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Abstract

We present a new fluid animation technique in which liquid and gas interact with each other, using the example

of bubbles rising in water. In contrast to previous studies which only focused on one fluid, our system considers

both the liquid and the gas simultaneously. In addition to the flowing motion, the interactions between liquid and

gas cause buoyancy, surface tension, deformation and movement of the bubbles. For the natural manipulation

of topological changes and the removal of the numerical diffusion, we combine the volume-of-fluid method and

the front-tracking method developed in the field of computational fluid dynamics. Our minimum-stress surface

tension method enables this complementary combination. The interfaces are constructed using the marching cubes

algorithm. Optical effects are rendered using vertex shader techniques.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation

1. Introduction

Liquids are very attractive substances. As well as having

beautiful optical properties, their movements are mysterious,

or as an eastern saying goes, "just observing water can pro-

vide good meditation." Many studies have been done in an

attempt to animate and render liquids in the computer graph-

ics field. And thanks to recent improvements in computing

powers and simulation techniques, more phenomena related

to liquids have become subjects of animation. In this paper,

we are to introduce one more subject pertaining to liquid an-

imation, i.e. bubbles.

Bubbles are pockets of air enclosed by liquid. Bubbles

exist everyplace where liquid and air coexist. As opposed

to air skimming over liquid surfaces, bubbles are governed

by the interactions between air and liquid. There are many

factors to be considered when attempting to simulate the de-

formation and movement of bubbles. There are two flows to

consider - i.e. those occurring inside and outside of the bub-

ble bodies. Differences in specific gravity between the two

fluids generate buoyancy forces. Surface tension forces are

exerted at the interfaces between the two fluids.

In general, the density of liquids is much higher than that

of gases. For example, water is as eight hundred times as

heavier than air. This fact is one of the reasons for the free

surface approximation in which the existence of air is gen-

erally ignored in liquid simulations. Many recent studies

Figure 1: Rising Bubbles in Liquids. Photo Image (up) and

Rendered Image (down)

on liquid animation have referred to the free surface stud-

ies which have been done in computational fluid dynamics

(CFD). These studies showed very natural results and some
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air flows were able to be inserted as surface boundary condi-

tions - e.g. wind. However, since enclosed air is an altogether

different affair, those studies are not suitable for bubbles. Be-

sides the additional factors described above, one more con-

sideration needs to be taken into account - i.e. two fluids have

to be simulated at the same time. This problem is studied in

the form of a multiphase flows in CFD with the phasechange

problem.

Like other fluid problems, many techniques have been

developed for the simulation of multiphase flows in CFD.

However, since all techniques have their own characteris-

tic approach, in order to decide which technique to use for

computer animation, a set of selection criteria are needed.

The criteria that we used were the ease of programming, the

numerical stability and the fast simulation, even at the cost

of accuracy. However, since the main virtue of CFD is ac-

curacy, no existing technique matched these characteristics

exactly, therefore we had to combine and modify various ex-

isting techniques for our purposes.

In this paper, we present a new fluid animation technique

in which liquid and gas interact with each other, using the

example of bubbles rising in water (Figure 1). Our system

is based on the complementary combination of the volume-

of-fluid (VOF) method and the front-tracking method which

were developed in the field of CFD. The VOF method is

an efficient and fast scheme for free surface simulation with

the inherent capability of topological changes. It can be eas-

ily extended for the simulation of multi-phase flows. How-

ever, to reduce the effect of numerical diffusion in the VOF

scheme, the interfaces between the two fluids in the simula-

tion grid need to be decided exactly, which is simple in 2D,

but complicated and computationally expensive in 3D with

fluid volume constraints. In contrast to the VOF method,

the front-tracking method introduces no numerical diffusion.

However, a book keeping process to maintain the front con-

nectivity is needed to handle the topological changes and

physically accurate interfacial geometry is required for the

calculation of surface tension. Since our minimum-stress

surface tension method calculates the surface tension effects

not from the interfacial geometry but directly from the sim-

ulation data, it was possible to combine these two methods.

Due to the VOF scheme being used, fast interface con-

struction is possible with the marching cubes algorithm.

Interfaces composed of polygon meshes are rendered by

means of the vertex-shader. Optical effects - refract, reflec-

tion and dispersion - are included.

Section 2 presents the previous works on liquid anima-

tion and some related CFD techniques, in order to explain

the limitations of previous works and the characteristics of

our approaches. Section 3 introduces some new concepts for

the representation of multiphase fluids and overviews our

method. In section 4, the simulation process is discussed in

relation to the Navier-Stokes equation. Section 5 discusses

the techniques introduced for visualization. In section 6, we

present our results. We conclude and discuss ideas for the

future research in Section 7. All figures are explained in 2

dimensions and their extension to 3 dimensions should be

fairly evident.

2. Previous Work

The characteristics of a physically based model are strongly

influenced by the physical and mathematical foundation of

that model. Therefore, a combination of both models and

CFD techniques is necessary in order to provide a more

meaningful explanation. CFD researches include many top-

ics - the accuracy of simulation, numerical techniques, the

handling of geometry, and so on. Among them, we will con-

centrate on only those parts which are directly related to our

study.

The governing equation of fluids is known as the mo-

mentum or Navier-Stokes equations. Following some initial

approaches using simplified versions of the Navier-Stokes

equations [10, 14], the animation of complex water was stud-

ied [4] using the marker and cell (MAC) method [8] with

the full 3D Navier-Stokes equation. In the MAC method,

the Navier-Stokes equation is discretized within some fixed

uniform Cells and fluids are expressed by Marker particles.

Marker particles were able to describe both natural and de-

tailed scenes [4, 8]. This scheme is also applied to melting

animations [1]. In order to treat the smooth and detailed

surfaces using these marker particles, the implicit surfaces

and level-set methods were used [5]. Realistic optical prop-

erties were rendered with the physically based ray tracer.

In the simulation of very complex scenes, volume loss oc-

curred and to fix this problem the particle level-set method

was introduced [3]. This approach enabled the animation

of very complex scenes and velocity extrapolation gave us

more control with coarse grids. Although the MAC method

presents the explicit expresion of liquids with marker parti-

cles, it is difficult to estimate the volume of liquid in a cell

from marker particles. To represent and simulate two fluids

with one grid system, we have to know the volume of each

fluid in one grid. Therefore, the animation techqniques based

on MAC method [1, 3, 4, 5] are not suitable for our purposes.

For fast animation of liquids [12], the volume of fluid

(VOF) method [9] was used, in which the liquid surfaces

were constructed using the marching cubes algorithm [13]

and rendered with polygonal techniques. The VOF method

handles topological changes naturally with the marching

cubes algorithm, and basically uses only one scalar value

- the volume of fluid - for one cell, through which we can

know the total volume of fluid in the simulation space. The

VOF method assumes that the liquid in a cell is gathered on

one corner. From the volume value of one cell and its adja-

cent cells, the exact position of the liquids needs to be esti-

mated to eliminate the effects of numerical diffusion. This is

a problem involving the intersection of a line and a square

in 2D cases [15]. In 3D, these become a plane and a cube
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[7], and some numerical iteration is required in order to find

a solution. Therefore, it is inefficient to eliminiate numerical

diffusion within VOF scheme for computer animation pur-

poses.

Some spherical objects related to fluids such as liquid

foams [11], water droplets [6, 21] and soap bubbles [2]

have been studied. However for air bubbles enclosed in liq-

uids, the simulation of environmental liquids is unavoidable.

This phenomenon can be explained as a kind of multiphase

flows. The front-tracking method [19] involves the simula-

tion of multiphase flows without numerical diffusion. The

original front-tracking method explicitly discretized the free

surface using particles and maintains a connectivity list be-

tween these particles [20]. This connectivity list is difficult to

maintain when parts of the free surface break apart or merge

together as is often seen in complex flows of water and

other liquids. To avoid this difficulty, the point-set method

was introduced [18]. Although this approach unchains the

front tracking method from its dependence on logical inter-

face point connectivity, the point regeneration algorithm is

complex and computationally expensive. The level contour

reconstruction method [16] is similar to the combination of

the VOF method and the marching cubes algorithm used in

[12], which possesses the inherent capability of being able

to deal with topological changes. The feedback from inter-

faces to simulation grids still removes numerical diffusion.

However, for the calculation of surface tension forces and

for numerical accuracy, the physically exact interfaces are

needed.

Our minimum-stress surface tension method is imple-

mented independently from the details of interfacial geom-

etry with the sufficient convergency for computer anima-

tion. Moreover, the feedback provided by the front-tracking

method removes the numerical diffusion and guarantees

mass conservation with the benefits coming from the VOF

scheme.

In solving the Navier-Stokes equations, the initial ap-

proach was based on explicit finite difference scheme [4, 8].

For computer graphics, the stable fluid scheme [17] based

on implicit approaches such as semi-Lagrangian method and

implicit diffusion was proposed for large time steps and nu-

merical stability. Subsequently, efficient pressure iteration

was introduced [5]. Our method utilizes these techniques in-

stead of the standard CFD techniques (see 4.1).

3. Overview

3.1. Representation of Multiphase Fluids

In contrast to previous works which have dealt with the free-

surface problem, our study considers two fluids simultane-

ously. To represent two fluids with one fixed grid system, we

define an indicator function I = I(x, t). I(x, t) takes the value

1 in one fluid and 0 in the other fluid. A material field is de-

fined by the values of I in each cell and Figure 2.a shows

an example. As you can see in Figure 2.a, there are some

transition zones between 0 and 1, which are at the interfaces

between the two fluids.

We can define the interfaces between two fluids with some

iso-surface construction algorithm. As is shown in Figure

2.b, we used the marching cubes algorithm with a threshold

value of 0.5. Details are discussed in section 5.1.

Figure 2: Material field (a) and interfaces (b) constructed

from this material field

3.2. System Outline

In this section, we divided our animation process into three

steps in order to provide a conceptual explanation. They are

the velocity field update, material field update and visualiza-

tion processes. A more detailed explanation of the general

processes involved in fluid animation can be found in the

literature [4, 5, 8, 9, 17].

Velocity field update

In this step, the velocity field is updated from the initial or

previous velocity field by solving the Navier-Stokes equa-

tion. Material field data are needed for the calculation of the

gravity forces and surface tension forces. The details are dis-

cussed in sections 4.1 and 4.2.

c© The Eurographics Association and Blackwell Publishers 2003.
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Material field update

After updating the velocity field, we should update the

material field by evolving the indicator function to reflect

the movement of the fluids caused by the velocity field. This

involves the flow of materials. The details are discussed in

section 4.3.

Visualization

From the updated material field, we construct rendering

primitives and render them. As well as the polygonal meshes

representing the interfaces, some particles are included for

the sake of providing more detailed scenes. The details are

discussed in section 5.

4. Simulation of Multiphase Flows

4.1. Navier Stokes Equation

The momentum equation, the so called Navier-Stokes equa-

tion for multi-phase flows [19] is

∂(ρu)

∂t
= µ∇· (∇u)−∇· (ρuu)−∇P

+ρg+
∫

Γ(t)
σκnδ(x−x f )ds (1)

where u is the velocity, ρ is the density, µ is viscosity, P is the

pressure and g is the gravity. The surface integral is a surface

tension term. The physical definition and finite difference

scheme of surface tension are described in 4.2.

Conservation of mass written for the entire flow field is

∇· (ρu) = −
∂ρ

∂t
. (2)

The discrete forms for the finite difference method of (1) and

(2) can be written as

wn+1 −wn

∆t
= A

n +F
n+1 −∇hP (3)

∇h ·w
n+1 = M

n+1. (4)

Here w = ρu is the fluid mass flux. The advection, diffusion

and external forces terms in (1) are lumped into A, the right

side of (2) is denoted by M and the surface integral in (1) is

denoted by F.

Following the spirit of Chorin’s projection method, we

split the momentum equation into

w̃−wn

∆t
= A

n +F
n+1

(5)

and

wn+1 − w̃

∆t
= −∇hP (6)

where we introduce the variable w̃, which is the new fluid

mass flux if the effect of pressure is ignored. The first step is

to find this mass flux using (5)

w̃ = w
n +∆t(An +F

n+1). (7)

The pressure is found by taking the divergence of (6) and

using (4). This leads to a Poisson equation for P

∇2
P =

∇· w̃−Mn+1

∆t
, (8)

which can be solved using a standard Poisson solver. The

updated mass flux is found from (6)

w
n+1 = w̃−∆t∇P. (9)

The updated velocity is un+1 = wn+1/ρn+1.

In this paper, the phase change problem coming from heat

transfer is not included. In isothermal cases, ∂ρ/∂t = 0 ,

which reduces (2) to

∇·u = 0 (10)

and (5) to

∇h ·w
n+1 = 0 (11)

with M = 0. If we consider equation (10) as a volume con-

serving condition, the whole process of finding a solution

becomes similar to one involving free-surface conditions.

Since there is no vacant space in our simulation, un-

like free-surface simulations, all cells should be simulated.

Therefore, the free-surface conditioning such as classifying

cells and modifying the velocities of surface cells [4, 8], is

not needed.

In the first projection step of (5) and (7), we incorporated

the stable fluids scheme [17], in which the advection is cal-

culated using the semi-Lagrangian method and the diffusion

is calculated with implicit method. The second projection

step of (6), (8) and (9) is solved in the form of a mass con-

servation process [5], in which we use a standard conjugate

gradient solver as a Poisson solver. All equations are dis-

cretized on the standard staggered MAC grids [8].

4.2. Surface Tension

Surface tension is the apparent interfacial tensile stress

(force per unit length of interface) that acts whenever a liquid

has a density interface, such as when the liquid is in contacts

with a gas, vapor, second liquid, or solid. The mathematical

definition of surface tension F in (1) is

F =

∫
Γ(t)

σκnδ(x−x f )ds (12)

where σ is the surface tension coefficient, κ is twice the

mean interface curvature, n is the unit normal to the inter-

face, x f = x(x, t) represents the parameterization of the in-

terface Γ(t) and δ(x−x f ) is a three-dimensional delta func-

tion that is nonzero only where x = x f . Figure 3 visually ex-

plains the surface tension forces defined in (12). The black

lines refer to a portion of the surfaces. Light blue arrows rep-

resent the tension forces being exerting at the interfaces. The

c© The Eurographics Association and Blackwell Publishers 2003.
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Figure 3: Surface tension forces

red arrow, representing the sum of these tension forces, rep-

resents the total force being exerting on this portion of the

surface.

In front tracking scheme, these forces are calculated us-

ing the polygon meshes representing interfaces and dis-

tributed to the simulation grids as body forces [16, 19, 20].

Since, the interfaces are constructed from material field de-

scretized on the simulation grids, it is inefficient and unre-

liable to distribute surface tension forces to the simulation

grids estimated from those interfaces. To overcome this in-

efficiency and remove dependency on interfacial geometry

in surface tension calculation as discussed in section 2, our

minimum stress surface tension method calculates surface

tension forces directly from the material field. The physical

meaning of (12) is that the surface tension is a tendency to

minimize the total stress of interfacial surfaces. So, we de-

fined the stress of material field and let surface tension forces

to minimize this stress.

To define the stress of a position on the material field,

S(x), first, we define a imaginary stress-zero iso-surface

whose value is I0(x), on which S(x) = 0. Then, S(x) can

be defined by the deviation of I(x) from I0(x). In Cartesian

coordinate system, S(x) is defined as

S(x) = c∑
l

(I0
l (x)− I(x)) ·nl , (13)

where c is a control coefficient, l is {x,y} in 2D and {x,y,z}
in 3D and nl is the unit normal of l direction. In our imple-

mentation, we defined I0
l (x) as

I
0
l (x) = ∑

l

nl · { ∑
p=m−l

(I(xp+)+ I(xp−))}/a, (14)

where m = {x,y} and a = 2 in 2D, and m = {x,y,z} and

a = 4 in 3D. Finally, we can define the material field version

of (12) as

F(x) = −∑
l

(S(x) ·nl)∇lI(x), (15)

where ∇lI(x) = (∇I(x) ·nl)nl .

Figure 4 shows an example of our method. To find the y

portion of F(center), first, we assume an imaginary stress-

zero iso-surface (red line). In this case, the value of this iso-

surface, I0
j (center), is (Ix− + Ix+)/2 = (0.3 + 0.5)/2 = 0.4

using (14). The material value of the center cell 0.9 is bigger

Figure 4: The minimum-stress surface tension method

then 0.4 and this implies that the interfaces constructed by

marching cubes algorithm (blue line) would not be on the

stress-zero surface. Now, we can calculate the direction and

magnitude of the y portion of F(center) using (14). The the

x portion of F(center) can be calculated in the same way.

The extension to 3D cases are fairly evident.

Figure 5: the surface tension forces inserted as body forces

The calculated surface tension forces are inserted to (3)

as body forces for Navier-Stokes simulation. Figure 5 shows

an example. The small lines - the direction is heading from

black to white - are normalized surface tension forces in-

serted as body forces. Red arrows are introduced as visually

understandable explanations of the surface tension forces.

4.3. Update of Material Field

The last step in the simulation is the update of the material

field. As described in section 3.1, our system describes the

positioning of fluids by means of an indicator function. After

getting the velocity field as in 4.1, we should evolve the in-

dicator function to reflect the movement of the fluids caused

by the velocity field.

c© The Eurographics Association and Blackwell Publishers 2003.
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The time dependence of indicator function I on a velocity

field is governed by the equation [9],

∂I

∂t
+u

∂I

∂x
+ v

∂I

∂y
= 0. (16)

In the VOF representation, (16) can be solved by trasporting

the volume of fluid from one cell to another cell [9]. After

some experiments to get the smoothness of animation in the

combimation of marching cubes algorithm, we decided our

discretized form of (16). In the case of Figure 6, the change

of center cell with our discretization is

△IC

△t
= −IC · vN − IC · vW − IC · vE + IS · vS. (17)

Figure 6: An example of Indicator function update

While (17) is easy to implement and shows very smooth

animation in combination of marching cubes algorithm (dis-

cussed in 5.1), it has the inherent property of numerical dif-

fusion. In ideal simulations, material values of the cells far

from interfaces must be 0 or 1. Numerical diffusion occurs

when this condition is not fulfilled as shown in Figure 7(b).

Numerical diffusion prevents the robust and correct liquid

simulation. As discussed in section 2, it is difficult to meet

this condition within VOF scheme. However, with the aid

of front-feedbacks used in front-tracking method, numerical

diffusion can be corrected. In constrast to the MAC repre-

sentation, we can know the total volume or mass of fluids

explicitly with the VOF representation. The total mass of a

volume at time t, Mt is

M
t =

∫
V

ρI
t(x)dV. (18)

Therefore what we have to do to correct the mass loss is just

to modify It+△t to meet Mt+△t = Mt by changing some

material values.

Since we use marching cubes algorithm for construct-

ing interfaces, it is easy to find the location of interfaces

or fronts, and move them by scaling adjacent material val-

ues. In this modifying step, we fix the value of the indicator

function to 0 or 1 except for the cells near interfaces or fronts

in order to remove numerical diffusion and maintain the lo-

cation of the interfaces at the same time. Subsequently, we

pulled out or pushed back the interfaces to maintain the total

mass by scaling the material values near the interfaces. The

scaling factor is decided as

SF =
Mt −M f ixed

Mt+△t −M f ixed

. (19)

Figure 7: Restricting the numerical diffusion

Figure 7 is a rising bubble example. Figures 7.a represents

initial configurations. Unlike Figure 7.b, with our correcting

step, Figure 7.c shows the numerically perfect mass conser-

vation and no numerical diffusion.

5. Visualization

5.1. Interface Construction

In the front-tracking method, the interfaces between two ma-

terials - in our case, water and air - are composed of poly-

gon meshes for the easy calculation of the surface tension.

Book-keeping method [20] in the case of polygon meshes

is difficult because of the topological changes of the flu-

ids. Recently, the iso-surface construction method for front-

tracking [16] was used to solve this problem. This approach

handles topology changes in natural way, which is appro-

priate for the purpose of animation. Since our use of surface

tension steps using the minimum-stress tendencies discussed

in section 4.2 reduces the need for a detailed expression of

the interfaces, we were able to use the marching cubes al-

gorithm for iso-surface construction. In addition to its com-

patibility with our staggered grid system, the look-up table

style of the marching cubes algorithm supports fast anima-

tion [12, 13]. In this case, the material field plays a role of the

intensity field needed in marching cubes algorithm (see Fig-

ure 2.b). The vertex normal was calculated by interpolating

the gradient of the material field.

c© The Eurographics Association and Blackwell Publishers 2003.
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With the marching cubes algorithm, there are many pos-

sibilities of discontinuities arising in the animation. Further-

more, since our indicator function is defined by a discontin-

uous delta function, the continuity of the animation could

be damaged. However, though the approach we used to up-

date the indicator function introduces the numerical diffu-

sion without front-tracking steps, it shows smooth animation

with the marching cubes algorithm. This is one more benefit

which arises from the use of our indicator function update

method (discussed in 4.3).

5.2. Particle System

Small bubbles are spherical due to the domination of the sur-

face tension forces. We used the particle system for small

bubbles with no deformation. While the computational cost

associated with the particles is small, they provided for a

lively animation. The velocity of a particle is determined by

the linear interpolation of six facial velocities of the cell con-

taining that particle. For natural behavior, buoyant forces are

added as body forces, which is similar to the approach taken

in the MAC method. Sizes and initial positions are randomly

decided. In some cases, the use of the particle system alone

could provide for a good animation of bubbles.

5.3. Rendering

Unlike other approaches using implicit surfaces [3, 5],

in our system, the interfaces are composed of poly-

gon meshes, which enables fast rendering supported by

hardware-acceleration [12]. Some optical effects were able

to be implemented by means of a vertex-shader. Reflection,

refraction and dispersion effects were applied using con-

ventional vertex-shader codes [22], which results in visually

pleasing scenes.

6. Results and Discussion

We have implemented our animation system using the

OpenGL APIs and the NVIDIA vertex shader codes. We

have tested this system on Windows PC system. Our test ma-

chine is a PC with 512 MB of RAM and an Intel Pentium IV

processor running at 1.4 GHz. It uses an NVIDIA GeForce

2 MX graphics card with 64 MB of video RAM.

Before simulation process, the properties and the initial

conditions of fluids should be given. They are the initial ve-

locity field, viscosity and density of each fluid, gravity, sur-

face tension coefficient between two fluids and initial con-

figuration.

Surface tension

Figure 8 and 9 are examples provided to show the conver-

gency of our minimum-stress surface tension method. The

influence of gravity was omitted for clarity. Even though our

algorithm calculates the surface-tension forces using mate-

rial field independently from the details of interface geom-

etry, any arbitrary shapes converged to the spherical ones

with no volume loss. In spherical shapes, all surface ten-

sion forces are cancelled by each other. Some oscillatory

phenomena were also included, which are similar to those

observed in nature. We used 13 x 13 x 13 simulation grids

and frame rate was 7.6 fps.

A bubble near a free surface

When rising bubbles arrive at a free surfaces, they are ab-

sorbed by the atmospheric air leaving violent impacts on the

free surfaces. Figure 10 shows this phenomenon. In spite of

the severe shape changes, this simulation shows natural ani-

mation. The merging of bubble meshes and surface meshes,

is done naturally. We used 15 x 15 x 15 simulation grids and

frame rate was 5.2 fps.

Although this result proves that it is possible to deal

with the free-surface condition within our simulation frame-

works, there occurs a problem of volume gain of atmo-

spheric air - i. e. the free-surfaces lowers before meeting the

bubble. The reason of this problem is that we conserve whole

air volume or whole liquid volume in our current implemen-

tation as discussed in section 4.3. To fix this problem, we

have to check each separated air volumes - i.e. Mt = ∑i Mt
i

- and conserve each of them. With our front-feedbacks, we

can easily find the separated volumes and conserve them.

We will handle this problem with free-surface conditions as

a future work.

Rising bubbles

Figure 11 shows a decorated version of the rising bubbles

problem. The bubble rises due to their buoyancy. After merg-

ing with other small bubble, it rises with certain fixed shape.

The shape constitutes a kind of balance point between buoy-

ancy forces and the surface tension forces. The small bub-

bles are animated using particle system with no deformation

as discussed in section 5.2. Visually pleasing optical effects

were included using vertex shader techniques. We used 9 x

9 x 25 simulation grids and frame rate was 1.2 fps.

7. Conclusion and Future Work

In this study, we present a new fluid animation technique in

which liquid and gas interact with each other. Our algorithm

is based on a complementary combination of various CFD

techniques which are selected and modified for computer an-

imation purposes with the aid of our minimum stress surface

tension method. We introduced the finite difference scheme

for the simulation of the multi-phase Navier-Stokes equa-

tion and used appropriate visualization techniques using the

marching cubes algorithm and the hardware acceleration.

Since our algorithm can handle topological changes and

surface tension fairly easily and with no volume loss or nu-

merical diffusion, we can extend it to the physically based

c© The Eurographics Association and Blackwell Publishers 2003.
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simulation of water droplet model interacting with static en-

vironments or other droplets.
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Figure 8: Surface tension convergency

Figure 9: Deformation and merging caused by surface tension

Figure 10: A bubble merges into a free surface.

c© The Eurographics Association and Blackwell Publishers 2003.



Hong and Kim / Bubbles in Liquid

Figure 11: Rising Bubbles in a Liquid (from left-up to right-down)
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