameters. For example, while it is not possible to define a single daemon to monitor whether 

a n y  agent passes in front of a mirror (as in the previous section), it is possible to define multiple 

daemons, each monitoring a single agent's relationship with a mirror. 

When a condition occurs, the motion generator triggers an interrupt within the simula- 

tor. The interrupt is specific to the event in which the corresponding daemon was generated. 

One parameter to the interrupt is the interrupt name (as specified in the (generate-daemon) 

construct) which allows the event to distinguish between multiple types of interrupts and act 

accordingly. In particular, this event template should be modified so that an interruption will 

cause a graceful shut-down of the walk event and not an immediate freeze. 

6.3 Summary 

This section has described the process of converting parameterized event  templates  into sequences 

of basic an imat ion  commands .  First a temporal constraint satisfaction method takes the current 

set of events and schedules them into a appropriate partial ordering. Then a discrete event 
- -- 

121n this case the event templates are being defined manually with the Knowledge Base. Eventually such 

templates will be generated via Natural Language and the Semantic Mapper from instructions such as W h e n  

John  passes i n  front  of a reflecting surface he s tops to  preen himself.  



simulator steps through the active event queue and outputs animation commands contained in 

the inst ant iated event templates. Exceptional conditions may be monitored by daemons whose 

outputs feed back to the simulator, potentially altering its active event queue and hence its 

execution trace. 

7 Motion Generators 

As the simulator schedules and executes the active events (in ignorance of the actual graphical 

frame times), it creates basic animation commands that invoke specific Motion Generators. 
Specifications that originally appeared as part of the body of the event template are passed 

through as a series of parameter values (for frame-to-frame interpolation), a force or torque, 

or a target location/orientation for an object. This information is processed by several motion 

generators. These tools can become quite sophisticated, generating and solving, for example, 

dynamics equations or constraint equations. Also, complex generation tools, such as a "walk" 

or a facial expression generator, could be used. In any case, however, the output of a motion 

generator is a complete binding of all the necessary object position, orientation, and shape 

parameters on a frame-by-frame basis. 

We have implemented six types of motion generators: 

1. Forward Kinematic-Guided Motion (key parameter interpolation), 

2. Inverse Kinematic-Guided Motion (constraint satisfaction), 

3. Strength-Guided Motion. 

4. Forward Dynamics. 

5. Walk13 

6. Facial Expressions. 

Forward kinematic-guided motion is used for the (create-dof -motion) simulator construct. 

This special case construct allows one to specify the end-time values to achieve for a parameter 

through the use of linear interpolation. The more general technique of specifying multiple 

value/time pairs is available as is the use of other interpolation algorithms [73]. 

Inverse kinematic-guided motion uses a constraint solver to determine the configuration of 

a jointed chain of rigid segments given a goal position or orientation of the end-effector [93]. 

Positions may be specified as (sets of) points, lines, or planes, or surfaces of another object. 

Strength-guided motion uses a strength model to determine the path which the end effector 

will take to achieve a goal position [52]. This algorithm is used whenever the end-effector 
(hand) is moving objects with mass. It makes use of parameters which define the "comfort" of 

a movement, mass of the object, and the strength of the end-effector chain (arm) [38]. 

Forward dynamics applies the specified forces or torques to any object, the agent, or any of 

their parts [87, 581. Dynamics effects are primarily used to affect the workplace and agent as a 

13The walk generator is still under development. 



whole, since the strength-guided motion is more controllable and efficient for task achievement. 

Typically task instructions do not specify forces directly; rather, motions result from internal 

strength and joint limit capabilities of the agent. The motions are much less like a marionette 

and much more like a real agent working with muscles against gravity. The dynamics simulation 

process is primarily used to move passive objects (for example, a thrown ball) or the entire agent, 

especially when such forces are the consequence of actions initiated by the agent. For example, 

executing a rapid turn while driving a car will cause centrifugal force to act on the body, altering 

its posture and, quite importantly, the direction of external forces which its strength model must 

resist. 

The walk generator is based on Bruderlin and Calvert's dynamics and constraint model [18]. 

In our present applications it suffices to have limited point-to-point agent mobility. More com- 

plex locomotion tasks or sporting events have not been undertaken. 

Facial expressions are executed based on a muscle model of the face derived from an extensive 

analysis of facial regions. Motion control is effected by the selection, modification, or removal 

of Action Units based on the Ekman and Fkiesen model [64]. 
These five generators yield a surprisingly versatile collection of basic anamatable tasks: 

reach, touch, place, position [via inverse kinematics] 

orient, align [via inverse kinematics] 

attach, unattach, grasp, ungrasp [via topological connections in the underlying geometric 

database of objects] 

put, take [like reach, but with attached object] 

look at  [via inverse kinematics using orientation] 

lift, push, pull [via strength-guided motion] 

stand up, sit down [via strength-guided motion] 

follow path [via forward kinematics] 

exert force or torque [via forward dynamics] 

walk along a path, walk to a goal point [via walk generator] 

produce facial expressions from speech intonation and emotion [implementation in progress [61] 

walk [implementation in progress based on [18]] 

All of these constructs can be interrupted at  any point throughout the motion. If that is done, the 

object maintains its current state and the motion generator essentially "forgets" the animation 

command. 

Each motion generator performs appropriate path planning for the basic animation com- 

mands it interprets. Of course, some path planning must occur at higher levels in the global 

planning process. The criteria for the division of path planning is that the work done at  the 



discrete event simulation stage should not impact the planning of other events. For example, 

planning the navigation of a complex path is more appropriately performed within the global 

planner [68]. This is because different events may need to be planned during the traversal of 

the path which in effect would divide the single event of navigation into a series of separable 

(yet linked) events. When the simulator executes the instantiation of some event template, the 

expected result is the normal completion of the subtask within the larger global plan. 

The Motion Generators produce the required agent or object motion paths for each basic 

animation command for each frame. For example, lifting a weight onto a shelf may be given 

as one of the event templates within some globally defined task. The strength-guided motion 

generator is responsible for computing the arm motion and the actual path: it is not supposed to 

establish pre-conditions (holding the weight), but it is entrusted with computing reasonable arm 

and torso motions to actually move the end effector holding the weight along a spatial path to 

the goal position. If something happens (such as failure or confounding obstacles) to interrupt 

this motion, then control is returned to the simulator to determine alternative strategies within 

the active event template. The interruptions are determined by explicit feedback from resident 

daemons watching for changes in the Knowledge Base or conveying error signals from the motion 

generators. 

The collection of motion generators is meant to allow convenient simulation of the scope 

and variety of human movement. Our own efforts have focused on task execution rather than 

locomotion-dependent activities. Examination of numerous motion representation systems [ll, 

61 has led to the present set of motion generators and the belief that they form a relatively 

complete set for instruction-directed movement synthesis. 

8 Agent Performance Issues 

Natural Language instructions for a task rarely specify how long it takes. Rather than "pick up 

the box in 5 seconds"14, one is more apt to hear "pick up the box [carefully, quickly]". That is, 

duration is left to the agent as a consequence of the agent's abilities. One of the most funda- 

mental concepts underlying the entire simulation approach to executing the parameterized event 

templates  is that agent structure, capability, and behavior dictate most of the actual motion 

parameters and should therefore yield natural movements and individual variations among dif- 

ferent agents. We have already noted the roles of inverse kinematics, strength, and constraints 

in formulating a complete animation interface. These specifications alone, however, still require 

temporal duration information. The problem is that all of these specifications provide only some 

of the possible parameters of the agent motion. Performance models supply reasonable values 

for the remainder. 

Several different kinds of performance models are accessible through various components of 

the Knowledge Bases: 

Body segment size: Different length limbs and different sized bodies clearly affect the manner 

in which goals are reached, whether goals can be achieved without locomotion, whether 

an agent can fit into a space, etc. 

l4 which, if heard, is usually interpreted inchoatively as "In 5 seconds, [begin to] pick up the box" 



Joint  limits: Physical structure and clothing restrict motion, likewise affecting the manner of 

goal achievement and the postures available. In particular, joint limits force orientation 

goals to propagate rotations along the body linkage15. 

St rength  model: Different agents have remarkably different strength, which clearly affects 

what tasks each can do. Strength also affects how tasks are done. Any force requirements 

imposed by a task must affect the positioning of the body joints for best use of available 

strength (subject to the Comfort Model). For example, the task "pick up the box" will 

result in radically different body postures and motions if the box weighs 1 pound or 100 

pounds. 

Comfort model: Just because an agent has sufficient strength to perform some task does not 

mean that it will be accomplished in a fashion requiring maximum exertion. The comfort 

model tries to distribute loads on body joints so that the overall force load minimizes the 

ratio of required to available torque at each joint. 

Fatigue model: There is an energy penalty associated with any motion. By accumulating 

the energy and allowing for reasonable recovery times, a fatigue factor can be computed 

which scales the available strength. 

Task knowledge model: Part of the higher level agent capability model is a list of the 

parameterized events the agent "knows" how to execute. We have seen that this knowledge 

effects the extent of plan elaboration. Also, different agents can have different task models 

(one agent's "carry" may allow only one object, while another's allows any stable stack 

of objects) and different methods for executing tasks in the global plan (one agent might 

"paint" in careful linear strips while another uses randomly oriented strokes). 

Task t iming model: Fitts' Law gives some timing estimates for very smple reach and view 

events [24]. The strength guided motion animation tool moves the end effector at a rate 

consistent with the torque availability at the affected joints and therefore does not need a 

pre-determined duration 16. Such an event is finished when the goal has been achieved; a 

daemon can report the sucess (or failure) back to the simulator. 

Resource allocation model: Each human agent has two hands, two feet, one direction of 

view, etc. During event execution, resources must be monitored and allocated to avoid 

contention, overload, or deadlock. Resource requirements must be noted for each task. 

Different agents can have different resources available, for example, a robot arm and a 

human differ in the number of end effectors and their capacity. 

Each of these models has been implemented in our animation system. Although animations to 

date have been primarily of the "Simon says" variety, the methodology has shown the usefulness 

and even necessity of performance models in filling in essential information linking instructions 

to action. 

l5 Imagine someone grasping your hand and then twisting it a full turn! 

1 6 ~ n  interesting experiment, as yet untried, is to compute the action times of the simulated agent with a 

reasonable strength model and determine how close the results mirror known Fitts' Law data. 



9 Conclusions 

We have presented a comprehensive framework for the interpretation of Natural Language in- 

structions and their subsequent execution by a synthetic agent. The entire process is viewed as 

a pipeline with feedback, including a variety of Knowledge Bases to support planning, semantic 

mapping, agent capabilities, and workplace geometry. 

Proceeding from Natural Language processing through an incremental planner that would 

produce partial global plans to carry out the required tasks, we saw that an incremental plan- 

ning approach is necessary to handle the requisite task variability and environmental conditions. 

Components of the global plan are then expressed as parameterized event templates by a se- 

mantic mapper which essentially builds operational (executable) definitions of motion verbs and 

their modifiers. These templates are simulated to produce basic animation commands which in 

turn are directly executable by extant motion generators. The final frame-by-frame animation is 

viewed through a manually constructed visualization plan for manipulating the virtual camera 

so that animated images are displayed to the user on a Silicon Graphics 4D workstation. 

We have many experiments to undertake and much more code to  write, but our progress so 

far in integrating Natural Language instructions with the animation of a responsive human-like 

agent has been very encouraging. Connections between these disparate fields are being made 

which promise to deeply affect them both. 

References 

[I] Anne Abeille and Yves Schabes. Parsing idioms in lexicalized TAGS. Proceedings of the 

4th Meeting of the European Chapter of  the Association for Computational Linguistics. 

Manchester, England, April 1989. 

[2] Phillip Agre and David Chapman. What are Plans For? A.I. Memo 1050a, Artificial 
Intelligence Laboratory, MIT, October 1989. 

[3] W. Armstrong, M. Green, and R. Lake. Near-real-time control of human figure models. 

IEEE Computer Graphics and Applications, 7(6):52-61, June 1987. 

[4] Norman I. Badler. Temporal scene analysis: Conceptual descriptions of object movements. 

University of Pennsylvania, Computer and Information Science, Technical Report MS-CIS- 

76-4. (Also PhD dissertation, Department of Computer Science, University of Toronto, 

1975). 

[5] Norman I. Badler, Bonnie L. Webber, James U. Korein, and Jonathan D. Korein. TEM- 

PUS, A system for the design and simulation of mobile agents in a workstation and task 

environment. Proc. IEEE fiends and Applications Conference 1983: 263-269. 

[6] Norman I. Badler. A representation for natural human movement. In Dance Technology 

I, J .  Gray, (ed.), AAHPERD Publications, Reston, VA: 23-44, 1989. 



[7] Norman I. Badler, Scott Kushner, and Jugal Kalita. Constraint-based temporal planning. 

Technical Report, Dept. of Computer and Information Science, Univ. of Pennsylvania, 

Philadelphia, PA, 1988. 

[8] Norman I. Badler, Karnran Manoochehri, and Graham Walters. Articulated figure posi- 

tioning by multiple constraints. IEEE Computer Graphkcs and Applications, 7(6):28-38, 

June 1987. 

[9] Norman I. Badler, Joseph O'Rourke, and Bruce Kaufman. Special problems in human 

movement simulation. Computer Graphics, 14(3): 189-197, July 1980. 

[lo] Norman I. Badler, Joseph O'Rourke, Stephen Smoliar, and Lynne Weber. The simula- 

tion of human movement by computer. Technical Report, Department of Computer and 

Information Science, University of Pennsylvania, PA, August 1978. 

[ l l ]  Norman I. Badler, Joseph O'Rourke, and Hasida Toltzis. A spherical representation of a 

human body for visualizing movement. IEEE Proceedings, 67(10):1397-1403, Oct. 1979. 

[12] Norman I. Badler, and Stephen W. Smoliar. Digital representations of human movement. 

ACM Computing Surveys, l l(1):  19-38, March 1979. 

[13] Ronan Barzel and Alan Barr. A modeling system based on dynamic constraints. Computer 

Graphics 22(4), 1988. 

1141 Welton Becket and Norman I. Badler. Imperfection for Realistic Image Synthesis. Tech- 

nical Report, Computer and Information Science Dept., University of Pennsylvania, 

Philadelphia, PA, January 1990. 

[15] Toby Berk, Lee Brownston, and Arie Kaufman. A new color-naming system for graphics 

languages. IEEE Computer Graphics and Applications, 2(3):37-44, May 1982. 

1161 Bratman, M. Taking Plans Seriously. Social Theory and Practice, 9:271-287, 1983. 

[17] Lynne S. Brotman and Arun N. Netravali. Motion interpolation by optimal control. Com- 

puter Graphics, 22(4):309-315, 1988. 

[18] Bruderlin, A. and T .  W. Calvert. Goal-Directed, Dynamic Animation of Human Walking. 

Computer Graphics 23(3), 233-242, 1989. 

[19] Phil Cohen. The Need for Referent Identification as a Planned Action. Proc. of Interna- 

tional Joint Conference on Artificial Intelligence, August 1981, pp. 31-36, 

[20] Diana T. Dadamo. Effective control of human motion animation, Technical Report MS- 

CIS-88-52, Dept. of Computer and Information Science, Univ. of Pennsylvania, Philadel- 

phia, PA, 1988. 

[21] Robert Dale. Generating Referring Expressions in a Domain of Objects and Processes. 
PhD Thesis, University of Edinburgh, Edinburgh, Scotland, 1988. 



[22] Karin Drewery and John Tsotsos. Goal-directed animation using English motion com- 

mands. Proc. Graphics Interface '86, Vancouver, 13 1-135, 1986. 

[23] Earley, J .  An Efficient Context-Free Parsing Algorithm. Communications of the ACM 

13(2), 1970, 94102. 

[24] Jeffrey Esakov and Norman I. Badler. An Architecture for Human Task Animation Con- 

trol. In Knowledge-Based Simulation: Methodology and Applications P.A. Fishwick and 

R.S. Modjeski (eds.), Springer Verlag, New York, 1989. 

[25] Jeffrey Esakov, Norman I.  Badler, and Moon Jung. An investigation of language input and 

performance timing for task animation. Proc. Graphics Interface '89, Waterloo, Canada, 

1989, 86-93. 

[26] Jeffrey Esakov. An Architecture for Human Task Performance Analysis. PhD Thesis, 

Dept. of Computer and Information Science, University of Pennsylvania, August 1990 

(expected). 

[27] S. Feiner. APEX: An Experiment in the Automated Creation of Pictorial Explanations. 

IEEE Computer Graphics and Applications, 5(11):29-37, November 1985. 

[28] Feiner, S. and McKeown, K. Coordinating Text and Graphics in Explanation Genera- 

tion. Proc. ARPA Speech and Natural Language Workshop, October 1989, Los Altos CA: 

Morgan Kaufmann, pp. 424-433. 

[29] S.S. Fisher, M. McGreevy, J .  Humphries and W. Fbbinett. Virtual Environment Dis- 

play System. Proc. 1986 Workshop on Interactive 3D Graphics, Chapel Hill NC, ACM 

Publications, 1986. 

[30] Paul A. Fishwick. Hierarchical Reasoning: Simulating Complex Processes over Multiple 

Levels of Abstraction. PhD thesis, Dept. of Computer and Information Science, Univ. of 

Pennsylvania, Philadelphia, PA, 1986. 

[31] Paul A. Fishwick. The role of process abstraction in simulation. IEEE Trans. Systems, 

Man, and Cybernetics, 18(1):18-39, Jan/Feb. 1988. 

[32] Jeffrey S. Gangel. A motion verb interface to a task animation system. Master's thesis, 

Dept. of Computer and Information Science, Univ. of Pennsylvania, Philadelphia, PA, 

August 1985. 

[33] Francesco Gardin and Bernard Meltzer. Analogical representations of naive physics. Ar- 

tificial Intelligence, 38(2):139-159, March 1989. 

[34] Michael Girard and A. A. Maciejewski. Computational modeling for the computer anima- 

tion of legged figures, Computer Graphics, 19(3):263-270, 1985. 

[35] A.I. Goldman. A Theory of Human Action. Princeton University Press, Princeton NJ, 

1970. 



[36] Mark Green and Hanqui Sun. A Language and System for Procedural Modeling and 

Motion. IEEE Computer Graphics and Applications, 8(6):52-64, November 1988. 

[37] H. Paul Grice. Logic and Conversation. In Syntax and Semantics 3: Speech Acts, New 

York: Academic Press, 1975. 

[38] Marc R. Grosso, Richard D. Quach, Ernest Otani, Jianrnin Zhao, Susanna Wei, Pei-Hwa 

Ho, Jiahe Lu and Norman I. Badler. Anthropometry for computer graphics human figures. 

Technical Fteport, Dept. of Computer and Information Science, University of Pennsylvania, 

Philadelphia, PA, 1989. 

[39] Barbara Grosz and Candace Sidner. Plans for Discourse. In P.R. Cohen, J.L. Morgan and 

M.E. Pollack (eds), Intentions in Communication. Cambridge MA: MIT Press, 1990. 

[40] James K. Hahn. Realistic animation of rigid bodies. Computer Graphics, 22(4):299-308, 

1988. 

[41] Gary Hendrix. Modeling simultaneous actions and continuous processes. Adificial Intel- 

ligence, 4:145-180, 1973. 

[42] Annette Herskovits. Language and Spatial Cognition Cambridge University Press, 1986. 

[43] C.  Hoffmann and J .  Hopcroft. Simulation of physical systems from geometric models. 

IEEE Journal of Robotics and Automation, RA-3(3), June 1987. 

[44] Paul M. Isaacs and Michael F. Cohen. Controlling dynamic simulation with kinematic 

constraints, Computer Graphics, 21(4):215-224, 1987. 

[45] J.K. Kalita and N. I. Badler. Semantic analysis of action verbs based on animatable 

primitives. Technical Report, Dept. of Computer and Information Science, Univ. of Penn- 

sylvania, Philadelphia, PA, 1989. 

[46] J.K. Kalita. Analysis of Some Actions Verbs and Synthesis of Underlying Tasks in an 

Animation Environment. Forthcoming Ph.D. Thesis, Department of Computer and Infor- 

mation Science, University of Pennsylvania. 

[47] Robin Karlin. SEAFACT: A semantic analysis system for task animation of cooking opera- 

tions. Master's thesis, Dept. of Computer and Information Science, Univ. of Pennsylvania, 

Philadelphia, PA, December 1987. 

[48] Robin Karlin. Defining the semantics of verbal modifiers in the domain of cooking tasks. 

In Proceedings of the 26st Annual Meeting of ACL, pages 61-67, 1988. 

[49] James U. Korein. A Geometric Investigation of Reach. MIT Press, Cambridge, MA, 1985. 

[50] James U. Korein and Norman I. Badler. Techniques for goal directed motion. IEEE 
Computer Graphics and Applications, 2(9):71-81, November 1982. 



[51] Philip Lee. Kinematic paths from a strength and comfort model. PhD proposal, Dept. of 

Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 1989. 

[52] Philip Lee, Susanna Wei, Jianmin Zhao and Norman I. Badler. Strength guided motion. 

To appear, Computer Graphics, 1990. 

[53] C. Mellish and R. Evans. Natural Language Generation from Plans. Computational 

Linguistics 15(4), December 1989, pp.233-250. 

[54] Marc Moens and Mark Steedman. Temporal Ontology and Temporal Reference. Compu- 

tational Linguistics. 14(2), 1988, pp. 15-28. 

[55] Matthew Moore and Jane Wilhelms. Collision detection and response for computer ani- 

mation. Computer Graphics, 23(4):289-298, 1988. 

[56] P. Morasso and V. Tagliasco (Eds.). Understanding Human Movement. North-Holland, 

New York, 1986. 

[57] Joseph O'Rourke and Norman I. Badler. Model-based image analysis of human motion 

using constraint propagation. IEEE Trans. PAMI, 2(6):522-536, November 1980. 

[58] Otani, Ernest. Software Tools for Dynamic and Kinematic Modeling of Human Motion. 

Master's thesis, Department of Mechanical Engineering, University of Pennsylvania, Tech- 

nical Report, MS-CIS-89-43, Philadephia, PA, 1989. 

[59] Remo Pareschi and Mark Steedman. A lazy way to  chart-parse with categorial grammars. 

Proc. 25th Annual Meeting of the Association for Computational Linguistics, Stanford 

CA, pp.81-88, July 1987. 

[60] Rebecca Passonneau A Computational Model of the Semantics of Tense and Aspect. 

Computational Linguistics. 14(2), 1988. 

[61] Catherine Pelachaud. A 3D animation system for facaal expression, emotion, and intona- 

tion. Forthcoming PhD Dissertation, Department of Computer and Information Science, 

University of Pennsylvania, 1990. 

[62] Cary Phillips and Norman I. Badler. Jack: A toolkit for manipulating articulated figures. 

In ACM/SIGGRAPH Symposium on User Interface Software, Banff, Canada, 1988. 

[63] Cary Phillips, Jianmin Zhao and Norman I. Badler. Interactive real-time articulated figure 

manipulation using multiple kinematic constraints. To appear, Symposium on Interactive 

30 Graphics, March 1990. 

[64] Stephen Platt. A structural model of the human face. PhD Dissertation, Department of 

Computer and Information Science, University of Pennsylvania, 1985. 

[65] Martha Pollack. Inferring Domain Plans in Question-Answering. PhD Thesis, Dept. of 

Computer and Information Science, University of Pennsylvania, Philadelphia PA. (Avail- 

able as Technical Report MS-CIS-86-40, University of Pennsylvania, May 1986.) 



[66] Martha Pollack. Plans as complex mental attitudes. In Intentions in Communication, 

J. M. P. Cohen and M. Pollack, Eds., MIT Press, 1990. 

[67] Craig W. Iteynolds. Flocks, herds, and schools: A distributed behavioral model, Computer 

Graphics, 21(4):25-34, 1987. 

[68] Gary Ridsdale, S. Hewitt and T. W. Calvert. The interactive specification of human 

animation, Proc. Graphics Interface '86, Vancouver, Canada, 1986: 121-130. 

[69] Earl Sacerdoti. A Structure for Plans and Behavior Elsevier, New York, 1977. 

[70] Yves Schabes & Aravind Joshi. An Earley-type parsing algorithm for tree adjunction 

grammars. Proc. of the 26th Annual Meeting of the Association for Compuational Lin- 

guistics, Buffalo NY, June 1988, pp.258-269. 

[71] Robert F.  Simmons and Gordon Bennett-Novak. Sen~antically analyzing an English subset 

for the clowns microworld. American J. of Computational Linguistics, Microfiche 18, 1975. 

[72] Mark J .  Steedman. Grammar, Interpretation, and Processing from the Lexicon. In W. 
Marslen-Wilson (ed.), Lexical Representation and Process. Cambridge MA: MIT Press, 

1989. 

[73] Scott Steketee and Norman I. Badler. Parametric keyframe interpolation incorporating 

kinetic adjustment and phrasing control, Computer Gnzphics 19(3):255-262, 1985. 

[74] P.F. Strawson. On Referring. Mind 59:320-344, 1950. 

[75] Lucy Suchman. Plans and Situated Actions: The problem of human machine communica- 
tion. Cambridge University Press, 1987. 

[76] Yosuke Takashima, Hideo Shimazu, and Masahiro Tomono. Story driven animation. CHI 

+ GI '87 Proceedings, 149-153, ACM SIGCHI, 1987. 

[77] Josh Tenenberg. Inheritance in Automated Planning. Proc. First Int'l Workshop on 
Knowledge Representation and Reasoning, Toronto Canada, May 1989, pp.475-485. 

[78] Nadia Magnenat-Thalmann and Daniel Thalmann. The direction of synthetic actors in 

the film Rendez-vous a Montreal IEEE Computer Graphics ~ n d  Applications, 7(12):9-19, 

December 1987. 

[79] Frank Thomas and Ollie Johnston. Disney Animation: The Illusion of Life. Abbeville 
Press, New York, 1981. 

[80] Zeno Vendler. Linguistics in Philosophy. Cornell University Press, Ithaca NY, 1967. 

[81] Lynne Weber, Stephen Smoliar, and Norman I. Badler. An architecture for the simulation 
of human movement. Proc. ACM National Conf., 737-745, Washington, DC, Dec. 1978. 

[82] Bonnie Webber. The Interpretation of Tense in Discourse. Proc. 25th Annual Meeding of 

the ACL. Stanford University, Stanford CA, July 1987. pp. 147-154. 



[83] Bonnie Webber. Tense as discourse anaphor. Computational Linguistics. 14(2):61-73, 

1988. 

[84] Bonnie Webber and Barbara Di Eugenio. Free Adjuncts in Natural Language Instructions. 

Proc. of COLING-90.  University of Helsinki, Finland. August 1990. 

[85] Henry Woolfe (ed.). Webster's New Collegiate Dictionary. G. & C. Merriam Company, 

Springfield MA, 1981. 

[86] Jane Wilhelms. Virya - a motion editor for kinematic and dynamic animation. Proceedings 

Graphics Inferface '86, 141-146, Vancouver, 1986. 

[87] Jane Wilhelms. Using dynamic analysis for realistic animation of articulated bodies. IEEE 

Computer Graphics and Applications, 7(6):12-27, June 1987. 

[88] Andrew Witkin, Kurt Fleisher and Alan Barr. Energy constraints on parameterized mod- 

els, Computer Graphics, 21(3):225-232, 1987. 

[89] Andrew Witkin and Michael Kass. Spacetime constraints. Computer Graphics, 22(4):159- 

168, 1988. 

[go] David Zeltzer. Motor control techniques for figure animation, IEEE Computer Graphics 

and Applications 2(9):53-59, Nov. 1982. 

[91] David Zeltzer. Toward an integrated view of 3-D computer animation. The Visual Com- 

puter: The International Journal of Computer Graphics, 1(4):249-259, 1985. 

[92] David Zeltzer. Task-level Graphical Simulation: Abstraction, &presentation and Control. 

Making Them Move: Mechanics, Control and Animation of Articulated Figures. Morgan- 

Kaufmann, 1990. 

[93] Jianmin Zhao and Norman I. Badler. Real time inverse kinematics with joint limits and 

spatial constraints. Technical Report MS-CIS-89-09, Department of Computer and Infor- 

mation Science, University of Pennsylvania, Philadelphia, PA, 1989. 


	Animation From Instructions
	Recommended Citation

	Animation From Instructions
	Abstract
	Comments

	tmp.1187788905.pdf.adRfg

