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The frequencies ν of the Raman-active O-O stretching 
modes were calculated for the sixteen possible combina-
tions of cations that coordinate an oxygen dimer octahe-
drally in KxBa1-xO2-δ, not including coordinations of six 
Ba2+ or six K+. The results are listed in Table S1. 

We calculated the frequencies of the Raman-active O-O 
stretching modes for different chemical compositions by 
constructing supercells with doubled c-axes correspond-
ing to K0.25Ba0.75O2, K0.5Ba0.5O2 and K0.75Ba0.25O2 (x=0.25, 0.5 
and 0.75 respectively).  

For x=0.25 (Fig. S1a) we obtained four modes at fre-
quencies of 1089 cm-1 (corresponding to the stretching of 
Dimer 1 coordinated by four K+ and two Ba2+), 895 cm-1 
(stretching of Dimer 2 coordinated by six Ba2+), 891 cm-1 
(anti-phase stretching corresponding to coupling between 
Dimer 2 coordinated by six Ba2+ and two Dimers 3 coordi-
nated by five Ba2+ and one K+), and 880 cm-1 (anti-phase 
stretching of coupled Dimers 3 coordinated by five Ba2+ 
and one K+).  

For x=0.75 (Fig. S1c) we also obtained four modes: 1154 
cm-1 (stretching of Dimer 1 coordinated by six K+), 1083 
cm-1 (anti-phase stretching of coupled Dimers 3 coordi-
nated by five K+ and one Ba2+), 1061 cm-1 (anti-phase 
stretching corresponding to coupling between Dimer 1 
coordinated by six K+ and two Dimers 3 coordinated by 
five K+ and one Ba2+), and 867 cm-1 (stretching mode of 
Dimer 2 coordinated by four Ba2+ and two K+).  

For x=0.5 (Fig. S1b), four Raman-active modes were cal-
culated, at 1134 cm-1 (in-phase stretching of two equivalent 
Dimers 1 and 1′ coordinated by five K+ and one Ba2+), 1068 
cm-1 (anti-phase stretching of Dimers 1 and 1′ coordinated 
by five K+ and one Ba2+), 887 cm-1 (in-phase stretching of 
two equivalent Dimers 2 and 2′ coordinated by one K+ and 
five Ba2+), and 868 cm-1 (anti-phase stretching of Dimers 2 
and 2′ coordinated by one K+ and five Ba2+). 

 

Table S1. Calculated frequencies νννν for O-O stretching 
modes of isolated dimers with different coordina-
tions 

ν (cm-1) ab plane c-axis 

1098 4K Ba, K 

1079 4K 2Ba 

973 3K, 1Ba 2K 

952 3K, 1Ba Ba, K 

938 3K, 1Ba 2Ba 

938 2Ka 2Baa 2K 

917 2Ka 2Baa Ba, K 

916 2Ko 2Bao 2K 

901 2Ka 2Baa 2Ba 

895 2Ko 2Bao 2Ba 

890 2Ko 2Bao Ba, K 

886 4Ba 2K 

879 4Ba Ba, K 

876 3Ba, K 2K 

862 3Ba, K Ba, K 

853 3Ba, K 2Ba 

The calculated frequencies are for isolated oxygen dimers 
that are octahedrally coordinated by different combinations 
of cations in the ab plane and in the c-direction, listed in 
order of descending frequency. Superscript o denotes cations 
located opposite to each other in the ab plane. Superscript a 
denotes cations adjacent to each other in the ab plane. 

 

The supercells in Figs. S1a-c only allow inter-layer cou-
pling because there is only one dimer per layer. Given



 

the good agreement between the calculated and experimental frequencies for the x=0.5 supercell in Fig. S1b, we also ex-
plored the effect of simultaneous intra-layer and inter-layer coupling by constructing a supercell for x=0.5 with doubled b 
and c-axes (Fig. S1d), in which there are two dimers per layer. Eight Raman-active modes were calculated with frequencies 
at: 

a) 1135 cm-1 (in-phase stretching of four equivalent Dimers 1, 1′, 1″ and 1‴ coordinated by five K+ and one Ba2+, inter-layer 
coupling only);  

b) 1073 cm-1 (anti-phase stretching of the four Dimers 1, 1′, 1″ and 1‴, inter-layer coupling only; Dimers 1 and 1″ in one 
layer become longer, while Dimers 1′ and 1‴ in the adjacent layer become shorter, or vice versa); 

c) 1019 cm-1 (anti-phase stretching of two Dimers 1 and 1″, intra-layer coupling only);  

d) 1003 cm-1 (anti-phase stretching of two Dimers 1′ and 1‴, intra-layer coupling only; the frequency should be the same 
as c) but there is a small discrepancy due to the phonon calculation procedure in which the system was first relaxed be-
fore the frequencies were calculated); 

e) 888 cm-1 (in-phase stretching of four equivalent Dimers 2, 2′, 2″ and 2‴ coordinated by one K+ and five Ba2+, inter-
layer coupling only); 

f) 869 cm-1 (anti-phase stretching of the four Dimers 2, 2′, 2″ and 2‴, inter-layer coupling only; Dimers 2 and 2″ in one 
layer become longer, while Dimers 2′ and 2‴ in the adjacent layer become shorter, or vice versa);  

g) 855 cm-1 (anti-phase stretching of two Dimers 2 and 2″, intra-layer coupling only);  

h) 855 cm-1 (anti-phase stretching of two Dimers 2′ and 2‴, intra-layer coupling only). 

Comparing the frequencies obtained above with the experimental Raman peaks, we notice that intra-layer coupling 
modes c) and d) do not appear experimentally, whereas all the inter-layer coupling modes a), b), e) and f) are observed. 
We cannot determine whether intra-layer coupling modes g) and h) are experimentally observed because they would co-
incide with the broad ~840 cm-1 peak attributed to inter-layer coupling. However, we can conclude from the absence of 
modes c) and d) that intra-layer coupling in KxBa1-xO2 is negligible. The reason for this is probably the significant differ-
ence in dimer-dimer distances. For inter-layer coupling the dimers are separated by ~3.40 Å, whereas the corresponding 
distance for intra-layer coupling is ~3.86 Å. 

We also carried out phonon calculations on antiferromagnetic KO2 and paramagnetic BaO2 (using the experimental 
body-centered tetragonal structures for both) in order to check the validity of our calculations on KxBa1-xO2. For KO2 we 
obtained an in-phase stretching mode at 1177 cm-1 (Raman active) and an anti-phase stretching mode at 1010 cm-1 (Raman 
forbidden – see main text). Experimentally, only one mode is observed, in the range 1141-1143 cm-1.1,2 For BaO2 we calculat-
ed an in-phase stretching mode at 906 cm-1 (Raman active) and an anti-phase mode at 901 cm-1 (Raman forbidden), which 
compares with a single experimentally observed mode in the range 843-851 cm-1.3 

 

 

Figure S1. Supercells constructed for phonon calculations on (a) K0.25Ba0.75O2, (b) K0.5Ba0.5O2, (c) K0.75Ba0.25O2 and (d) K0.5Ba0.5O2 
(doubled b and c-axes). The labels 1, 2 and 3 refer to oxygen dimers discussed in the text.  
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