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Abstract. In this paper, we consider a multidimensional convolution model for which we provide adaptive anisotropic kernel

estimators of a signal density f measured with additive error. For this, we generalize Fan’s (Ann. Statist. 19(3) (1991) 1257–1272)

estimators to multidimensional setting and use a bandwidth selection device in the spirit of Goldenshluger and Lepski’s (Ann.

Statist. 39(3) (2011) 1608–1632) proposal for density estimation without noise. We consider first the pointwise setting and then,

we study the integrated risk. Our estimators depend on an automatically selected random bandwidth. We assume both ordinary

and super smooth components for measurement errors, which have known density. We also consider both anisotropic Hölder

and Sobolev classes for f . We provide nonasymptotic risk bounds and asymptotic rates for the resulting data driven estimator,

together with lower bounds in most cases. We provide an illustrative simulation study, involving the use of Fast Fourier Transform

algorithms. We conclude by a proposal of extension of the method to the case of unknown noise density, when a preliminary pure

noise sample is available.

Résumé. Dans ce travail, nous considérons un modèle de convolution multidimensionnel, pour lequel nous proposons des estima-

teurs à noyau anisotropes pour reconstruire la densité f d’un signal mesuré avec un bruit additif. Pour ce faire, nous généralisons

les estimateurs de Fan (Ann. Statist. 19(3) (1991) 1257–1272) à un contexte multidimensionnel et nous appliquons une méthode

de sélection de fenêtre dans l’esprit des idées récentes développées par Goldenshluger et Lepski (Ann. Statist. 39(3) (2011) 1608–

1632) pour l’estimation de densité en l’absence de bruit. Nous considérons tout d’abord le problème de l’estimation ponctuelle,

et nous étudions ensuite le risque global intégré. Nos estimateurs dépendent d’une fenêtre aléatoire sélectionnée de façon automa-

tique. Nous considérons les cas où les composantes du bruit, supposées connues, peuvent être ordinairement ou super régulières.

De plus, nous étudions des classes de fonctions f à estimer aussi bien dans des espaces de Hölder anisotropes que dans des espaces

de Sobolev. Nous prouvons des bornes de risque non asymptotiques ainsi que des vitesses de convergence asymptotiques pour

nos estimateurs adaptatifs, en même temps que des bornes inférieures dans un grand nombre de cas. Des simulations illustrent la

méthode en s’appuyant sur des algorithmes de transformation de Fourier rapide. En conclusion, nous proposons une extension de

la méthode lorsque la loi du bruit n’est plus connue, mais remplacée par un échantillon préliminaire où le bruit seul est observé.
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1. Introduction

There have been a lot of studies dedicated to the problem of recovering the distribution f of a signal when it is

measured with an additive noise with known density. Several strategies have been proposed since Fan [14] in order

to provide adaptive strategies for kernel (Delaigle and Gijbels [9]) or projection (Pensky and Vidakovic [28], Comte

et al. [8]) estimators. The question of the optimality of the rates revealed real difficulties, after the somehow classical

cases studied by Fan [14]: the case of super smooth noise (i.e. with exponential decay of its characteristic function)

in presence of possibly also super smooth density implies nonstandard bias variance compromises that require new
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methods for proving lower bounds. These problems have been studied by Butucea [2], Butucea and Tsybakov [4,5]

and by Butucea and Comte [3].

Then new directions lead researchers to release the assumption that the characteristic function of the noise never

vanishes, see Hall and Meister [18], Meister [24]. Others released the assumption that the density of the noise is

known. In physical contexts, where it is possible to obtain samples of noise alone, a solution has been proposed by

Neumann [26], extended to the adaptive setting by Comte and Lacour [6], another idea is developed in Johannes [19].

Other authors assumed repeated measurements of the same signal, and proposed estimation strategy without noise

sample, see Delaigle et al. [10].

All these works are in one-dimensional setting. Our aim here is to study the multidimensional setting, and to pro-

pose adaptive strategies that would take into account possible anisotropy for both the function to estimate and the

noise structure. As already explained in Kerkyacharian et al. [20], adaptive procedures are delicate in a multidimen-

sional setting because of the lack of natural ordering. For instance, the model selection method is difficult to apply

here since it requires to bound terms on sums of anisotropic models. In this paper, we use a unified setting where all

estimators can be seen as kernel estimators, and we use the method recently developed in Goldenshluger and Lepski

[16,17] to face anisotropy problems. The originality of our work is to use Talagrand inequality as the key of the de-

viation in the mean squared error case. This idea is also exploited in a different context by Doumic et al. [13]. And

indeed, we succeed in building adaptive kernel estimators in many contexts. The bandwidth is automatically selected.

We provide risk bounds for these estimators, for both pointwise risk when local bandwidth selection is proposed and

for the integrated mean square risk (MISE) when the global selection is studied. We also consider both anisotropic

Hölder and Sobolev classes for f , the Fourier-domain-definition of the last ones allowing to also deal with the case of

super smooth functions. Few papers study the multidimensional deconvolution problem; we can only mention Masry

[23] who considers mainly the problem of dependency between the variables without anisotropy nor adaptation, and

Youndjé and Wells [31] who consider a cross-validation method for bandwidth selection in an isotropic and ordinary

smooth setting. Our paper considerably generalizes their results with a different method, and provides new results and

new rates in both pointwise and global setting.

We want here to emphasize that our setting is indeed very general. We consider all possible cases: the noise

can have both ordinary smooth (OS) components (i.e. a characteristic function with polynomial rate of decay in the

corresponding directions) and super smooth (SS) components (exponential rate of decay), and the signal density also.

In particular, we obtain surprising results in the mixed cases: if one component only of the noise is SS (all the others

being OS), in presence of an OS signal, then the rate of convergence of the estimator is logarithmic. On the contrary,

if the signal has k out of d components SS in presence of an OS noise, then the rate of the estimator is almost as good

as if the dimension of the problem was d − k instead of d . We obtain also natural extensions of the univariate rates,

and in particular the important fact that the rates can be logarithmic if the noise is SS (for instance in the Gaussian

case) but are much improved if the signal is also SS: for instance, if the signal is also Gaussian, then polynomial rates

are recovered.

In spite of the difficulty of the problem, in particular because of the large number of parameters required to formal-

ize the regularity indexes of the functions, we exhibit very synthetic penalties than can be used in all cases. We also

provide more precise but more technical results. It is certainly worth mentioning that the adaptive strategy we propose

in the pointwise setting is not only a generalization of the one-dimensional results obtained in Butucea and Comte [3],

but is also a different procedure. Lastly, we prove original lower bounds for both pointwise and global setting, and

this requires specific constructions.

The plan of the paper is the following. In Section 2, we describe the model and the assumptions: the functional

classes and the kernels used in the following. We both give the conditions required in the following for the kernels

and provide concrete examples of kernels fulfilling them. We define the general estimator by generalization of the

one-dimensional kernel to multidimensional setting. In Section 3, we study the pointwise risk and we discuss the

rates. We also assert the optimality of most rates by proving lower bounds. Then we propose a pointwise bandwidth

selection strategy and prove risk bounds for the estimator in the case of Hölder classes and for Sobolev classes. As

in the univariate case, adaptation costs a logarithmic loss in the rates. In Section 4, we provide global (upper and

lower) MISE bounds and describe an adaptive estimator, which is studied both on Nikol’skiı̆ (see Nikol’skiı̆ [27] and

Kerkyacharian et al. [20]) classes and for Sobolev densities. Here, it is possible that adaptation has no price and that

the rate corresponds exactly to the optimal one found without adaptation. We provide in Section 5 illustrations and

examples in dimension 2, for models having possibly very different behavior in the two directions. We give results of a
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small Monte-Carlo study, obtained by clever use of IFFT to speed the programs. Up to our knowledge, these effective

experiments are the first ones in such a general setting. In a concluding Section 6, we pave the way for a generalization

of the method to the case where the known noise density is replaced by an estimation based on a preliminary sample.

To finish, all proofs are gathered in the Appendix.

2. Model, estimator and assumptions

2.1. Model and notations

We consider the following d-dimensional convolution model

Yi =

⎛
⎝

Yi,1

...

Yi,d

⎞
⎠ = Xi + εi =

⎛
⎝

Xi,1

...

Xi,d

⎞
⎠+

⎛
⎝

εi,1

...

εi,d

⎞
⎠ , i = 1, . . . , n. (1)

We assume that the εi and the Xi are i.i.d. and the two sequences are independent. Only the Yi ’s are observed and our

aim is to estimate the density f of X1 when the density fε of ε is known.

As far as possible, we shall denote by x variables in the time domain and by t or u variables in the frequency

domain. We denote by g∗ the Fourier transform of an integrable function g, g∗(t) =
∫

ei〈t,x〉g(x)dx where 〈t, x〉 =∑d
j=1 tjxj is the standard scalar product in R

d . Moreover the convolution product of two functions g1 and g2 is

denoted by g1 ⋆ g2(x) =
∫

g1(x − u)g2(u)du. We recall that (g1 ⋆ g2)
∗ = g∗

1g∗
2 . As usual, we define

‖g‖1 =
∫ ∣∣g(x)

∣∣dx and ‖g‖ = ‖g‖2 =
(∫ ∣∣g(x)

∣∣2 dx

)1/2

.

The notation x+ means max(x,0), and a ≤ b for a, b ∈ R
d means a1 ≤ b1, . . . , ad ≤ bd . For two functions u,v, we

denote u(x) � v(x) if there exists a positive constant C not depending on x such that u(x) ≤ Cv(x) and u(x) ≈ v(x)

if u(x) � v(x) and v(x) � u(x).

2.2. The estimator

Let us now define our collection of estimators. Let K be a kernel in L
2(Rd) such that K∗ exists. Then we define, for

h ∈ (R∗
+)d ,

Kh(x) = 1

h1 · · ·hd

K

(
x1

h1
, . . . ,

xd

hd

)
and L∗

(h)(t) =
K∗

h(t)

f ∗
ε (t)

.

The kernel K is such that Fourier inversion can be applied:

L(h)(x) = (2π)−d

∫
e−i〈t,x〉K∗

h(t)/f ∗
ε (t)dt if f ∗

ε (t) 	= 0.

Considering that fY = f ⋆ fε and thus f ∗ = f ∗
Y /f ∗

ε , a natural estimator of f is such that

f̂ ∗
h (t) = f̂ ∗

Y (t)L∗
(h)(t) = K∗

h(t)
f̂ ∗

Y (t)

f ∗
ε (t)

, where f̂ ∗
Y (t) = 1

n

n∑

k=1

ei〈t,Yk〉,

provided that f ∗
ε does not vanish, and thus, by Fourier inversion,

f̂h(x) = 1

n

n∑

k=1

L(h)(x − Yk).
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Note that our estimator here is the same, in multivariate context, as the one proposed in one-dimensional setting by

Fan [14]. It verifies

E
(
f̂ ∗

h (t)
)
= K∗

h(t)
f ∗

Y (t)

f ∗
ε (t)

= K∗
h(t)f ∗(t) so that E(f̂h) = Kh ⋆ f =: fh.

To construct an adaptive estimator, we also introduce auxiliary estimators involving two kernels. This idea, already

used in Devroye [12], allows us in the following to automatically select the bandwidth h (see Section 3.4), following

a method described in Goldenshluger and Lepski [17]. We consider

f̂h,h′(x) = Kh′ ⋆ f̂h(x),

which implies that

f̂ ∗
h,h′(t) = K∗

h′(t)K
∗
h(t)

f̂ ∗
Y (t)

f ∗
ε (t)

.

Note that, for all x ∈ R
d , we have f̂h,h′(x) = f̂h′,h(x). The estimator which is finally studied is f̂

ĥ
where ĥ is defined

by using the collection (f̂h,h′).

2.3. Noise assumptions

We assume that the characteristic function of the noise has a polynomial or exponential decrease:

(Hε) ∃α ∈ (R+)d , ρ ∈ (R+)d , β ∈ R
d (βj > 0 if ρj = 0) s.t. ∀t ∈ R

d ,

∣∣f ∗
ε (t)

∣∣ ≈
d∏

j=1

(
t2
j + 1

)−βj /2
exp

(
−αj |tj |ρj

)
.

Note that this assumption implies f ∗
ε (t) 	= 0,∀t ∈ R

d . A component j of the noise is said to be ordinary smooth (OS)

if αj = 0 or ρj = 0 and super smooth (SS) otherwise. We take the convention that αj = 0 if ρj = 0 and ρj = 0 if

αj = 0.

Let us recall that exponential or gamma type densities are ordinary smooth, and that Cauchy or Gaussian densities

are super smooth. The Gaussian case is considered in many problems and enhances the interest of super smooth con-

texts. But exponential-type densities keep a great interest in physical contexts, see for instance the fluorescence model

studied in Comte and Rebafka [7] where the measurement error density is fitted as an exponential type distribution,

belonging to the ordinary smooth class.

To be more precise, we introduce the following notation. We denote by OS the set of directions j with ordinary

smooth regularity (αj = ρj = 0), and by SS the set of directions j with super smooth regularity (ρj > 0) so that under

(Hε),

∣∣f ∗
ε (t)

∣∣ ≈
∏

j∈OS

(
t2
j + 1

)−βj /2
∏

k∈SS

(
t2
k + 1

)−βk/2
exp

(
−αk|tk|ρk

)
.

2.4. Regularity assumptions

We consider in the sequel several types of regularity for the target function f , associated with slightly different

definition of the estimator: the choice of the kernel depends on the type of regularity space. We used Greek letters for

the noise regularity, and now, we use Latin letters for the function f regularity indexes.

First, for pointwise estimation purpose, we consider functions f belonging to Hölder classes denoted by H(b,L),

b = (b1, . . . , bd) such that: the function f admits derivatives with respect to xj up to order ⌊bj⌋ (where ⌊bj⌋ denotes

the largest integer less than bj ) and

∣∣∣∣
∂⌊bj ⌋f

(∂xj )
⌊bj ⌋

(
x1, . . . , xj−1, x

′
j , xj+1, . . . , xd

)
− ∂⌊bj ⌋f

(∂xj )
⌊bj ⌋ (x)

∣∣∣∣ ≤ L
∣∣x′

j − xj

∣∣bj −⌊bj ⌋
.
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Next for global estimation purpose, the functional spaces associated with standard kernel estimators are the

anisotropic Nikol’skii class of functions, as in Goldenshluger and Lepski [16], see also Nikol’skiı̆ [27], Kerkyacharian

et al. [20]. We consider the class N (b,L) which is the set of functions f : Rd → R such that f admits derivatives

with respect to xj up to order ⌊bj⌋, and:

(i) ‖ ∂
⌊bj ⌋

f

(∂xj )
⌊bj ⌋ ‖ ≤ L, for all j = 1, . . . , d , where ‖ · ‖ denotes the L

2(Rd)-norm.

(ii) For all j = 1, . . . , d , for all y ∈ R,

∫ ∣∣∣∣
∂⌊bj ⌋f

(∂xj )
⌊bj ⌋ (x1, . . . , xj−1, xj + y, xj+1, . . . , xd) − ∂⌊bj ⌋f

(∂xj )
⌊bj ⌋ (x)

∣∣∣∣
2

dx ≤ L2|y|2(bj −⌊bj ⌋).

Lastly, and for both pointwise and global estimation, we shall consider general anisotropic Sobolev spaces

S(b, a, r,L) defined as the class of integrable functions f : Rd → R satisfying

d∑

j=1

∫ ∣∣f ∗(t1, . . . , td)
∣∣2(1 + t2

j

)bj exp
(
2aj |tj |rj

)
dt1 · · · dtd ≤ L2

for aj ≥ 0, rj ≥ 0, bj ∈ R, when j = 1, . . . , d . We set aj = 0 if rj = 0, and reciprocally, and in this case, bj > 1/2

(otherwise bj ∈ R). If some aj are nonzero, the corresponding directions are associated with so-called “super smooth”

regularities. To standardize notations, we set aj = rj = 0 when Hölder or Nikol’skii regularity is considered.

We refer to Triebel [29] for definitions and comparison of these spaces with other type of anisotropic regularity

spaces such as Besov spaces.

We can note that Sobolev spaces allow one to take into account a global regularity rather than a pointwise one.

Nevertheless, they have a convenient Fourier-domain representation, in particular when one wants to consider super

smooth or analytical functions, even in pointwise setting. If the noise density can have such property in the case of

Gaussian measurement error, it is natural to think that the signal density may have the same behavior.

2.5. Assumptions on the kernel

For the estimators to be correctly defined, the kernel must be chosen sufficiently regular to recover integrability in

spite of the noise density.

We assume that K(x) = K(x1, . . . , xd) =
∏d

j=1 Kj (xj ). This assumption is not necessary, but simplifies the proofs.

Besides, the kernels used in practice verify this condition. Moreover, we recall that K belongs to L
2(Rd) and admits

a Fourier transform.

To ensure the finiteness of the estimators, we shall use the following assumption:

Kvar(β) For j ∈ OS:
∫

|K∗
j (u)|2(1 + u2)βj du < ∞ and

∫
|K∗

j (u)|(1 + u2)βj /2 du < ∞. For j ∈ SS: K∗
j (t) =

0 if |t | > 1 and sup|t |≤1 |K∗
j (t)| < ∞.

Moreover, we may require a classical assumption to control the bias for functions in Hölder or Nikol’skii spaces

described above.

Korder(ℓ) The kernel K is of order ℓ = (ℓ1, . . . , ℓd) ∈ R
d
+, i.e.:

•
∫

K(x)dx = 1,

• ∀1 ≤ j ≤ d , ∀1 ≤ k ≤ ℓj ,
∫

xk
j K(x)dx = 0,

• ∀1 ≤ j ≤ d ,
∫
(1 + |xj |)ℓj |K(x)|dx < ∞.

Note that this implies condition (A2) used in Fan [14] which is stated in the Fourier domain. Condition Korder(ℓ) is

verified by the following kernels defined in Goldenshluger and Lepski [16]. We start by defining univariate functions

uj (x) such that
∫

uj (x)dx = 1,
∫

|x|ℓj |uj (x)|dx < +∞ and then

Kj (xj ) =
ℓj∑

k=1

(
ℓj

k

)
(−1)k+1 1

k
uj

(
xj

k

)
. (2)
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Then Kj is a univariate kernel of order ℓj . The multivariate kernel is defined by

K(x) = K(x1, . . . , xd) =
d∏

j=1

Kj (xj ). (3)

The resulting kernel is such that
∫ ∏d

j=1 x
kj

j K(x)dx1 · · · dxd = 0 if 1 ≤ kj ≤ ℓj for one j ∈ {1, . . . , d}, and thus

satisfies Korder(ℓ).

We can give an example of kernel satisfying Assumptions Kvar(β) and Korder(ℓ). We can use the construction

above with uj (xj ) = vℓj +2(xj ) where

vp(x) = cp

(
sin(x/p)

x/p

)p

, vp(0) = cp, v∗
p(t) = 2πpcp

2p
1[−1,1] ⋆ · · · ⋆ 1[−1,1]︸ ︷︷ ︸

p times

(pt),

and cp is such that
∫

vp(x)dx = 1. This is what can be done when the function under estimation is assumed to be in

a Hölder or in a Nikol’skii space.

When considering Sobolev space, since Assumption Kvar(β) only is required, we simply use the sinus cardinal

kernel denoted by K = sinc and defined by

K∗
j (t) = 1[−1,1](t) = v∗

1(t), Kj (xj ) = sin(xj )

πxj

, Kj (0) = 1

π

.

Remark. When only ordinary smooth noises are considered on Hölder or Nikol’skii spaces, we may also use other

type of kernels. For instance, the construction of kernel of order ℓ based on

uj (xj ) = cj

(
xj − 1

2

)⌊βj ⌋+1(
xj + 1

2

)⌊βj ⌋+1

1[−1/2,1/2](xj )

would suit. Indeed, it can be proved that K∗
j (tj ) = O(|tj |−(⌊βj ⌋+2)) when |tj | → +∞.

3. Pointwise estimation

3.1. Bias and variance

Let x0 be a point in R
d . We aim to study the risk of the estimator f̂h of f at point x0: |f (x0) − f̂h(x0)|. Recall that

fh = E(f̂h) = Kh ⋆ f and that

E
∣∣f (x0) − f̂h(x0)

∣∣2 =
∣∣f (x0) − fh(x0)

∣∣2
︸ ︷︷ ︸

bias

+E
∣∣fh(x0) − f̂h(x0)

∣∣2
︸ ︷︷ ︸

variance

.

We first control the bias. We define

B0(h) =
{‖f − fh‖∞ if ‖K‖1 < ∞,∥∥f ∗ − f ∗

h

∥∥
1
/(2π)d otherwise.

We recall that, when considering all types of spaces (Hölder and Sobolev), we standardized notations by setting

aj = rj = 0 when Hölder regularity is considered. The following proposition holds.

Proposition 1. The bias verifies |f (x0) − fh(x0)| ≤ B0(h) and, under assumptions:

• f belongs to Hölder class H(b,L) and the kernel verifies Korder(ℓ) with ℓ ≥ ⌊b⌋, or

• f ∗ ∈ L
1(R), f belongs to Sobolev class S(b + 1/2, a, r,L) and K = sinc,
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then B0(h) � L
∑d

j=1 h
bj +rj /2

j exp(−ajh
−rj
j ).

Thus, we recover the classical order h
bj

j when aj = 0. Let us now study the variance of estimators f̂h.

Proposition 2. The variance verifies E|fh(x0) − f̂h(x0)|2 ≤ V0(h) where

V0(h) = 1

(2π)2d

1

n
min

(∥∥f ∗
ε

∥∥
1

∥∥∥∥
K∗

h

f ∗
ε

∥∥∥∥
2

2

,

∥∥∥∥
K∗

h

f ∗
ε

∥∥∥∥
2

1

)
. (4)

Moreover, under (Hε) and Kvar(β), if hj ≤ 1 for all j ,

V0(h) �
1

n

d∏

j=1

h
(ρj −1)++ρj −1−2βj

j exp
(
2αjh

−ρj

j

)
.

When f ∗
ε = 1 (no noise), we obtain the classical order

∏
j 1/(nhj ).

Eventually, the bound on the MSE is obtained by adding the squared bias bound and the variance bound.

3.2. Rates of convergence

3.2.1. Homogeneous cases

We first give the bandwidth choices and rates of convergence which are obtained when all components of both f and

fε have the same type of smoothness (all OS or all SS). Recall that in dimension 1, the minimax rates are logarithmic

when the noise is super smooth, unless the function f is super smooth too: see Fan [14], Pensky and Vidakovic [28],

Comte et al. [8].

First, consider that both the function f and the noise are ordinary smooth. We can compute the anisotropic rate

that can be deduced from a “good” choice of h = (h1, . . . , hd). Indeed, setting the gradient of h
2b1

1 + · · · + h
2bd

d +
n−1

∏d
i=1 h

−(2βi+1)
i w.r.t. h to zero, we easily obtain h

2bj

j,opt = h
2bk

k,opt. Therefore the optimal bandwidth choice to mini-

mize the risk bound is

hj,opt ∝ n−1/(2bj +bj

∑d
i=1[(2βi+1)/bi ]) (5)

and the resulting rate is proportional to

ψn = n−1/(1+(1/2)
∑d

i=1(2βi+1)/bi ). (6)

Secondly, consider the case where the noise is super smooth (all (βj , ρj ) nonzero) but the function is ordinary

smooth. Then hj,opt = ((2αj + 1)/ log(n))1/ρj and the rate is of order

ψn =
[
log(n)

]−2 min1≤j≤d (bj /ρj )
. (7)

We can remark two things in this case: the rates are logarithmic, and the bandwidth choice is known because it only

depends on the parameters of the noise density, which is assumed to be known. This explains why no bandwidth

selection procedure is required here, as long as only classical Hölder regularities are considered for f .

Now consider the case where the noise is ordinary smooth (all ρj ’s are zeros) but the function is super smooth

(with all (aj , rj ) nonzero). Then we take hj,opt = (aj/ log(n))1/rj and the rate is

ψn =
[
log(n)

]∑d
j=1(2βj +1)/rj /n. (8)

We can see that here, the rates are very good. It is worth mentioning that the first paper considering super smooth

function f is Pensky and Vidakovic [28].
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We do not give a general bandwidth choice in the case where both functions can be super smooth, because it is

very intricate. General formula in dimension 1 are given in Lacour [22], see also Butucea and Tsybakov [4,5]. We can

just emphasize that in such case the rates can be considerably improved, compared to the logarithmic issue above. We

give an example below.

Super smooth f /super smooth fε example. For instance, it is easy to see that the compromise between a bias of

order exp(−1/h2) and a variance of order exp(1/h2)/n is obtained for h =
√

2/ log(n) and gives a rate of order

1/
√

n. To be even more precise, the optimal rate in dimension 1, if the signal is N (0, σ 2) and the noise N (0, σ 2
ε ), is

n−1/(1+θ2)[log(n)]−(1+1/(1+θ2))/2, θ2 = σ 2
ε /σ 2, for 1/hopt =

√
[log(n) + (1/2) log(log(n))]/(σ 2 + σ 2

ε ).

As the bandwidth choice is very difficult to describe in the general case, this enhances the interest of automatic

adaptation which is proposed below, when Sobolev spaces are considered. Note that optimal choices of the bandwidth

are of logarithmic orders in all those cases.

3.2.2. Discussion about mixed cases

Let us consider now the case where the function is still ordinary smooth, but components 1 to j0 of the noise are

ordinary smooth while components j0 + 1 to d are super smooth, 1 ≤ j0 < d . Then it is clear that exponential com-

ponents must first be “killed” by choosing logarithmic bandwidths and as the bandwidths are involved additively in

the bias term, the rate becomes logarithmic. More precisely, taking for j = 1, . . . , j0, hj,opt ∝ n−1/(2d(2βj +1)) and for

j = j0 + 1, . . . , d , hj,opt = [log(n)/(4dαj )]−1/ρj gives a variance term of order

n−1

j0∏

j=1

h
−2βj −1

j,opt

d∏

j=j0+1

h
(ρj −1)++(ρj −1)−2βj

j,opt exp
(
2αjh

−ρj

j,opt

)

∝ n−1+j0/(2d)+(d−j0)/(2d) logω(n) = n−1/2 logω(n),

where ω =
∑d

j=j0+1(2βj + 1 − ρj − (ρj − 1)+)/ρj . Therefore, the variance is negligible and the rate is determined

by the bias terms and is proportional to

ψn =
[
log(n)

]−2 minj0+1≤j≤d (bj /ρj )
. (9)

The conclusion is that the presence of one super smooth component of the noise implies a logarithmic rate, when the

function to estimate is ordinary smooth (and bandwidth selection is not required).

The other case we can handle is when the noise has all its components ordinary smooth, but the function has its j0

first components ordinary smooth and the d − j0 last ones super smooth. Let us take d = 2 and j0 = 1 for simplicity.

Clearly, we can choose h2,opt = (log(n)/a2)
−1/r2 , so that the MSE for (h1,opt, h2,opt) is proportional to

h
2b1

1,opt + h
2b2+r2

2,opt exp
(
−2a2h

−r2

2,opt

)
+ n−1h

−2β1−1
1,opt h

−2β2−1
2,opt

∝ h
2b1

1,opt + n−2
[
log(n)

]−(2b2+r2)/r2 + n−1h
−2β1−1
1,opt

[
log(n)

](2β2+1)/r2 .

Therefore, the optimal choice of h1 is obtained as in dimension 1 with respect to a sample size n/

[log(n)](2β2+1)/r2 and we find h1,opt ∝ (n/[log(n)](2β2+1)/r2)−1/(2β1+2b1+1). The final rate is proportional to

(n/[log(n)](2β2+1)/r2)−2b1/(2β1+2b1+1). This is the rate corresponding to the one-dimensional problem, up to a loga-

rithmic factor. In the general case, we obtain a rate proportional to

ψn =
(

n
/ d∏

j=j0+1

(logn)(2βj +1)/rj

)−1/(1+(1/2)
∑j0

i=1(2βi+1)/bi )

. (10)

In other words, we obtain in dimension d , the rate corresponding to dimension j0 of the OS–OS problem, up to

logarithmic factors.



Anisotropic adaptive kernel deconvolution 577

3.3. Lower bounds

To get a validation of our method, we need to prove lower bounds for the rates computed above, at least in part of the

cases. In particular, we can extend the results of Fan [14] and Butucea and Tsybakov [5] to the multivariate setting.

Our next result is not straightforward and requires specific constructions, since it captures mixed cases which could

not be encountered in univariate setting.

Theorem 1. We assume that the noise has its components independent. We also assume that, for j = 1, . . . , d , and

for almost all uj in R, f ∗
ε1,j

(uj ) admits a derivative and

|uj |β
′
j exp

(
αj |uj |ρj

)∣∣(f ∗
ε1,j

)′
(uj )

∣∣ is bounded, (11)

for a constant β ′
j such that β ′

j > βj if ε1,j is OS. Moreover, either

Case A. For j = 1, . . . , d , the components εj are ordinary smooth, D = H(b,L) or D = S(b + 1/2, a, r,L) with

rj < 2, and if 1 ≤ rj < 2, f ∗
ε1,j

(uj ) admits in addition a second order derivative for almost all uj in R such that

|uj |β
′′
j exp(αj |uj |ρj )|(f ∗

ε1,j
)′′(uj )| is bounded, with β ′′

j a positive constant.

or

Case B. There exists at least one component of ε which is super smooth and D = H(b,L) or D = S(b+1/2,0,0,L).

Then for any estimator f̂n(x0), and for n large enough,

sup
f ∈D

Ef

[(
f̂n(x0) − f (x0)

)2]
� ψn,

where ψn is defined by (6) in Case A and D = H(b,L), by (10) in Case A and D = S(b + 1/2, a, r,L) with all rj ’s

less than 2, and by (9) in Case B.

Note that our condition on the noise improves Fan’s [14] conditions: in the OS case, Fan requires a second order

derivative of f ∗
ε and in the SS case, he gives a technical condition which is difficult to link with the functions at hand.

The improvement took inspiration in the book of Meister [25] who also had first order type conditions.

We therefore conclude that the rates reached by our estimators for estimating an ordinary smooth function or a

super smooth function if the noise is ordinary smooth, are optimal. We also have optimality in the case of an ordinary

smooth function f and super smooth noise.

3.4. Adaptive estimator

Now, our aim is to automatically select a bandwidth in a discrete set H0 (described below) such that the corresponding

estimator reaches the minimax rate, without knowing the regularity of f . We may also ignore if f is ordinary or super

smooth, or partially both, depending on the direction.

3.4.1. General result

We have at our disposal estimators f̂h(x0) and f̂h,h′(x0) = Kh′ ⋆ f̂h(x0), for x0 = (x0,1, . . . , x0,d) ∈ R
d such that

f̂h,h′(x0) = f̂h′,h(x0). We define

A0(h, x0) = sup
h′∈H0

[∣∣f̂h′(x0) − f̂h,h′(x0)
∣∣−

√
Ṽ0

(
h′)]

+, (12)

and

ĥ(x0) = arg min
h∈H0

{
A0(h, x0) +

√
Ṽ0(h)

}
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with

Ṽ0(h) = c0 log(n)V0(h) (13)

and c0 is a numerical constant to be specified later. The final estimator is f̃ (x0) = f̂
ĥ(x0)

(x0). The term Ṽ0(h) cor-

responds to the variance of the estimate f̂h(x0) multiplied by log(n). Now, we can state the result concerning the

adaptive estimator. Define

N(K) =
{‖K‖1 if ‖K‖1 < ∞,∥∥K∗∥∥

∞ otherwise.

Theorem 2. Assume that N(K) < ∞ and let

H0 =
{
h(k) s.t. h

(k)
j ≤ 1, for j = 1, . . . , d,V0

(
h(k)

)
≤ 1,

∥∥∥∥
K∗

h(k)

f ∗
ε

∥∥∥∥
2

2

∥∥∥∥
K∗

h(k)

f ∗
ε

∥∥∥∥
−2

1

≥ log(n)

n
for k = 1, . . . ,

⌊
nǫ

⌋}
. (14)

Let q be a real larger than 1. Assume that c0 ≥ (4(1 + ‖K∗‖∞)(2ǫ + q))2/min(‖f ∗
ε ‖1,1). Then, with probability

larger than 1 − 4n−q ,

∣∣f̃ (x0) − f (x0)
∣∣ ≤ inf

h∈H0

{(
1 + 2N(K)

)
B0(h) + 3

√
Ṽ0(h)

}
. (15)

We can make two comments about this result.

(1) Inequality (15) is a trajectorial oracle inequality, up to the log(n) factor in the term Ṽ0(h) which appears in place

of V0(h).

(2) Condition (14) is typically verified if ‖K∗
h/f ∗

ε ‖2
2 ≥ log(n) and max(‖K∗

h/f ∗
ε ‖2

2,‖K∗
h/f ∗

ε ‖2
1) ≤ n. It is just slightly

stronger than assuming the variance V0(h) bounded.

It is also important to see that we can deduce from Theorem 2 a mean oracle inequality. More precisely, we have

|f̃ (x0)−f (x0)| ≤ (‖K∗
h/f ∗

ε ‖1 +|f (x0)|). Then, for h ∈ H0, ‖K∗
h/f ∗

ε ‖2
1 ≤ (n/ log(n))‖K∗

h/f ∗
ε ‖2

2 and V0(h) ≤ 1 imply

‖K∗
h/f ∗

ε ‖2
1 ≤ n. Thus |f̃ (x0) − f (x0)|2 � n. Therefore, Theorem 2 implies that, ∀h ∈ H0,

E
(∣∣f̃ (x0) − f (x0)

∣∣2) ≤
{(

1 + 2N(K)
)
B0(h) + 3

√
Ṽ0(h)

}2 + C

n
, (16)

provided that we choose q ≥ 2 in Theorem 2.

3.4.2. Study of condition (14)

Let us define h̄opt = (h̄1,opt, . . . , h̄d,opt) the minimizer of the right-hand side of Eq. (16):

h̄opt = arg min
h∈R

d
+

{
B2

0 (h) + Ṽ0(h)
}
.

Note that h̄opt here corresponds to the value of hopt computed in Section 3.2 where n is replaced by n/ log(n). We

need to check that h̄opt belongs to H0 to ensure that the infimum in (15) is reached.

This is what is stated in the following corollary.

Corollary 1. Assume that (Hε) holds and either

1. f belongs to Hölder class H(b,L), the noise has all its components OS and the kernel verifies Korder(ℓ) with

ℓ ≥ ⌊b⌋, Kvar(β), and is such that K∗
j is lower bounded on [−qj , qj ] for qj > 0, and j = 1, . . . , d , or
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2. f ∗ ∈ L
1(R), f belongs to Sobolev class S(b + 1/2, a, r,L) and K = sinc.

Then h̄opt ∈ H0 defined by (14) and thus the infimum in inequality (15) is reached.

In particular in case 1, we have

E
(∣∣f̃ (x0) − f (x0)

∣∣2) = O
((

n/ log(n)
)−1/(1+(1/2)

∑d
i=1(2βi+1)/bi )

)
. (17)

We can notice that the proof of Corollary 1 relies on the intermediate result stating that condition (14) is equivalent

to the following one:

d∏

j=1

h
(ρj −1)

j � n/ log(n). (18)

The consequence of Corollary 1 is that the right-hand side of (15) always leads to the best compromise between

the squared bias B2
0 (h) and Ṽ0(h), that is the optimal rates of Section 3.2 with respect to a sample size n/ log(n).

Remark 1. As we already mentioned, we have an extra log(n) factor in inequality (15). In case 1 above, we can

concretely see the loss in the rate by comparing the right-hand side of (17) to the optimal rate (6). This logarithmic

loss, due to adaptation, is known to be nevertheless adaptive optimal for d = 1, see Butucea and Tsybakov [4,5] and

Butucea and Comte [3], and we can conjecture that it is also the case for larger dimension.

Remark 2. In the case of a noise having super smooth components and of a function f known to belong to an

Hölder space, we already mentioned that no bandwidth selection is required. Indeed, we just have to take hj =
(log(n)/2αj )

−1/ρj for the super smooth components and hj = n−1/(2d(2βj +1)) for ordinary smooth components, and

the rate has a logarithmic order determined by the bias term, see (9). This is the reason why general adaptation is

studied only on Sobolev spaces. The rates can be then considerably improved compared to the rate (9).

4. Global estimation

Here, we study the procedure for global estimation. In this section we assume that f belongs to L
2(Rd).

4.1. Bias and variance

We study now the MISE E‖f − f̂h‖2, made up of a bias term plus a variance term. We can prove the following bound

for the bias.

Proposition 3. Under assumptions:

• f belongs to Nikol’skii class N (b,L) and the kernel verifies Korder(ℓ) with ℓ ≥ ⌊b⌋, or

• f belongs to Sobolev class S(b, a, r,L) and K = sinc,

then ‖f − fh‖ � L
∑d

j=1 h
bj

j exp(−ajh
−rj
j ).

Let us now bound the variance of the estimator.

Proposition 4. We have

E‖fh − f̂h‖2 ≤ V (h), where V (h) = 1

(2π)dn

∥∥∥∥
K∗

h

f ∗
ε

∥∥∥∥
2

.

Moreover, under (Hε) and Kvar(β)

V (h) �
1

n

d∏

j=1

h
−1−2βj +ρj

j exp
(
2αjh

−ρj

j

)
.
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We emphasize that the rates of convergence (6), (7) and (8) are formally preserved here, for the same optimal band-

width choices, but with a definition of the parameters bj which is different (in case 2 here, f belongs to S(b, a, r,L)

while in the pointwise setting it was chosen in S(b + 1/2, a, r,L)). Therefore, we refer to Section 3.2 for all remarks

concerning the quality of the rates and to the cases where part of the components of f or fε are ordinary smooth and

others are super smooth.

Lower bounds corresponding to the integrated risk can be obtained, through nonstraightforward extensions of the

pointwise case. Thus, we get the following result.

Theorem 3. Consider either Case A with D = S(b, a, r,L) and all rj ’s less than 2 or Case B with D = S(b,0,0,L)

as described in Theorem 1, still under the general assumption that the noise has its components independent and fulfill

(11). Then for any estimator f̂n, and for n large enough,

sup
f ∈D

Ef

[
‖f̂n − f ‖2

]
� ψn,

where ψn is defined by (6) in Case A when r = a = 0, by (10) in general Case A where D = S(b, a, r,L) with all rj ’s

less than 2, and by (9) in Case B.

Next, we study when these rates can be reached adaptively.

4.2. The global adaptive estimator

Here, we describe the adaptive estimation. As previously, we define

A(h) = sup
h′∈H

[
‖f̂h′ − f̂h,h′‖ −

√
Ṽ
(
h′)]

+,

and

ĥ = arg min
h∈H

{
A(h) +

√
Ṽ (h)

}

with Ṽ (h) defined by

Ṽ (h) =
(
1 +

∥∥K∗∥∥
∞
)2

(1 + 2η)2V (h)C(h), (19)

where η is a numerical constant and C(h) ≥ 1 is a correcting term discussed below. Ideally, this term would be a

constant but in super smooth cases, this may not be possible. The final estimator is f̌ = f̂
ĥ
.

We give first an adaptive trajectorial result in term of a general constraint on C(h).

Theorem 4. Assume that ‖K∗‖∞ < ∞ and let

H =
{
h(k) s.t. h

(k)
j ≤ 1, for j = 1, . . . , d,V

(
h(k)

)
≤ 1,

C(h)max
(
1,

∥∥K∗
h/f ∗

ε

∥∥2

2
/
∥∥K∗

h/f ∗
ε

∥∥2

∞
)
≥ (logn)2 for k = 1, . . . ,

⌊
nǫ

⌋}
. (20)

Then, with probability larger than 1 − nǫe−[min(η,1)η/46](logn)2

‖f̌ − f ‖ ≤ inf
h∈H

{(
1 + 2

∥∥K∗∥∥
∞
)
‖f − fh‖ + 3

√
Ṽ (h)

}
. (21)

Remark 3. Clearly, asymptotically when n gets large, ∀ǫ > 0, nǫe−[min(η,1)η/46](logn)2 = O(1/n−q) for any integer q .

But in practice, the cardinality ⌊nǫ⌋ of H should not be too large.
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Note that, as in the pointwise setting, we can write

‖f − f̌ ‖ ≤ ‖f ‖ + ‖f̌ ‖ ≤ ‖f ‖ +
√

nV (ĥ) ≤ ‖f ‖ +
√

n

as ĥ is chosen in H. Therefore, inequality (21) implies that

E
(
‖f̌ − f ‖2

)
≤ inf

h∈H

{(
1 + 2

∥∥K∗∥∥
∞
)
‖f − fh‖ + 3

√
Ṽ (h)

}2 + C2(η)

n
. (22)

Now we can study condition (20) in our usual specific settings. Let us define ȟopt as the optimal bandwidth choice:

ȟopt = arg min
h∈R

d
+

{
‖f − fh‖2 + Ṽ (h)

}
.

As in the pointwise setting, the optimal compromise is automatically reached by the estimator if ȟopt belongs to H;

but contrary to the pointwise setting, we may preserve a rate without loss if C(h) can be taken equal to a constant. We

can prove the following result.

Corollary 2. Assume that (Hε) holds, that the noise has all its components OS and either:

1. f belongs to Nikol’skii class N (b,L), and K verifies Kvar(β), 0 < supuj ∈R |K∗
j (u)|u2βj < ∞ for j = 1, . . . , d ,

Korder(ℓ) with ℓ ≥ ⌊b⌋,

or

2. f ∗ ∈ L
1(R), f belongs to a Sobolev class S(b,0,0,L) and K = sinc.

Then, we can take C(h) = 1 and we have ȟopt ∈ H (where H as defined in Theorem 4). Thus, the infimum in

inequalities (21) and (22) are reached. That is, we have

E
(
‖f̌ − f ‖2

)
= O

(
n−1/(1+(1/2)

∑d
i=1(2βi+1)/bi )

)
. (23)

Clearly in the case of ordinary smooth noise and function f , the estimator automatically reaches the optimal rate,

without requiring the knowledge of the regularity of f , which is nevertheless involved in the resulting rate.

If we want to use constraint (20) in the general setting, we have to choose C(h) = log2(n) and then, a systematic

loss occurs:

Corollary 3. Assume that (Hε) holds, that f ∗ ∈ L
1(R), f belongs to Sobolev class S(b, a, r,L) and K = sinc. Take

C(h) = log2(n). Then ȟopt ∈ H and the infimum in inequalities (21) and (22) are reached.

Nevertheless, if H is more precisely specified, we can prove a better result in expectation:

Theorem 5. Assume that (Hε) holds, that f ∗ ∈ L
1(R), f belongs to Sobolev class S(b, a, r,L) and K = sinc. Define

now for M given, M ≤ n,

HM =
{
h(k) s.t. h

(k)
j = 1

k
, j = 1, . . . , d, k = 1, . . . ,M, with V

(
h(k)

)
≤ 1

}
.

Choose

C(h) = 1 +
d∑

j=1

h
−2ρj1ρj ≥1/2

j 1ρj ≥1/2. (24)

Then choose M such that ȟopt ∈ HM (M = n always suits). Then we have

E
(
‖f̌ − f ‖

)
≤ 3 inf

h∈HM

{
‖f − fh‖ +

√
Ṽ (h)

}
+ C2√

n
. (25)
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Remark 4. By ȟopt ∈ HM , we mean that 1/[1/ȟopt] ∈ H where [x] denotes the integer part of x. In the formulation

above, the infimum in (25) is necessarily reached.

The exact choice instead of (24) is the following

C(h) =
d∑

j=1

ωjh
−(2ρj −1)++(ρj −1)+
j (26)

for constants ωj depending on αj , βj , ρj that can be specified (see Section A.11 in the Appendix).

Let us discuss the possible loss in the rate of convergence of the estimator resulting from the choice (24) of C(h)

and inequality (25).

(1) If fε is ordinary smooth, Eq. (24) says that C(h) = 1 and therefore, as ȟopt belongs to H, the optimal rate

(n−1/(1+(1/2)
∑d

i=1(2βi+1)/bi ) or [log(n)]
∑d

j=1(2βj +1)/rj /n) is automatically reached by the estimator.

(2) If fε is super smooth, Eq. (24) says that the variance term has to be slightly increased.

(a) Nevertheless, if the function f is ordinary smooth, the minimization in (22) still yields to the optimal rate.

Indeed, in that case the variance is made negligible with respect to the bias by the optimal bandwidth choice

(see the computations in Section 3.2).

(b) When f is also super smooth, if all ρj ’s are less than 1/2, then there is no loss. Otherwise, the optimal

bandwidth choice is such that, in part of the cases, the bias is dominating, and then there is still no loss.

When some of the ρj ’s are larger than 1/2 and the variance is dominating, there is a loss. But as the selected

bandwidths have logarithmic orders in the concerned cases, the rates are deteriorated in a negligible way and

less than if they were computed with respect to a sample size n/[log(n)]2 maxj ρj instead of n. In other words,

the loss is always negligible with respect to the rate.

5. Numerical illustration

5.1. Implementation

The theoretical study shows the advantages of the kernel sinc. It has also good properties for practical purposes,

since it allows to use Fast Fourier Transform. Thus we consider in this section, in the case d = 2, the kernel K(x,y) =
sinc(x) sinc(y)/π2. Let us denote ϕh,j (x) = π/

√
h1h2K(x1/h1 −πj1, x2/h2 −πj2). The main trick used here follows

from model selection works on deconvolution (see Comte et al. [8] and Comte and Lacour [6]). It is shown therein

that (ϕh,j )j∈Z2 is an orthonormal basis of the space of integrable functions having a Fourier transform with compact

support included into [−1/h1,1/h1] × [−1/h2,1/h2]. Then f̂h can be written in this basis: f̂h =
∑

j âh
j ϕh,j with

âh
j = 1

4π
2

∫
f̂ ∗

h ϕ∗
h,j =

√
h1h2

4π

∫ 1/h1

−1/h1

∫ 1/h2

−1/h2

f̂ ∗
Y

f ∗
ε

(u1, u2)e
iπ(u1h1j1+u2h2j2) du1 du2.

The interesting point is here that such coefficients can be computed via Fast Fourier Transform. So we implement our

estimator in the following way

f̂h =
∑

|j1|≤M

∑

|j2|≤M

âh
j ϕh,j

with M = 64. Moreover, we use that with cardinal sine kernel, we have fh,h′ = fh∨h′ , by denoting h ∨ h′ =
(max(h1, h

′
1),max(h2, h

′
2)).

Then in the pointwise setting, we compute A0(h, x0) as given by (12) with Ṽ0(h) given by (13) and c0 = 0.01.

Thus, the plots of the selected estimators f̂
ĥ(x0)

(x0) are given on a grid of points x0 in a domain which is specified in

each example.
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In the global setting, we can exploit additional useful properties of the representation. Indeed, for all h′, h′′,

‖f̂h′ − f̂h′′‖2 = 1

4π
2

∥∥f̂ ∗
h′ − f̂ ∗

h′′
∥∥2 = 1

4π
2

∥∥∥∥
f̂ ∗

Y

f ∗
ε

1Dh′ − f̂ ∗
Y

f ∗
ε

1Dh′′

∥∥∥∥
2

with Dh = [−1/h1,1/h1] × [−1/h2,1/h2]. Then, if Dh′′ ⊂ Dh′ ,

‖f̂h′ − f̂h′′‖2 = 1

4π
2

∫

Dh′\Dh′′

∣∣∣∣
f̂ ∗

Y

f ∗
ε

∣∣∣∣
2

= 1

4π
2

∫

Dh′

∣∣∣∣
f̂ ∗

Y

f ∗
ε

∣∣∣∣
2

− 1

4π
2

∫

Dh′′

∣∣∣∣
f̂ ∗

Y

f ∗
ε

∣∣∣∣
2

= ‖f̂h′‖2 − ‖f̂h′′‖2,

where we have ‖f̂h‖2 =
∑

j |âh
j |2. Then the computation of

A(h) = sup
h′∈H

[√
‖f̂h′‖2 − ‖f̂h∨h′‖2 −

√
Ṽ
(
h′)]

+

is considerably accelerated. We choose Ṽ (h) = 0.05 log2(n)V (h), that is C(h) in formula (19) is taken equal to

log2(n) as recommended by Corollary 3. Once the bandwidth is selected in the global setting, we have the coefficients

âĥ
j and thus, we can plot f̂

ĥ
(x, y) at any point (x, y).

We take H and H0 included in {4/m,1 ≤ m ≤ 3n1/4}.

5.2. Examples

Now we compute estimators for different signal densities and different noises. Let λ = 6, μ = 1/4.

Example 1. Cauchy distribution: f (x, y) = (π2(1 + x2)(1 + y2))−1 estimated on [−4,4]2 with a Laplace/Laplace

noise, i.e.

fε(x, y) = λ2

4
e−λ|x|e−λ|y|; f ∗

ε (x, y) = λ2

λ2 + x2

λ2

λ2 + y2
.

The smoothness parameters are b1 = b2 = 0, r1 = r2 = 1, β1 = β2 = 2 and ρ1 = ρ2 = 0. For this example, we can

compute that the rate is of order (log(n))10/n.

Example 2. Mixed Gaussian distribution: Xi,1 = W/
√

7 with W ∼ 0.4N (0,1) + 0.6N (5,1), and Xi,2 independent

with distribution N (0,1). We estimate the density on [−2,4]2. We consider that the noise follows a Laplace/Gaussian

distribution, i.e.

fε(x, y) = λ

2
e−λ|x| 1

μ
√

2π

e−y2/(2μ2); f ∗
ε (x, y) = λ2

λ2 + x2
e−μ2y2/2.

The smoothness parameters are b1 = b2 = 0, r1 = r2 = 2, β1 = 2, β2 = 0 and ρ1 = 0, α2 = μ2/2, ρ2 = 2. Here the

rate of convergence is n−16/17[log(n)]63/34 in the global setting and n−16/17[log(n)]23/17 in the pointwise setting for

the bandwidths h−1
1 =

√
7 log(n) and h−1

2 =
√

a log(n) − b log(log(n)) for a = 16/17 and b = 40/17 in both cases.

We use that μ2 = 1/16.

Example 3. Gamma distribution: Xi,1 ∼ Ŵ(5,1/
√

5) and Xi,2 ∼ Ŵ(5,1/
√

5). We estimate the density on [0,8]2. The

noise follow a Gaussian/Gaussian distribution, i.e.

fε(x, y) = 1

2πμ2
e−(x2+y2)/(2μ2); f ∗

ε (x, y) = e−μ2(x2+y2)/2.

So b1 = b2 = 5, r1 = r2 = 0, β1 = β2 = 0, α1 = α2 = μ2/2 and ρ1 = ρ2 = 2. This is an example with pointwise rate

[log(n)]−4 and global rate (log(n))−9/2 (which is not so slow, for instance, for n = 1000, this term is smaller than

1/n).
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Table 1

MISE ×100 averaged over 100 samples

n = 100 n = 300 n = 500 n = 750 n = 1000

Ex 1 Global 0.419 0.289 0.215 0.161 0.137

Ex 1 Pointwise 0.269 0.140 0.101 0.083 0.068

Ex 2 Global 3.615 1.699 0.761 0.473 0.367

Ex 2 Pointwise 3.477 1.714 0.799 0.526 0.363

Ex 3 Global 0.800 0.402 0.303 0.248 0.212

Ex 3 Pointwise 0.622 0.293 0.212 0.167 0.138

Table 2

Coracle averaged over 100 samples

n = 100 n = 300 n = 500 n = 750 n = 1000

Ex 1 1.48 2.04 2.01 1.96 1.97

Ex 2 1.08 1.03 1.05 1.07 1.25

Ex 3 1.36 1.53 1.57 1.57 1.62

Fig. 1. Example 2, global bandwidth selection, with n = 500. Top right: true density f , top left: estimator f̌ , bottom: sections, dark line for f and

light line for the estimator.

For these examples, we apply both global and pointwise estimation procedure, and we compute the Mean Integrated

Squared Error on a grid of 50 × 50 points. The MISE (multiplied by 100, averaged over 100 samples) is given in

Table 1. For each path, we also compare the MISE for the global procedure with the minimum risk for all bandwidths

of the collection. Table 2 gives the empirical version of the oracle constant defined by

Coracle = E

( ‖f̌ − f ‖2

infh∈H ‖f̂h − f ‖2

)
.

It shows that the adaptation is performing, since the risk for the chosen ĥ is very close to the best possible in the

collection (the nearest of one Coracle, the better the algorithm).

We also illustrate the results with some figures. Figure 1 shows the surface z = f (x, y) for Example 2 and the

estimated surface z = f̌ (x, y) obtained by global bandwidth selection. For more visibility, sections of the previous
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Fig. 2. Example 3, pointwise bandwidth selection,with n = 500. Top right: true density f , top left: estimator f̃ , bottom: sections, dark line for f

and light line for the estimator.

Fig. 3. Dependent case, global bandwidth selection,with n = 500. Top right: true density f , top left: estimator f̌ , bottom: sections, dark line for f

and light line for the estimator, for y = −0,0816 (left) and x = −0,0816 (right).

surface are drawn. We can see the curves z = f (x,−0.3) versus z = f̌ (x,−0.3) and the curves z = f (−0.3, y) versus

z = f̌ (−0.3, y). For this figure, the selected bandwidth is ĥ = (0.29,0.57). Thus, the bandwidth in the first direction

is twice smaller, to recover the two modes: this shows that our procedure takes really anisotropy into account. Figure 2

is an analogous illustration of Example 3, but with a pointwise bandwidth selection, as described in Section 3. We

obtain a slightly more angular figure. Nevertheless, we can notice by observing Table 1 that the MISE is almost always

smaller for this kind of estimation.

To conclude this section, we would like to mention that we can keep good results even in case of dependent

components of both the noise and the signal. More precisely, we can take X ∼ N (0,Σ) and ε ∼ N (0,Σε) with

Σ =
(

1 −0.7

−0.7 2

)
and Σε = 10−2

(
1 0.25

0.25 1.0625

)
,

with X and ε independent. We present in Fig. 3 an illustration of the results for the global method.
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6. Concluding remarks: the case of unknown noise density

The assumption of the knowledge of the error distribution is often disputed. Relaxing this assumption requires con-

ditions for obvious reasons of identifiability. Here is a quick description of what can be done in case of additional

observations of the noise ε−1, . . . , ε−N (think of a measure device calibrated without signal). We use this preliminary

noise sample to estimate f ∗
ε in the following way

1

f̃ ∗
ε (x)

=
1{|f̂ ∗

ε (x)|≥N−1/2}

f̂ ∗
ε (x)

=
{

1

f̂ ∗
ε (x)

if |f̂ ∗
ε (x)| ≥ N−1/2,

0 otherwise,

where f̂ ∗
ε (x) = N−1

∑N
j=1 e−i〈x,ε−j 〉 is the natural estimator of f ∗

ε . Then it is sufficient to write

f̄ ∗
h (t) = K∗

h(t)
f̂ ∗

Y (t)

f̃ ∗
ε (t)

to define new estimators of f in this context. Adapting all the previous results in this framework is beyond the scope

of this paper, but we can observe the effect of this modification on the integrated squared error, for instance. The bias

is unchanged, but an additional term appears in the variance:

Proposition 5. We have E‖fh − f̄h‖2 � V (h) + W(h) where

W(h) = 1

(2π)dN

∥∥∥∥
K∗

hf ∗

f ∗
ε

∥∥∥∥
2

.

It is possible to give a bound of W(h) in term of the smoothness indices of fε and f but we skip this tedious

formula, which is just a generalization of Lemma 2 in Comte and Lacour [6]. In the case of an ordinary smooth

function and a fully ordinary smooth noise, we obtain W(h) � N−1
∏d

j=1 h
−2(βj −bj )+
j .

Thus, we get new rates of convergence in terms of n and N . If N > n, W(h) is always smaller than V (h). In this

case, an adaptive procedure is conceivable, replacing Ṽ (h) by V̄ (h) = C̄(h)‖K∗
h/f̃ ∗

ε ‖2/n and modifying H in the

same way. The efficiency of this strategy can be proved by controlling terms of the form [‖f̄h − f̂h‖2 − V̄ (h)]+. This

was successfully established in Comte and Lacour [6] in dimension 1, but such a study in dimension d would be much

too long here.

Appendix: Proofs

We start with three useful lemmas.

Lemma 1. Consider c, s nonnegative real numbers, and γ a real such that 2γ > −1 if c = 0 or s = 0. Then, for all

m > 0,

•
∫ m

−m
(x2 + 1)γ exp(c|x|s)dx ≈ m2γ+1−secms

,

and if in addition 2γ > 1 if c = 0 or s = 0,

•
∫ ∞
m

(x2 + 1)−γ exp(−c|x|s)dx ≈ m−2γ+1−se−cms
.

Proof of this lemma is based on integration by parts and is omitted. See also Lemma 2, p. 35 in Butucea and

Tsybakov [4].

Lemma 2 (Bernstein inequality). Let T1, . . . , Tn be independent random variables and Sn(T ) =
∑n

i=1[Ti − E(Ti)].
Then, for η > 0,

P
(∣∣Sn(T ) − E

(
Sn(T )

)∣∣ ≥ nη
)
≤ 2 max

(
exp

(
−nη2

4v

)
, exp

(
−nη

4b

))
,
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where Var(T1) ≤ v and |T1| ≤ b.

It is proved in Birgé and Massart [1], p. 366, that P(|Sn(T ) − E(Sn(T ))| ≥ nη) ≤ 2 exp(−nη2/(2v2 + 2bη)).

Lemma 2 follows.

Lemma 3 (Talagrand inequality). Let Y1, . . . , Yn be i.i.d. random variables and νn(t) = 1
n

∑n
i=1[ψt (Yi) −

E(ψt (Yi))] for t belonging to B̄ a countable subset of functions. For any η > 0,

P

(
sup
t∈B̄

∣∣νn(t)
∣∣ ≥ (1 + 2η)H

)
≤ max

(
exp

(
−η2

6

nH 2

v

)
, exp

(
−min(η,1)η

21

nH

M

))
, (27)

and

E

[
sup
t∈B̄

∣∣νn(t)
∣∣− (1 + 2η)H

]
+

≤
√

3π

2

√
v

n
e−(η2/6)(nH 2/v) + 21

η ∧ 1

M

n
e−((η∧1)η/21)(nH/M), (28)

with

sup
t∈B̄

‖ψt‖∞ ≤ M, E

[
sup
t∈B̄

∣∣νn(t)
∣∣
]

≤ H, sup
t∈B̄

1

n

n∑

k=1

Var
(
ψt (Yk)

)
≤ v.

Proof. We apply the Talagrand concentration inequality given in Klein and Rio [21] to the functions si(x) = t (x) −
E(t (Yi)) and we obtain

P

(
sup
t∈B̄

∣∣νn(t)
∣∣ ≥ H + λ

)
≤ exp

(
− nλ2

2(v + 4HM) + 6Mλ

)
.

Then we modify this inequality following Birgé and Massart [1], Corollary 2, p. 354. It gives

P

(
sup
t∈B̄

∣∣νn(t)
∣∣ ≥ (1 + η)H + λ

)
≤ exp

(
−n

3
min

(
λ2

2v
,

min(η,1)λ

7M

))
. (29)

To conclude for (27), we set λ = ηH .

For (28), we take λ = ηH + u and write

E

[
sup
t∈B̄

∣∣νn(t)
∣∣− (1 + 2η)H

]
+

≤
∫ +∞

0

P

(
sup
t∈B̄

∣∣νn(t)
∣∣ ≥ (1 + η)H + ηH + u

)
du

≤
∫ +∞

0

e−(nη2H 2/(6v))e−(nu2/(6v)) du +
∫ +∞

0

e−(nη(η∧1)H/(21M))e−(n(η∧1)u/(21M)) du

=
√

3π

2

√
v

n
e−(nη2H 2/(6v)) + 21M

n(η ∧ 1)
e−(nη(η∧1)H/(21M))

which is the result of (28). �
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A.1. Proof of Proposition 1

In the first case, the bias term is the same as in density estimation (see Tsybakov [30]) and the use of Taylor formula

to partial functions t �→ f (x1 − v1h1, . . . , xi−1 − vi−1hi−1, t, xi+1, . . . , xd) yields

∣∣fh(x0) − f (x0)
∣∣ ≤ L

d∑

j=1

∫
|xj |bj |K(x)|dx

⌊bj⌋!
h

bj

j .

In the second case, since f ∗, f ∗
h ∈ L

1(R), we can write

f (x0) − fh(x0) = 1

(2π)d

∫
e−i〈x0,u〉

1
(
∏d

j=1[−1/hj ,1/hj ])c(uj )f
∗(u1, . . . , ud)du1 · · · dud .

Then, for f ∈ S(b, a, r,L), the bias term is

∣∣f (x0) − fh(x0)
∣∣ ≤ 1

(2π)d

d∑

j=1

∫
1|uj |≥1/hj

∣∣f ∗(u1, . . . , ud)
∣∣du1 · · · dud

≤ 1

(2π)d

d∑

j=1

∫ [
1|uj |≥1/hj

d∏

k=1

(
1 + u2

k

)−bk/2
exp

(
−ak|uk|rk

)
]

×
[
∣∣f ∗(u1, . . . , ud)

∣∣
d∏

k=1

(
1 + u2

k

)bk/2
exp

(
ak|uk|rk

)
]

du1 · · · dud

≤ L

(2π)d

d∑

j=1

(∫

|u|≥1/hj

(
1 + u2

)−bj exp
(
−2aj |u|rj

)
du

)1/2

since

∏

k 	=j

(
1 + u2

k

)−bk/2
exp

(
−ak|uk|rk

)
≤ 1.

Then, using Lemma 1, |f (x0) − fh(x0)| � L
∑d

j=1 h
bj +rj /2−1/2

j exp(−ajh
−r
j ).

A.2. Proof of Proposition 2

The independence of the observations gives

Var
(
f̂h(x0)

)
= 1

n
Var

(
1

(2π)d

∫
e−i〈u,x0〉K∗

h(u)
ei〈u,Y1〉

f ∗
ε (u)

du

)
.

A simple bound of the variance by the expectation of the square yields Var(f̂h(x0)) ≤ (n(2π)2d)−1‖K∗
h/f ∗

ε ‖2
1. But we

can also write

Var
(
f̂h(x0)

)
n(2π)2d =

∫ ∫
e−i〈u−v,x0〉 K

∗
h(u)K∗

h(−v)

f ∗
ε (u)f ∗

ε (−v)

(
f ∗

Y (u − v) − f ∗
Y (u)f ∗

Y (−v)
)

dudv

≤
∫ ∫ ∣∣∣∣

K∗
h(u)K∗

h(−v)

f ∗
ε (u)f ∗

ε (−v)

∣∣∣∣
∣∣f ∗

Y (u − v)
∣∣dudv

≤
∫ ∣∣∣∣

K∗
h(u)

f ∗
ε (u)

∣∣∣∣
2

du

∫ ∣∣f ∗
Y (t)

∣∣dt ≤
∥∥∥∥
K∗

h

f ∗
ε

∥∥∥∥
2

2

∥∥f ∗
ε

∥∥
1
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using Schwarz inequality.

Now, under (Hε), (2π)2dnV0(h) is bounded by the minimum of

∥∥f ∗
ε

∥∥
1

d∏

j=1

∫ ∣∣∣∣
K∗

j (ujhj )

(u2
j + 1)−βj /2 exp(−αj |uj |ρj )

∣∣∣∣
2

duj

and

(
d∏

j=1

∫ ∣∣∣∣
K∗

j (ujhj )

(u2
j + 1)−βj /2 exp(−αj |uj |ρj )

∣∣∣∣duj

)2

.

If j ∈ SS, i.e. ρj > 0 then K∗
j (t) = 0 if |t | ≥ 1. Consequently, using Lemma 1,

∫ ∣∣∣∣
K∗

j (uhj )

(u2 + 1)−βj /2 exp(−αj |u|ρj )

∣∣∣∣
2

du =
∫ 1/hj

−1/hj

∣∣K∗
j (uh)

∣∣2(u2 + 1
)βj exp

(
2αj |u|ρj

)
du

≤
∥∥K∗

j

∥∥2

∞

∫ 1/hj

−1/hj

(
u2 + 1

)βj exp
(
2αj |u|ρj

)
du

� h
−2βj −1+ρj

j exp
(
2αjh

−ρj

j

)
.

In the same way

∫ ∣∣∣∣
K∗

j (uhj )

(u2 + 1)−βj /2 exp(−αj |u|ρj )

∣∣∣∣du =
∫ 1/hj

−1/hj

∣∣K∗
j (uh)

∣∣(u2 + 1
)βj /2

exp
(
αj |u|ρj

)
du

≤
∥∥K∗

j

∥∥
∞

∫ 1/hj

−1/hj

(
u2 + 1

)βj /2
exp

(
αj |u|ρj

)
du

� h
−βj −1+ρj

j exp
(
αjh

−ρj

j

)
.

Now, if j ∈ OS, i.e. αj = ρj = 0, then

∫ ∣∣∣∣
K∗

j (uhj )

(u2 + 1)−βj /2

∣∣∣∣
2

du = h−1
j

∫ ∣∣K∗
j (u)

∣∣2((uh−1
j

)2 + 1
)βj du

� h
−1−2βj

j

∫ ∣∣K∗
j (u)

∣∣2(u2 + 1
)βj du

and

∫ ∣∣∣∣
K∗

j (uhj )

(u2 + 1)−βj /2

∣∣∣∣du � h
−1−βj

j

∫ ∣∣K∗
j (u)

∣∣(u2 + 1
)βj /2

du.

Finally, using that hj ≤ 1, we obtain the following bound for nV0(h)

∏

j∈SS

min
(
1, h

−1+ρj

j

)
h

−2βj −1+ρj

j exp
(
2αjh

−ρj

j

) ∏

j∈OS

h
−1−2βj

j

=
d∏

j=1

h
(ρj −1)+
j h

−2βj −1+ρj

j exp
(
2αjh

−ρj

j

)
.
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A.3. Proof of Theorem 1

We shall consider two cases:

• Case A: the noise is OS and f belongs to D = H(b,L) or D = S(b + 1/2, a, r,L), with 0 ≤ rj < 2 for all j =
1, . . . , d .

In this case we set hn such that hn,j = n−1/(2bj +bj

∑
i∈OS[(2βi+1)/bi ]) if rj = 0 (ordinary smooth components of

f ) and hn,j = (log(n)/aj )
−1/rj when rj > 0 (super smooth components). Moreover ψn is defined by (10) (recall

that we standardized notations by setting rj = 0 when Hölder smoothness is considered, thus in the case of none

super smooth components, we retrieve optimal hn given by (5) and rate (6)).

• Case B: the noise has at least one SS component and f belongs to D = H(b,L) or D = S(b + 1/2,0,0,L).

Then we set hn,j = n−1/(2βj +2bj +1) for j ∈ OS, and for j ∈ SS, hn,j = (2ρj log(n)/αj )
−1/ρj . We recall that in

this case ψn = [log(n)]−2 minj∈SS(bj /ρj ).

Before starting with the proof, we need to define preliminary material.

Let H be the kernel function defined in Fan [14], which is such that:
∫

H = 0, H(0) 	= 0, H ∈ H(bi,L) ∩
S(bi,0,0,L), for i = 1, . . . , d , |H(x)| = O(x−δ) as |x| → ∞ with δ > 3, and H ∗(t) = 0, (and thus also (H ∗)′(t) = 0,

(H ∗)′′(t) = 0) when |t | is outside [1,2].
We also use gs the symmetric stable law with characteristic function g∗

s (u) = exp(−|u|s) where 0 < s < 2. An

interest of this function relies on the lemma:

Lemma 4. The density gs satisfies the following properties:

• g−1
s (x) = O(|x|s+1).

• If s < 1, for all b > 0, there exists L′ such that gs belongs to the Hölder space of dimension one H(b,L′).

Proof. Since the density is symmetric, we only consider positive x. Devroye [11] shows that, for x > 0, gs(x) =
x−1

∑∞
j=1 bj (x

−s)j with

bj = (−1)j−1Ŵ(sj + 1) sin(sjπ/2)

πj ! .

First, we can write

gs(x) = b1x
−s−1 + o

(
x−s−1

)

as x → ∞, which proves the first point for s < 1. The case s ≥ 1 can be found in Butucea and Tsybakov [5]. The power

series
∑

bju
j converges for all x (as pointed by Devroye, Stirling formula allows to show a geometric convergence –

in fact of order j j (s−1)). So it is differentiable with differentiate
∑

jbju
j−1. Then, an easy computation leads to

g′
s(x) =

∞∑

j=1

bj (−1 − sj)x−sj−2 = b1(−1 − s)x−s−2 + o
(
x−s−2

)

in some neighbourhood of infinity. In the same way, for all k ≥ 0,

g(k+1)
s (x) = cx−s−k−2 + o

(
x−s−k−2

)
.

But Hölder inequality provides |g(k)
s (x′) − g

(k)
s (x)| ≤ (

∫
|g(k+1)

s |p)1/p|x − x′|b−k where 1/p = 1 + k − b. Since

s + k + 2 > k + 1 − b, p(s + k + 2) > 1 and g
(k+1)
s is in L

p . Thus gs ∈ H(b,L′) with L′ = ‖g(k+1)
s ‖p . �

Now, we define two couples (f0, f1,A) and (f0, f1,B). From now on, we assume that x0 = (0, . . . ,0) since it is

sufficient to translate functions at point x0 in the other cases.
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Case A. Let

f0(x) =
d∏

j=1

1

cj

gsj

(
xj

cj

)

with cj positive constants large enough (they will be made precise later). Here sj = s < 1 for j = 1, . . . , d if D =
H(b,L), and if D = S(b + 1/2, a, r,L), for rj < 1, rj < sj < 1 and for 1 ≤ rj < 2, rj < sj < 2. We also define

f1,A(x) = f0(x) + c
√

V0(hn)

d∏

j=1

H

(
xj

2hn,j

)
.

Case B. Here we consider f0 with sj = s < 1 for all j , and

f1,B(x) = f0(x) + c

d∑

j=1

h
bj

n,jH

(
xj

hn,j

) ∏

1≤i≤d,i 	=j

gs(xi),

where c is a constant to be specified later.

In the sequel we show that, for Z = A,B ,

(1) f0 and f1,Z are density functions and belong to D,

(2) χ2(P n
f1,Z

,P n
f0

) � n−1 where P n
f1,Z

(resp. P n
f0

) is the probability associated with the distribution of a sample

Y1, . . . , Yn for density of Y1 given by f1,Z (resp. f0) and χ2(P,Q) =
∫
(dP/dQ − 1)2 dQ,

(3) |f1,Z(x0) − f0(x0)| ≥ Cψn.

Then it is sufficient to use Theorem 2.2 (see also p. 80) in Tsybakov [30] to obtain Theorem 1.

Proof of (1). Hypothesis functions are densities. First, f0 are densities by construction. Second, the definition of H

guarantees that, for Z = A,B ,
∫

f1,Z = 1. To ensure the positivity of f1,Z , it is sufficient to prove that |f1,Z −f0| ≤ f0.

But, as |x| → ∞,

f −1
0 (x)

∣∣f1,A(x) − f0(x)
∣∣ � c

√
V0(hn)

d∏

j=1

hδ
n,j

d∏

j=1

x
sj +1−δ

j ≤ 1

for c small enough, since δ > 3 > max(sj ) + 1. In the same way, for Case B, as |x| → ∞,

f −1
0 (x)

∣∣f1,B(x) − f0(x)
∣∣ � c

d∑

j=1

h
bj +δ

n,j x
sj +1−δ

j ≤ 1

for c small enough.

Belonging to the Hölder space. Recall that we take s < 1 when D is an Hölder space. Since gs is in Hölder space

of dimension one for any smoothness (Lemma 4), f0 ∈ H(b,L′) for some L′, and it is sufficient to choose cj to have

L′ ≤ L/2.

Now let GA(·) = (f1,A − f0)(x1, . . . , xj−1, . , xj+1, . . . , xd). Since H ∈ H(bj ,L),

∣∣G(k)
A

(
x′)− G

(k)
A (x)

∣∣ = c
√

V0(hn)
∏

j 	=i

∣∣∣∣H
(

xj

2hn,j

)∣∣∣∣(2hn,i)
−k

∣∣∣∣H
(k)

(
x′

2hn,i

)
− H (k)

(
x

2hn,i

)∣∣∣∣

≤ c‖H‖d−1
∞ L

√
V0(hn)(2hn,i)

−bi
∣∣x′ − x

∣∣bi−k
.
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Then f1,A − f0 ∈ H(b,L/2) as soon as c‖H‖d−1
∞

√
V0(hn)(2hn,i)

−bi ≤ 1/2, which holds for our selected hn and

suitable c. Thus f0 and f1,A belong to H(b,L).

Now let GB(·) = (f1,B − f0)(x1, . . . , xj−1, ·, xj+1, . . . , xd). Since H ∈ H(bj ,L),

∣∣G(k)
B

(
x′)− G

(k)
B (x)

∣∣ ≤ ch
bj

n,jh
−k
n,j

∣∣∣∣H
(k)

(
x′

hn,j

)
− H (k)

(
xj

hn,j

)∣∣∣∣‖gs‖d−1
∞

+ cL‖gs‖d−2
∞ ‖H‖∞

∑

p 	=j

h
bp
n,p

∣∣x − x′∣∣bj −k

≤ ch
bj

n,jh
−k
n,jL

∣∣∣∣
x − x′

hn,j

∣∣∣∣
bj −k

‖gs‖d−1
∞ + cdL‖gs‖d−2

∞ ‖H‖∞
∣∣x − x′∣∣bj −k

.

Then f1,B − f0 ∈ H(b,L/2) if c is chosen small enough, so that f1,B belongs to H(b,L).

Belonging to the Sobolev space. By construction and because sj > rj , for cj large enough, f0 ∈ S(b + 1/2,

a, r,L/2) for rj < 2, j = 1, . . . , d . The computation of the Fourier transform of f1,A − f0 gives

∣∣(f1,A − f0)
∗(t)

∣∣ = c
√

V0(hn)

d∏

j=1

2hn,j

∣∣H ∗(2tjhn,j )
∣∣.

Therefore

∫ ∣∣(f1,A − f0)
∗(t)

∣∣2
d∑

j=1

(
1 + t2

j

)bj +1/2
exp

(
2aj |tj |rj

)
dt

≤ c2V0(hn)

d∑

j=1

h2
n,j

∫ ∣∣H ∗(2tjhn,j )
∣∣2(1 + t2

j

)bj +1/2
exp

(
2aj |tj |rj

)
dtj

∏

k 	=j

hn,k

∫ ∣∣H ∗(2tkhn,k)
∣∣2 dtk

≤ C(H)c2V0(hn)

d∑

j=1

h
−2bj

n,j exp
(
2ajh

−rj
n,j

)
,

using that H ∗(t) = 0 when |t | is outside [1,2]. Then f1,A − f0 ∈ S(b + 1/2, a, r,L/2) as soon as C(H)c2V0(hn) ×
h

−2bi

n,i exp(2aih
−ri
n,i ) ≤ L2/(4d). This is verified for hn as chosen (the variance dominates the bias).

The computation of the Fourier transform of f1,B − f0 gives

(f1,B − f0)
∗(t) = c

d∑

k=1

h
bk+1
n,k H ∗(tkhn,k)

d∏

ℓ=1,ℓ 	=k

g∗
s (tℓ).

Therefore

d∑

j=1

∫ ∣∣(f1,B − f0)
∗(t)

∣∣2(1 + t2
j

)bj +1/2
dt

≤ c2d

d∑

j=1

h
2bj +2

n,j

∫ ∣∣H ∗(tjhn,j )
∣∣2(1 + t2

j

)bj +1/2
dtj

d∏

i=1,i 	=j

∫ ∣∣g∗
s (ti)

∣∣2 dti

+ c2d
∑

1≤j,k≤d,j 	=k

h
2bk+2
n,k

∫ ∣∣H ∗(tkhn,k)
∣∣2 dtk

∫ (
1 + t2

j

)bj +1/2∣∣g∗
s (tj )

∣∣2 dtj
∏

ℓ	=k,ℓ 	=j

∫ ∣∣g∗
s (tℓ)

∣∣2 dtℓ
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which is bounded since
∫

|H ∗(tjhn,j )|2(1 + t2
j )bj +1/2 dtj = O(h

−2bj −2

n,j ),
∫
(1 + t2

j )bj +1/2|g∗
s (tj )|2 dtj is a finite con-

stant and h
2bk+2
n,k

∫
|g∗

s (tkhn,k)|2 dtk = O(h
2bk+1
n,k ) = o(1). Then there is some c such that f1,B − f0 ∈ S(b + 1/2,

0,0,L/2). �

Proof of (2). Chi-square divergence. For Z = A,B , since the observations are i.i.d., χ2(P n
f1,Z

,P n
f0

) = (1 +
χ2(Pf1,Z

,Pf0
))n − 1 (see, e.g., Tsybakov [30], p. 86). Thus, it is sufficient to prove that χ2(Pf1,Z

,Pf0
) = O(n−1)

where

χ2(Pf1,Z
,Pf0

) =
∫

(f1,Z ∗ fε − f0 ∗ fε)
2(f0 ∗ fε)

−1.

Recall that we assume the independence of the noise components. Let us denote

qj (xj ) =
∫

1

cj

gsj

(
xj − y

cj

)
fε1,j

(y)dy

= 1

cj

gsj

( ·
cj

)
∗ fε1,j

(xj )

so that
∏

j qj (xj ) = (f0 ∗ fε)(x). Then

χ2(Pf1,A
,Pf0

) = c2V0(hn)

d∏

j=1

∫ (∫
H

(
xj − y

2hn,j

)
fε1,j

(y)dy

)2

q−1
j (xj )dxj

and

χ2(Pf1,B
,Pf0

) ≤ c2d

d∑

j=1

h
2bj

n,j

∫ (∫
H

(
xj − y

hn,j

)
fε1,j

(y)dy

)2

q−1
j (xj )dxj

∏

i 	=j

∫
qi(x)dx and

∫
qi(x)dx = 1.

Now it follows from our Lemma 4 and Fan’s [14] Lemma 5.1 that qj (xj ) ≥ C|xj |−(sj +1) for |xj | large enough, say

|xj | ≥ A ≥ 1. Indeed Fan’s [14] proof of his Lemma 5.1 works in our case because of the heavy tail property in

Lemma 4. Using this property, we prove that

∫ (∫
H

(
xj − y

hn,j

)
fε1,j

(y)dy

)2

q−1
j (xj )dxj

= O
(
h

2βj +1

n,j exp
(
−21−ρj αjh

−ρj

n,j

))
. (30)

Let us bound the term
∫
(H(·/2hn,j ) ∗ fε1,j

)2(xj )q
−1
j (xj )dxj = I1 + I2 where I1 is the integral for |xj | < A and I2

for |xj | ≥ A. Since qj (xj ) ≥ C|xj |−sj −1 for |xj | large enough

I2 =
∫

|xj |≥A

(H(·/2hn,j ) ∗ fε1,j
(xj ))

2

qj (xj )
dxj

�

∫

|xj |≥A

(
H(·/2hn,j ) ∗ fε1,j

(xj )
)2|xj |sj +1 dxj

�

∫

|xj |≥A

(
H(·/2hn,j ) ∗ fε1,j

(xj )xj

)2
dxj (31)
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if rj < sj < 1. Then, with Parseval equality

I2 ≤
∫ (

H(·/2hn,j ) ∗ fε1,
(y)y

)2
dy =

∫ ∣∣(2hn,jH
∗(2hn2u)f ∗

ε1,j
(u)

)′∣∣2 du

≤ 2

∫ ∣∣4h2
n,j

(
H ∗)′(2hn2u)f ∗

ε1,j
(u)

∣∣2 du + 2

∫ ∣∣(2hn,jH
∗(2hn,ju)

(
f ∗

ε1,j

)′
(u)

)∣∣2 du

�

∫
h4

n,j

∣∣(H ∗)′(2hn,ju)
∣∣2|u|−2βj exp

(
−2αj |u|ρj

)
du

+
∫

h2
n,j

∣∣H ∗(2hn,ju)
∣∣2u−2β ′

j exp
(
−2αj |u|ρj

)
du

� h
2βj +3

n,j exp
(
−21−ρj αjh

−ρj

j

)∫

1≤|v|≤2

∣∣(H ∗)′(v)
∣∣2|v|−2βj dv

+ h
2β ′

j +1

n,j exp
(
−21−ρj αjh

−ρj

j

)∫

1≤|v|≤2

∣∣H ∗(v)
∣∣2v−2β ′

j dv

�
(
h

2βj +3

n,j + h
2β ′

j +1

n,j

)
exp

(
−21−ρj αjh

−ρj

j

)
. (32)

If 1 ≤ rj < sj < 2, then x2
j in (31) must be replaced by x4

j and the same computations can be done with derivatives of

order 2. The other term can be bounded in the same way, using that qj ≥ C for |xj | small

I1 =
∫

|xj |<A

(
H(·/2hn,j ) ∗ fε1,j

(xj )
)2

q−1
j (xj )dxj

≤ C−1

∫

|xj |<A

(
H(·/2hn,j ) ∗ fε1,j

(xj )
)2

dxj

�

∫

1≤|2hn,j u|≤2

∣∣2hn,jH
∗(2hn,ju)f ∗

ε1,j
(u)

∣∣2 du

� h
2βj +1

n,j exp
(
−21−ρj αjh

−ρj

j

)∫ ∣∣H ∗(v)
∣∣2v−2βj dv. (33)

Finally, by gathering (33) and (32), we obtain (30). Thus, in the OS case, we get

χ2(Pf1,A
,Pf0

) � V0(hn)

d∏

j=1

h
2βj +1

n,j � n−1.

For the other case, we get

χ2(Pf1,B
,Pf0

) �
∑

j∈OS

h
2bj

n,j h
2βj +1

n,j +
∑

j∈SS

h
2bj +2βj +1

n,j exp
(
−21−ρj αjh

−ρj

n,j

)
� n−1

by using the choices of the hn,j ’s. �

Proof of (3). Rate. We can see that |f1,A(0) − f0(0)| = c
√

V0(hn)|H(0)|d , and |f1,B(0) − f0(0)| = c(
∑d

j=1 h
bj

n,j ) ×
|H(0)||gs(0)|d−1, which all have the announced order of the rate ψn for the selected hn. �

This ends the proof of Theorem 1.



Anisotropic adaptive kernel deconvolution 595

A.4. Proof of Theorem 2

A.4.1. Proof of Theorem 2

We want to bound |f̃ (x0) − f (x0)|. Let h ∈ H0 be fixed. The following decomposition holds:

∣∣f̃ (x0) − f (x0)
∣∣ ≤

∣∣f̂
ĥ(x0)

(x0) − f̂
h,ĥ(x0)

(x0)
∣∣

︸ ︷︷ ︸
D1

+
∣∣f̂

h,ĥ(x0)
(x0) − f̂h(x0)

∣∣
︸ ︷︷ ︸

D2

+
∣∣f̂h(x0) − f (x0)

∣∣.

By definition of A(h,x0),

D1 ≤ A0(h, x0) +
√

Ṽ0

(
ĥ(x0)

)
.

And by definition of A0(ĥ(x0), x0),

D2 ≤ A0

(
ĥ(x0), x0

)
+

√
Ṽ0(h).

Therefore

D1 + D2 ≤ A0(h, x0) +
√

Ṽ0

(
ĥ(x0)

)
+ A0

(
ĥ(x0), x0

)
+

√
Ṽ0(h) ≤ 2

[
A0(h, x0) +

√
Ṽ0(h)

]

by using the definition of ĥ(x0). Thus

∣∣f̃ (x0) − f (x0)
∣∣ ≤ 2A0(h, x0) + 2

√
Ṽ0(h) +

∣∣f̂h(x0) − f (x0)
∣∣. (34)

To study A0(h, x0), we can write

f̂h′(x0) − f̂h,h′(x0) = f̂h′(x0) − fh′(x0) −
(
f̂h,h′(x0) − fh,h′(x0)

)
+ fh′(x0) − fh,h′(x0),

where

fh(x0) = E
(
f̂h(x0)

)
= Kh ⋆ f (x0),

fh,h′(x0) = E
(
f̂h,h′(x0)

)
= Kh′ ⋆ Kh ⋆ f (x0).

For any h′,

∣∣fh′(x0) − fh,h′(x0)
∣∣ =

∣∣Kh′ ⋆ (f − Kh ⋆ f )(x0)
∣∣ ≤ N(K)B0(h).

We get back to the definition of A0(h, x0)

A0(h, x0) = sup
h′∈H0

[∣∣f̂h′(x0) − f̂h,h′(x0)
∣∣−

√
Ṽ0

(
h′)]

+

≤ sup
h′∈H0

[∣∣f̂h′(x0) − fh′(x0)
∣∣−

√
Ṽ0

(
h′)/

(
1 +

∥∥K∗∥∥
∞
)]

+

+ sup
h′∈H0

[∣∣f̂h,h′(x0) − fh,h′(x0)
∣∣−

∥∥K∗∥∥
∞

√
Ṽ0

(
h′)/

(
1 +

∥∥K∗∥∥
∞
)]

+ + N(K)B0(h). (35)

We can prove the following concentration result:
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Proposition 6. Under the assumptions of Theorem 2, for all (h,h′) ∈ H2
0, for all p ≥ 1,

P
(∣∣f̂h(x0) − fh(x0)

∣∣ > c1(p)

√
Ṽ0(h)

)
≤ 2/np, (36)

P
(∣∣f̂h,h′(x0) − fh,h′(x0)

∣∣ > c1(p)
∥∥K∗∥∥

∞

√
Ṽ0

(
h′)) ≤ 2/np (37)

as soon as c1(p)2c0 ≥ 16p2/min(‖f ∗
ε ‖1,1).

The proposition is proved below. It implies that if c1(p) = 1/(1 + ‖K∗‖∞) and c0 ≥ 16p2(1 + ‖K∗‖∞)2/

min(‖f ∗
ε ‖1,1),

P

{
sup

h∈H0

[∣∣f̂h(x0) − fh(x0)
∣∣−

√
Ṽ0(h)/

(
1 +

∥∥K∗∥∥2

∞
)]

+ > 0
}

≤ 2
∑

h∈H0

n−p ≤ 2nǫ−p

as Card(H0) ≤ nǫ . In the same way, for all h ∈ H0,

P

{
sup

h′∈H0

[∣∣f̂h,h′(x0) − fh,h′(x0)
∣∣−

∥∥K∗∥∥
∞

√
Ṽ0(h)/

(
1 +

∥∥K∗∥∥
∞
)]

+ > 0
}

≤ 2nǫ−p.

Thus, the following set

Ω =
{

sup
h′∈H0

[∣∣f̂h′(x0) − fh′(x0)
∣∣−

√
Ṽ0

(
h′)/

(
1 +

∥∥K∗∥∥
∞
)]

+ = 0
}

∩
{
∀h ∈ H0, sup

h′∈H0

[∣∣f̂h,h′(x0) − fh,h′(x0)
∣∣−

∥∥K∗∥∥
∞

√
Ṽ0

(
h′)/

(
1 +

∥∥K∗∥∥
∞
)]

+ = 0
}

has probability larger than 1 − 4n2ǫ−p . Now we choose p = 2ǫ + q and then c0 ≥ 16(1 + ‖K∗‖∞)2(2ǫ + q)2/

min(‖f ∗
ε ‖1,1). Thus P(Ω) > 1 − 4n−q .

By gathering inequalities (34) and (35), we have on Ω

∣∣f̃ (x0) − f (x0)
∣∣ ≤ 2A0(h, x0) + 2

√
Ṽ0(h) +

∣∣f̂h(x0) − f (x0)
∣∣

≤ 2N(K)B0(h) + 2

√
Ṽ0(h) +

∣∣f̂h(x0) − f (x0)
∣∣.

But, still on Ω

∣∣f̂h(x0) − f (x0)
∣∣ ≤ B0(h) +

∣∣f̂h(x0) − fh(x0)
∣∣−

√
Ṽ0(h)/

(
1 +

∥∥K∗∥∥
∞
)
+

√
Ṽ0(h)/

(
1 +

∥∥K∗∥∥
∞
)

≤ B0(h) +
√

Ṽ0(h).

Then, on Ω ,

∣∣f̃ (x0) − f (x0)
∣∣ ≤

(
1 + 2N(K)

)
B0(h) + 3

√
Ṽ0(h),

which ends the proof of Theorem 2.

A.4.2. Proof of Proposition 6

Let us define the independent random variables

Zk(x0) = 1

(2π)d

∫
e−i〈u,x0〉K∗

h(u)
ei〈u,Yk〉

f ∗
ε (u)

du.
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Clearly,

f̂h(x0) − fh(x0) = 1

n

n∑

k=1

[
Zk(x0) − E

(
Zk(x0)

)]
.

We apply Bernstein inequality recalled in Lemma 2 to the Zk(x0)’s, with η = c1(p)

√
Ṽ0(h). We find

∣∣Z1(x0)
∣∣ ≤ (2π)−d

∫ ∣∣∣∣
K∗

h(u)

f ∗
ε (u)

∣∣∣∣du =: b

and Var(Z1(x0)) ≤ nV0(h). We obtain

P
(∣∣f̂h(x0) − fh(x0)

∣∣ > c1(p)

√
Ṽ0(h)

)

≤ P
(∣∣Sn

(
Z(x0)

)
− E

(
Sn

(
Z(x0)

))∣∣ ≥ c1(p)

√
Ṽ0(h)

)

≤ 2 max

(
exp

(
−

n(c1(p)

√
Ṽ0(h))2

4nV0(h)

)
, exp

(
−

n(c1(p)

√
Ṽ0(h))

4b

))
, (38)

where c1(p) is chosen such that

nc1(p)2Ṽ0(h)

4nV0(h)
≥ p log(n) (39)

that is c1(p)2c0 ≥ 4p (c0 is the constant in the definition of Ṽ0(h)). Moreover,

n

√
c1(p)2Ṽ0(h)

4b
=

√
c1(p)2c0

4

√
n log(n)

√
nV0(h)

b2
.

But for h ∈ H0,

nV0(h)/b2 = min

(∥∥f ∗
ε

∥∥
1

∥∥∥∥
K∗

h

f ∗
ε

∥∥∥∥
2

2

∥∥∥∥
K∗

h

f ∗
ε

∥∥∥∥
−2

1

,1

)
≥ c3

log(n)

n

with c3 = min(‖f ∗
ε ‖1,1). Thus

n

√
c1(p)2Ṽ0(h)

4b
≥ p log(n) (40)

provided that

√
c3c

2
1(p)c0 ≥ 4p. Note now that this last condition also ensures the first constraint c1(p)2c0 ≥ 4p.

Therefore, inserting (39) and (40) in (38) implies the first inequality (36) of Proposition 6.

To prove (37), we follow the same line. For the study of

f̂h,h′(x0) − fh,h′(x0) = Kh ⋆ (f̂h′ − fh′)(x0),

we can simply replace K∗
h(u) by K∗

h(u)K∗
h′(u), with |K∗

h(u)| ≤ ‖K∗‖∞ so that it adds a term ‖K∗‖∞ in the previous

computations. Thus we get (37) and this end the proof of Proposition 6.
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A.5. Proof of Corollary 1

Let us denote |f ∗
ε,j (t)| the j th component of the order of the noise characteristic function, i.e. |f ∗

ε,j (t)| = (1 +
t2)−βj /2 exp(−αj |t |ρj ). First, we write

‖K∗
h/f ∗

ε ‖2
1

‖K∗
h/f ∗

ε ‖2
2

�

d∏

j=1

(
∫

|K∗
j (tjhj )||f ∗

ε,j (tj )|−1 dtj )
2

∫
|K∗

j (tjhj )|2|f ∗
ε,j (tj )|−2 dtj

�

(
d∏

j=1

1

hj

)
d∏

j=1

(
∫

|K∗
j (uj )||f ∗

ε,j (uj/hj )|−1 duj )
2

∫
|K∗

j (uj )|2|f ∗
ε,j (uj/hj )|−2 duj

.

Consider now case 1. Under (Hε), in the OS case, we get

‖K∗
h/f ∗

ε ‖2
1

‖K∗
h/f ∗

ε ‖2
2

�

(
d∏

j=1

1

hj

)
d∏

j=1

(
∫

|K∗
j (uj )|(1 + (uj/hj )

2)βj /2 duj )
2

∫
|K∗

j (uj )|2(1 + (uj/hj )2)βj duj

�

(
d∏

j=1

1

hj

)
d∏

j=1

(
∫

|K∗
j (uj )|(h2

j + u2
j )

βj /2 duj )
2

∫
|K∗

j (uj )|2(h2
j + u2

j )
βj duj

�

(
d∏

j=1

1

hj

)
d∏

j=1

(
∫

|K∗
j (uj )|(1 + u2

j )
βj /2 duj )

2

∫
|K∗

j (uj )|2u
2βj

j duj

:= C(ε,K)

d∏

j=1

1

hj

because 0 < hj ≤ 1 and the assumptions make all integrals finite.

Consider case 2, where Kj = sinc, and use the equivalence Lemma 1. Then we get straightforwardly

‖K∗
h/f ∗

ε ‖2
1

‖K∗
h/f ∗

ε ‖2
2

�

d∏

j=1

h
ρj −1

j .

Therefore h̄opt belongs to H0 if condition (18) is satisfied. Let us explain why constraint (18) is fulfilled in the two

cases of Corollary 1.

First, in case 1, it follows from (5) that h̄j,opt are such that

(
d∏

i=1

1/h̄i,opt

)
≤

(
d∏

i=1

(
h̄P

i,opt

)−2βi−1

)(
d∏

i=1,i 	=j

h̄
−2bi

j,opt

)
∝ n/ log(n)

for j = 1, . . . , d which implies clearly that they satisfy the constraint
∏d

j=1(1/hj ) ≤ n/ log(n). This is the reason

why (18) and thus (17) hold.

Second, in case 2, the general constraint is also satisfied by the optimal bandwidths because the negative powers

on the hj ’s get smaller when ρj increases, and each time a ρj is nonzero, it is associated to a logarithmic order for the

hj ’s. Condition (18) can also easily be checked for mixed cases. Therefore, h̄opt also belongs to H0 and Corollary 1

is proved.

A.6. Proof of Proposition 3

In the first case, standard methods (see Tsybakov [30] or Kerkyacharian et al. [20]) yield

‖fh − f ‖ ≤ C(K,d, b)L

d∑

j=1

h
bj

j .
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In the Sobolev case, Parseval formula gives ‖fh − f ‖2 = (2π)−d‖f ∗
h − f ∗‖2 and

∥∥f ∗
h − f ∗∥∥2 =

∫

(
∏d

j=1[−1/hj ,1/hj ])c

∣∣f ∗(u)
∣∣2 du

≤
d∑

j=1

∫ (
1 + u2

j

)−bj exp
(
−2aj |uj |rj

)
1|uj |≥1/hj

×
∣∣f ∗(u1, . . . , ud)

∣∣2(1 + u2
j

)bj exp
(
2aj |uj |rj

)
du1 · · · duj

� L

d∑

j=1

h
2bj

j exp
(
−2ajh

−rj
j

)
.

A.7. Proof of Proposition 4

The first bound is obtained by writing

E‖f̂h − fh‖2 = 1

(2π)d

∫
Var

(
K∗

h

f ∗
ε

f̂ ∗
Y

)
≤ 1

(2π)dn

∫ ∣∣∣∣
K∗

h

f ∗
ε

ei〈u,Y1〉
∣∣∣∣
2

.

Now we use the bound on ‖K∗
h/f ∗

ε ‖2 proved for Proposition 2:

nV (h) �
∏

j∈SS

h
−2βj −1+ρj

j exp
(
2αjh

−ρj

j

) ∏

j∈OS

h
−1−2βj

j =
d∏

j=1

h
−2βj −1+ρj

j exp
(
2αjh

−ρj

j

)
.

A.8. Proof of Theorem 3

The proof uses all the tools given in the proof of Theorem 1 and we refer to it. We consider almost the same two cases.

• Case A: the noise is OS and f belongs to D = S(b, a, r,L), with 0 ≤ rj < 2 for all j = 1, . . . , d .

• Case B: the noise has at least one SS component and f belongs to D = S(b,0,0,L).

In both cases, the bandwidth hn and the rate ψn are as in the proof of Theorem 1. We also keep the same functions

H , gs , f0. Next, we define below a collection of alternatives (fθ )θ in Case A, and a single alternative in Case B. We

follow the same three steps as previously, with, in step (3), integral norms instead of pointwise distance. We will use

an integral on a compact set [a, b] =
∏d

j=1[aj , bj ] in Case A (which nevertheless minorates the norm on R
d ) and on

R
d in Case B. Here, we consider the two cases separately, the extension of the first one being more complicated than

the extension of the second one.

Case A (OS-noise). We take

fθ (x) = f0(x) + c
√

V (hn)
∑

k∈K

θk

d∏

j=1

H

(
xj − xnkj

2hn,j

)

with K = {1, . . . ,M1} × · · · × {1, . . . ,Md}, θ ∈ {0,1}M1×···×Md , Mj = ⌊h−1
j ⌋, xn,k is a vector with j th coordinate

xnkj = aj + kj (bj − aj )hn,j . Moreover, we assume that bj − aj ≥ 1/(2π) for j = 1, . . . , d .

Let θ a sequence in {0,1}K . For i = 0,1, we denote θ i
k the sequence such that (θ i

k)k = i and for all l ∈ K different

from k, (θ i
k)l = θl . We now follow the three announced steps.
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(1) Hypothesis functions are densities. We already know that f0 is a density and the definition of H guarantees

that
∫

fθ = 1. To ensure the positivity of fθ , it is sufficient to prove that |fθ − f0| ≤ f0. But, as |x| → ∞,

f −1
0 (x)

∣∣fθ (x) − f0(x)
∣∣ � c

√
V (hn)

d∏

j=1

h−1+δ
n,j

d∏

j=1

x
sj +1

j (xj − xnkj )
−δ ≤ 1

2
(41)

for c small enough, since δ > 3 > sj + 1.

Belonging to the Sobolev space S(b, a, r,L/2), rj < 2. The computation of the Fourier transform of fθ − f0 gives

∣∣(fθ − f0)
∗(t)

∣∣2 = c2V (hn)

d∏

j=1

2h2
n,j

∣∣H ∗(2tjhn,j )
∣∣2∣∣v

(
t1(b1 − a1)hn,1, . . . , td(bd − ad)hn,d

)∣∣2,

where

v(t) =
∑

k∈K

θkei〈t,k〉.

Therefore, using that H ∗(t) = 0 when |t | is outside [1,2],

∫ ∣∣(fθ − f0)
∗(t)

∣∣2
d∑

j=1

(
1 + t2

j

)bj exp
(
2aj |tj |rj

)
dt

≤ c2V (hn)

d∑

j=1

h
1−2bj

n,j exp
(
2ajh

−rj
j

)∫ ∣∣H ∗(2tj )
∣∣2(1 + t2

j

)bj

×
∏

l 	=j

hn,l

∣∣H ∗(2tl)
∣∣2∣∣v

(
t1(b1 − a1), . . . , td(bd − ad)

)∣∣2 dt

≤ c2
∥∥H ∗∥∥2d

∞V (hn)

d∑

j=1

h
1−2bj

n,j exp
(
2ajh

−rj
j

)∏

l 	=j

hn,l

∫

[1/2,1]d

∣∣v
(
t1(b1 − a1), . . . , td(bd − ad)

)∣∣2 dt.

But v is 2π-periodic so that

1

(2π)d

∫

[0,2π]d

∣∣v(u)
∣∣2 du =

∑

k

θ2
k ≤ Card(K) =

d∏

j=1

Mj ≤
d∏

j=1

h−1
j (42)

and, using that 1/(bj − aj ) ≤ 2π,

∫

[1/2,1]d

∣∣v
(
t1(b1 − a1), . . . , td(bd − ad)

)∣∣2 dt

=
d∏

j=1

(bj − aj )

∫
∏d

j=1[1/(2(bj −aj )),1/(bj −aj )]

∣∣v(u1, . . . , ud)
∣∣2 du1 · · · dud

≤
d∏

j=1

(bj − aj )

∫

[0,2π]d

∣∣v(u)
∣∣2 du

≤
d∏

j=1

[
2π(bj − aj )

]∑

k∈K

θ2
k .
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Then using (42), we get

∫ ∣∣(fθ − f0)
∗(t)

∣∣2
d∑

j=1

(
1 + t2

j

)bj exp
(
2aj |t |rj

)
dt

� c2V (hn)

d∑

j=1

h
1−2bj

n,j exp
(
2ajh

−rj
j

)∏

l 	=j

hn,l

∑

k

θ2
k

� c2V (hn)

d∑

j=1

h
−2bj

n,j exp
(
2ajh

−rj
j

)
≤ (L/2)2

for c small enough.

(2) Chi-square divergence. Let some k ∈ K. We shall first compare f0 and f0(· − xn,k). Since gsj is symmetric,

we only study the case of xj ≥ 0. First remark that for xj large enough,

x
sj +1

j ≤ 2sj (xj − xnkj )
sj +1 + 2sj x

sj +1

nkj � (xj − xnkj )
sj +1.

Then, according to Lemma 4, for xj large enough,

gsj

(
xj

cj

)
� c

sj +1

j x
1−sj
j � c

sj +1

j (xj − xnkj )
1−sj � gsj

(
xj − xnkj

cj

)
.

Moreover, for xj small, i.e. in an interval I , since gsj is continuous and gsj (0) > 0,

gsj

(
xj − xnkj

cj

)
≤ ‖gsj ‖∞ ≤

(
inf
I/cj

gsj

)−1
‖gsj ‖∞gsj

(
xj

cj

)
.

Thus, for all k ∈ K, f0 � f0(· − xn,k). In addition, we use (41) to conclude

fθ ∗ fε ≥ 1

2
f0 ∗ fε ≥ max

k∈K
f0 ∗ fε(· − xn,k).

This implies

χ2(Pf
θ0
k

,Pf
θ1
k

) =
∫ (fθ1

k
∗ fε − fθ0

k
∗ fε)

2

fθ0
k

∗ fε

�

∫ (fθ1
k

∗ fε − fθ0
k

∗ fε)
2

f0 ∗ fε(· − xn,k)
= χ2(Pf1,A

,Pf0
),

where f0 and f1,A are defined in the proof of Theorem 1. Hence, using the corresponding part of the proof of Theo-

rem 1, we get χ2(Pf
θ0
k

,Pf
θ1
k

) = O(n−1), uniformly in θ .

(3) Rate. For some estimator f̂n, let us denote the quadratic risk by

R = sup
f

Ef

∫

[a,b]

(
f̂n(x) − f (x)

)2
dx,

and by Ak(x) = |fθ0
k

− fθ1
k
(x)|/2 = |

√
V (hn)

∏d
j=1 H(

xj −xnkj

2hn,j
)|/2. Using a Bernoulli distribution for θ and Markov

inequality, we can prove as in Fan [15] that

sup
f

Ef

(
f̂n(x) − f (x)

)2 ≥ max
k∈K

Ak(x)2

2
Eθ

(
Sn,k(θ)

)
,
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where Sn,k(θ) =
∑1

i=0 Pθ i
k
(|f̂n(x) − fθ i

k
(x)| ≥ Ak(x)). Now, given our bound on the chi-square divergence, Theo-

rem 2.2(iii) in Tsybakov [30] shows the existence of a constant sc such that Sn,k(θ) ≥ sc. Thus

R ≥ sc

2

∫

[a,b]
max

k
Ak(x)2 dx = C

∫

[a,b]
max

k

∣∣∣∣∣
√

V (hn)

d∏

j=1

H

(
xj − xnkj

2hn,j

)∣∣∣∣∣

2

dx

= CV (hn)
∑

l∈K

∫

Dl

max
k

d∏

j=1

∣∣∣∣H
(

xj − xnkj

2hn,j

)∣∣∣∣
2

dx ≥ CV (hn)
∑

l∈K

∫

Dl

d∏

j=1

∣∣∣∣H
(

xj − xnlj

2hn,j

)∣∣∣∣
2

dx

with Dl = [a1 + (l1 −1)(b1 −a1)hn,1, a1 + l1(b1 −a1)hn,1]×· · ·×[ad + (ld −1)(bd −ad)hn,d , ad + ld(bd −ad)hn,d ].
But

∫ aj +lj (bj −aj )hn,j

aj +(lj −1)(bj −aj )hn,j

∣∣∣∣H
(

xj − xnlj

2hn,j

)∣∣∣∣
2

dxj = hn,j

∫ bj −aj

0

∣∣H(−xj/2)
∣∣2 dxj .

Thus

R ≥ CV (hn)
∑

l∈K

d∏

j=1

hn,j

∫ bj −aj

0

∣∣H(−xj/2)
∣∣2 dxj ≥ CV (hn)

d∏

j=1

∫ bj −aj

0

∣∣H(−xj/2)
∣∣2 dxj ≥ C′V (hn).

Since V (hn) ≈ ψn, this ends the proof of the lower bound in Case A for the integrated risk.

Case B. Noise with at least one SS component. Here, we can extend the proof of Case B of the pointwise setting more

directly. We take f0 as previously and define

f1(x) = f0(x) + c

d∑

j=1

h
bj −1/2

n,j H

(
xj

hn,j

) ∏

1≤i≤d,i 	=j

H(xi).

Let us follow again the three steps of the proof of Theorem 1 and Theorem 2.2 in Tsybakov [30].

(1) Clearly, with the previous computations, f0 and f1 are densities (for c chosen small enough), and belong to

the Sobolev space S(b,0,0,L).

(2) Let us study the χ2-divergence.

χ2(Pf1
,Pf0

) ≤ c2d

d∑

j=1

h
2bj −1

n,j

∫ (∫
H

(
xj − y

hn,j

)
fε1,j

(y)dy

)2

q−1
j (xj )dxj

∏

j 	=i

∫
(H ∗ fε,i(x))2

qi(x)
dx

= c2d

d∑

j=1

h
2bj −1

n,j

∫ (
H(·/2hn,j ) ∗ fε1,j

)2
(xj )q

−1
j (xj )dxj × O(1),

since replacing hnj by 1 in Eq. (30) implies
∫
(H ∗ fε,i)

2q−1
i = O(1). Thus we get

χ2(Pf1
,Pf0

) �
∑

j∈OS

h
2bj +2βj

n,j +
∑

j∈SS

h
2bj +2βj

n,j exp
(
−21−ρj αjh

−ρj

n,j

)

and with hn,j = n−1/(2βj +2bj +1), for j ∈ OS and hn,j = (2ρj log(n)/αj )
−1/ρj for j ∈ SS, we get an order less than

1/n.



Anisotropic adaptive kernel deconvolution 603

(3) Rate.

‖f0 − f1‖2 =
d∑

j=1

h
2bj −1

n,j

∫
H 2

(
xj

hn,j

)
dxj

∏

i 	=j

∫
H 2(xi)dxi

+ 2
∑

j<k

h
bj −1/2

n,j h
bk−1/2
n,k

∫
· · ·

∫
H

(
xj

hn,j

)
H

(
xk

hn,k

)∏

i 	=j

H(xi)
∏

ℓ	=k

H(xℓ)dx1 · · · dxd

=
d∑

j=1

h
2bj

n,j ‖H‖2
(
‖H‖2

)d−1

+ 2
∑

j<k

h
bj −1/2

n,j h
bk−1/2
n,k

∫
H

(
xj

hn,j

)
H(xj )dxj

∫
H

(
xk

hn,k

)
H(xk)dxk

(
‖H‖2

)d−2

=
d∑

j=1

h
2bj

n,j ‖H‖2d

since

∫
H

(
xj

hn,j

)
H(xj )dxj = 0 for hn,j < 1/2.

Indeed

∫
H

(
xj

hn,j

)
H(xj )dxj = hn,j

2π

∫
H ∗(thn,j )H

∗(t)dt = 0

since H ∗ is supported by [1,2] and H ∗(thn,j ) has support [1/hn,j ,2/hn,j ] ⊂ ]2,+∞) for hn,j < 1/2.

This ends the proof of the lower bound in Case B and thus of Theorem 3.

A.9. Proof of Theorem 4

A.9.1. Proof of Theorem 4

The beginning of the proof is the same as the one of Theorem 2. Let h ∈ H be fixed. The following decomposition

holds:

‖f̌ − f ‖ ≤ ‖f̂
ĥ

− f̂
h,ĥ

‖
︸ ︷︷ ︸

D3

+‖f̂
h,ĥ

− f̂h‖︸ ︷︷ ︸
D4

+‖f̂h − f ‖. (43)

By definition of A(h),

D3 ≤ A(h) +
√

Ṽ (ĥ).

And by definition of A(ĥ),

D4 ≤ A(ĥ) +
√

Ṽ (h).

Therefore

D3 + D4 ≤ A(h) +
√

Ṽ (ĥ) + A(ĥ) +
√

Ṽ (h) ≤ 2
[
A(h) +

√
Ṽ (h)

]
, (44)
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by using the definition of ĥ. To study A(h), we can write

f̂h′ − f̂h,h′ = f̂h′ − fh′ − (f̂h,h′ − fh,h′) + fh′ − fh,h′ .

But

‖fh′ − fh,h′‖ =
∥∥Kh′ ⋆ (f − Kh ⋆ f )

∥∥ ≤
∥∥K∗

h′
∥∥

∞‖f − f ⋆ Kh‖

as ‖u ⋆ v‖ ≤ ‖u∗‖∞‖v‖, for functions u with Fourier transform and v ∈ L2(R
d). As ‖K∗

h′‖∞ = ‖K∗‖∞, we get

‖fh′ − fh,h′‖ ≤
∥∥K∗∥∥

∞‖f − fh‖.

In the same way,

‖f̂h,h′ − fh,h′‖ ≤
∥∥K∗∥∥

∞‖f̂h′ − fh′‖.

Then

‖f̂h′ − f̂h,h′‖ ≤
(
1 +

∥∥K∗∥∥
∞
)
‖f̂h′ − fh′‖ +

∥∥K∗∥∥
∞‖f − fh‖.

We get back to the definition of A(h)

A(h) = sup
h′∈H

[
‖f̂h′ − f̂h,h′‖ −

√
Ṽ
(
h′)]

+

≤
(
1 +

∥∥K∗∥∥
∞
)

sup
h′∈H

[
‖f̂h′ − fh′‖ −

√
Ṽ
(
h′)/

(
1 +

∥∥K∗∥∥
∞
)]

+ +
∥∥K∗∥∥

∞‖f − fh‖. (45)

We can prove the following concentration result:

Proposition 7 (Variance concentration). Under the assumptions of Theorem 4, for all h′ in H,

P
{
‖f̂h′ − fh′‖ ≥

√
Ṽ
(
h′)/

(
1 +

∥∥K∗∥∥
∞
)}

≤ exp

(
−min(η,1)η

46
(logn)2

)
.

This proposition is proved below.

Then, if we define

Ω =
{
∀h′ ∈ H ‖f̂h′ − fh′‖ ≤

√
Ṽ
(
h′)/

(
1 +

∥∥K∗∥∥
∞
)}

,

then P(Ωc) ≤
∑

h′∈H e−κ(logn)2 ≤ Card(H)e−κ(logn)2
with κ = min(η,1)η/46. Now, gathering the terms yields, on

Ω , ∀h ∈ H,

‖f̌ − f ‖ ≤ 2
∥∥K∗∥∥

∞‖f − fh‖ + 2

√
Ṽ (h) + ‖f̂h − f ‖ ≤

(
1 + 2

∥∥K∗∥∥
∞
)
‖f − fh‖ + 2

√
Ṽ (h) + ‖f̂h − fh‖.

But, on Ω , ‖f̂h − fh‖ ≤
√

Ṽ (h)/(1 + ‖K∗‖∞) ≤
√

Ṽ (h). Thus, on Ω ,

‖f̌ − f ‖ ≤
(
1 + 2

∥∥K∗∥∥
∞
)
‖f − fh‖ + 3

√
Ṽ (h)

which ends the proof of Theorem 4.
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A.9.2. Proof of Proposition 7

Let B(0,1) = {t ∈ L
2(Rd) ∩ L

1(Rd),‖t‖ = 1}. We can note that f̂h and fh belong to L
2(Rd) ∩ L

1(Rd), and

‖f̂h − fh‖ = sup
t∈B(0,1)

〈f̂h − fh, t〉 = sup
t∈B̄(0,1)

〈f̂h − fh, t〉,

where B̄(0,1) is a dense countable subset of B(0,1) (thanks to the separability of L
2(R)d , such a set exists).

Now

〈f̂h − fh, t〉 = 1

n

n∑

i=1

[
ψt (Yi) − E

(
ψt (Yi)

)]
=: νn(t),

where

ψt (y) = 1

(2π)d

∫
ei〈u,y〉t∗(−u)

K∗
h(u)

f ∗
ε (u)

du

then νn(t) is an empirical process, such that t �→ νn(t) is continuous.

We can apply Talagrand inequality recalled in Lemma 3. To this aim, we compute H 2, M and v.

First

E

(
sup

t∈B̄(0,1)

ν2
n(t)

)
= E

(
sup

t∈B̄(0,1)

〈f̂h − fh, t〉2
)

≤ E

(
sup

t∈B̄(0,1)

‖f̂h − fh‖2‖t‖2
)

≤ E
(
‖f̂h − fh‖2

)
≤ V (h) ≤ V (h)C(h) =: H 2.

Next,

sup
t∈B̄(0,1)

‖ψt‖∞ = sup
t∈B̄(0,1)

sup
y∈Rd

∣∣∣∣
1

(2π)d

∫
ei〈u,y〉t∗(−u)

K∗
h(u)

f ∗
ε (u)

du

∣∣∣∣

≤ sup
t∈B̄(0,1)

1

(2π)d

(∥∥t∗
∥∥2

∫ ∣∣∣∣
K∗

h(u)

f ∗
ε (u)

∣∣∣∣
2

du

)1/2

≤
√

nV (h) =: M.

Last,

sup
t∈B̄(0,1)

Var
(
ψt (Y1)

)
≤ sup

t∈B̄(0,1)

E

∣∣∣∣
1

(2π)d

∫
ei〈u,Y1〉t∗(u)

K∗
h(u)

f ∗
ε (u)

du

∣∣∣∣
2

≤ sup
t∈B̄(0,1)

1

(2π)2d

∫ ∫
t∗(u)t∗(−v)

K∗
h(u)

f ∗
ε (u)

K∗
h(−v)

f ∗
ε (−v)

f ∗
Y1

(u − v)dudv.

Clearly we can get first supt∈B̄(0,1) Var(ψt (Y1)) ≤ nV (h). But we can also apply Cauchy–Schwarz inequality with

respect to the measure |f ∗
Y1

(u − v)|dudv and we obtain thus

sup
t∈B̄(0,1)

Var
(
ψt (Y1)

)
≤ sup

t∈B̄(0,1)

1

(2π)2d

∫ ∫ ∣∣t∗(u)
∣∣2
∣∣∣∣
K∗

h(u)

f ∗
ε (u)

∣∣∣∣
2∣∣f ∗

Y1
(u − v)

∣∣dudv

≤ 1

(2π)2d
sup
u∈Rd

∣∣∣∣
K∗

h(u)

f ∗
ε (u)

∣∣∣∣
2

sup
t∈B̄(0,1)

∥∥t∗
∥∥2

∫ ∣∣fY1
(z)

∣∣dz

≤ 1

(2π)d

∥∥K∗
h/f ∗

ε

∥∥2

∞.
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Therefore,

v := 1

(2π)d
min

(∥∥K∗
h/f ∗

ε

∥∥2

∞,
∥∥K∗

h/f ∗
ε

∥∥2)
.

Inequality (27) gives

P

(
sup
t∈B̄

∣∣νn(t)
∣∣ ≥ (1 + 2η)H

)
≤ max

(
exp

(
−η2

6

nH 2

v

)
, exp

(
−min(η,1)η

21

√
n

))
.

Now, it is sufficient to use assumption (20) to obtain nH 2/v ≥ (logn)2. Moreover (1 + 2η)H =
√

Ṽ (h)/(1 +
‖K∗‖∞). Then

P

(
sup
t∈B̄

∣∣νn(t)
∣∣ ≥

√
Ṽ (h)/

(
1 +

∥∥K∗∥∥
∞
))

≤ max

(
exp

(
−η2

6
(logn)2

)
, exp

(
−min(η,1)η

21

√
n

))

≤ exp

(
−min(η,1)η

46
(logn)2

)
.

A.10. Proofs of Corollaries 2 and 3

We proceed as in the proof of Corollary 1 and we get

‖K∗
h/f ∗

ε ‖2
2

‖K∗
h/f ∗

ε ‖2∞
≈

d∏

j=1

∫
|K∗

j (tjhj )|2|f ∗
ε,j (tj )|−2 dtj

suptj ∈R |K∗
j (tjhj )|2|f ∗

ε,j (tj )|−2

≈
(

d∏

j=1

1

hj

)
d∏

j=1

∫
|K∗

j (uj )|2|f ∗
ε,j (uj/hj )|−2 duj

supuj ∈R |K∗
j (uj )|2|f ∗

ε,j (uj/hj )|−2
.

To prove Corollary 2, consider case 1. Under (Hε), in the OS case, we get

‖K∗
h/f ∗

ε ‖2
2

‖K∗
h/f ∗

ε ‖2∞
≈

(
d∏

j=1

1

hj

)
d∏

j=1

∫
|K∗

j (uj )|(h2
j + u2

j )
βj duj

supuj ∈R |K∗
j (uj )|2(h2

j + u2
j )

βj

≈
(

d∏

j=1

1

hj

)
d∏

j=1

∫
|K∗

j (uj )|(1 + u2
j )

βj duj

supuj ∈R |K∗
j (uj )|2u

2βj

j

:= C(ε,K)

d∏

j=1

1

hj

,

because 0 < hj < 1 and the assumptions make all terms finite.

The result of Corollary 3 is obvious. Indeed, the choice C(h) = log2(n) ensures that condition (20) is fulfilled and

thus ȟopt ∈ H.

To understand why it cannot be improved, consider case 2 (in the general terminology of Corollary 1), where

Kj = sinc, and use the equivalence Lemma 1. Then we get straightforwardly

max

(
1,

‖K∗
h/f ∗

ε ‖2
2

‖K∗
h/f ∗

ε ‖2∞

)
≈

d∏

j=1

h
−(1−ρj )+
j . (46)

Then we obtain the same order as in case 1 above if the ρj ’s are all zero, thus the same conclusion holds for K taken

as sinc and f ordinary smooth.
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It also follows from (46) that condition (20) in the definition of H is equivalent to

d∏

j=1

h
−(1−ρj )+
j C(h) � log2(n). (47)

In the case of ordinary smooth f ∗
ε , consider the case where the function f is super smooth. Then the condition (47)

can be written
∏

j (1/hj )C(h) � log2(n). This is not necessarily satisfied by the optimal bandwidths which have

logarithmic orders, if we only set C(h) = 1. But as the powers of log(n) involved in ȟopt depend on the regularity of

f , which is unknown, the quantity missing to reach log2(n) is unknown. In the case of super smooth f ∗
ε , it is clear

that if all ρj ’s are larger than one, C(h) = log2(n) is the only possible choice for condition (47) to be fulfilled.

A.11. Proof of Theorem 5

The proof starts like the proof of Theorem 4 but we replace Proposition 7 by a bound in expectation obtained in an

analogous way, but by using Eq. (28) instead of Eq. (27). As all bounds M,v,H have been computed in the proof of

Proposition 7, we easily obtain that

E
(
‖f̂h′ − fh′‖ −

√
Ṽ (h)/

(
1 +

∥∥K∗∥∥
∞
))

+ ≤ C

(√
v

n
e−(η2/6)n(Ṽ (h)/v) +

√
V (h)

n
e−((η∧1)η/21)

√
n

)
.

To obtain the result, we need to prove that, in case 2 of the above terminology and with our new definition of H, we

have

∑

h∈H

√
ve−(η2/6)n(Ṽ (h)/v) < +∞.

Now we use the previous evaluations and in particular (46). We write C(h) =
∑d

j=1 Cj (kj ). The following in-

equalities hold.

∑

h∈H

√
ve−(η2/6)n(Ṽ (h)/v) �

∑

1≤k1,...,kd≤M

(
d∏

j=1

k
βj −(ρj −1)+/2

j e
αj k

ρj
j

)
e
−κ

∑d
j=1 Cj (kj )

∏d
j=1 k

(1−ρj )+
j

�
∑

1≤k1,...,kd≤M

(
d∏

j=1

k
βj −(ρj −1)+/2

j e
αj k

ρj
j

)
e
−κ

∑d
j=1 Cj (kj )k

(1−ρj )+
j

�

d∏

j=1

( ∑

1≤k≤M

kβj −(ρj −1)+/2eαj k
ρj −κCj (k)k

(1−ρj )+
)

:= Σ,

where κ can be specified in function of η2/6 and the constants involved in Lemma 1. This explains why we

choose Cj (k) = 1 if 0 ≤ ρj < 1/2 which corresponds to the case where kρj < k(1−ρj )+ = k1−ρj . We choose

Cj (k) = (2αj/κ)k2ρj −1 if 1/2 ≤ ρj < 1 because then αjk
ρj − κCj (k)k(1−ρj )+ = −αjk

ρj . In the same way, we

take Cj (k) = (2αj/κ)kρj if ρj > 1. Then the sums over k are bounded and Σ < +∞. These values give formula (26)

which is overestimated by the proposal (24) in order to avoid the specification of tedious constants.

Thus, we have

∑

h′∈HM

E
(
‖f̂h′ − fh′‖ −

√
Ṽ (h)/

(
1 +

∥∥K∗∥∥
∞
))

+ ≤ C

(
Σ√
n

+ Card(HM)e−((η∧1)η/21)
√

n

)
≤ C′

√
n

since Card(HM ) ≤ nd .
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Therefore, it follows from (45) that, as ‖K∗‖∞ = 1 for K = sinc, then

E
(
A(h)

)
≤ 2C′

√
n

+ 2‖f − fh‖

and inserting this in (43) and (44) yields

E
(
‖f̌ − f ‖

)
≤ 3‖f − fh‖ + 3

√
Ṽ (h) + 2C′

√
n

,

which is (25). This ends the proof of Theorem 5.

A.12. Proof of Proposition 5

First, note that Neumann’s Lemma 2.1 (see Neumann [26], and in particular the proof of the Lemma 2.1, p. 323) can

be straightforwardly extended to the multivariate setting. Define

R(t) = 1

f̃ ∗
ε (t)

− 1

f ∗
ε (t)

.

The result can be written

E
(∣∣R(t)

∣∣2) ≤ C

(
1

|f ∗
ε (t)|2 ∧ N−1

|f ∗
ε (t)|4

)
.

Then the following decomposition holds:

‖fh − f̄h‖ = 1

(2π)d/2

∥∥∥∥K
∗
h

[
f̂ ∗

Y − f ∗
Y

f ∗
ε

+
(
f̂ ∗

Y − f ∗
Y

)
R + f ∗

Y R

]∥∥∥∥

and thus

E
(
‖fh − f̄h‖2

)
�

∫ ∣∣K∗
h(t)

∣∣2 E[|fY (t) − f̂ ∗
Y (t)|2]

|f ∗
ε (t)|2 dt +

∫ ∣∣K∗
h(t)

∣∣2E
[∣∣fY (t) − f̂ ∗

Y (t)
∣∣2]E

(∣∣R(t)
∣∣2)dt

+
∫ ∣∣K∗

h(t)
∣∣2∣∣f ∗

Y (t)
∣∣2E

[∣∣R(t)
∣∣2]dt

�
1

n

∥∥∥∥
K∗

h

f ∗
ε

∥∥∥∥
2

+ 1

n

∥∥∥∥
K∗

h

f ∗
ε

∥∥∥∥
2

+ N−1

∥∥∥∥
K∗

hf ∗

f ∗
ε

∥∥∥∥
2

,

where the second term is obtained by bounding R(t) by 1/|f ∗
ε (t)|2 and the last one uses the second bound of R(t)

and the fact that f ∗
Y = f ∗f ∗

ε . The first two terms are V (h) and the last one is W(h). Thus, we obtain E(‖fh − f̄h‖2) �

V (h) + W(h).
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