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Mean Shift today, is widely used for mode detection and clustering. The

technique though, is challenged in practice due to assumptions of isotrop-

icity and homoscedasticity. Isotropic/scalar bandwidths tend to smooth

anisotropic patterns and affect partition boundaries, while homoscedastic

/ global bandwidths are inappropriate when clusters (or modes) at differ-

ent scales need to be identified.

We present an adaptive Mean Shift methodology that allows for anisotropic

clustering, through unsupervised local bandwidth selection. The band-

width matrices evolve naturally, adapting locally through agglomeration,

and in turn guiding further agglomeration. The online methodology is

practical for low-dimensional feature spaces, preserving better detail and

clustering salience. Additionally, conventional Mean Shift either criti-

cally depends on a per instance choice of bandwidth, or relies on offline

methods which are inflexible and/or again data instance specific. The pre-

sented approach, due to its adaptive design, also alleviates this issue -

with a default form performing generally well. The methodology though,

allows for effective tuning of results.

In the proposed approach, clusters arise on the fly, as a consequence of ag-

glomeration of extant clusters. Local bandwidths which evolve anisotrop-

ically every iteration, are associated with each cluster; by design, all mem-

bers of a cluster converge to the same local mode. By evolving as func-

tion of a cluster’s aggregated trajectory points, these bandwidths are able

to adapt to the underlying mode structure (shape, scale, orientation) - and

in turn, guide future cluster trajectory and agglomeration. This results

in robust mode detection and with increased partition saliency (Figs. 1,

2(a)). The supplementary presents a convergence proof when anisotropic

bandwidths vary between Mean shift iterations, as is the case here.

Figure 1: Single domain clustering examples over color data (top row with segment and label images are shown

in middle, 11 clusters), and simulated gaussian mixtures (second row) in 2D & 3D respectively. 1−sigma final

trajectory set bandwidths have been overlaid at converged mode positions. Post processing was disabled.

The approach involves running Mean Shift fixed point iterations at cluster

levels, over a single data point per cluster. Starting out as trivial clusters

(solitary data points), the clusters agglomerate between iterations. By al-

gorithm design, clusters are merged only when they are tending towards

the same mode. All member points of a cluster, u, which will eventually

converge to a common local mode, share a common bandwidth, Σu - re-

ferred to as the local bandwidth. This bandwidth evolves every iteration,

adapting to the structure of the local mode and to an extent, its basin.

The standard MS fixed point iteration, is reformulated through local band-
width based decomposition, as a fixed point update over clusters :

uτ+1 = f (uτ ), whereuτ=0 ≡ xu,u (1a)
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For ascertaining cluster merges, the data points in the vicinity of a cluster

u’s trajectory, uτ , are considered. If a data point, y, in vicinity of uτ , is

ascertained to be heading to the same mode as uτ , then by transitivity -

all the members of its parent cluster, Π(y), are heading to that mode too -

the clusters u and Π(y), can then be merged. The cluster which is higher

up the mode (higher density) assimilates the other cluster into itself, thus

accelerating convergence. This also helps in avoiding spurious merges.

The bandwidth, Σu, of a cluster, u, is updated every iteration utlizing Tu -
the set of trajectory points arising from its constituent members.
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ρ(v) is the data density in the immediate vicinity of a point v ∈ Tu. ηu

and Σu are then the expectation, and variance of the localized distribution.

Eq. 2 results in conservative but more localized and robust bandwidth

estimates – more immune to long tails.

So starting with an initial base scalar, σbase, the bandwidth matrices evolve

by themselves. The nice part is that just a low base value suffices for rea-

sonably dense data, with the bandwidths scaling data driven thereon and

adapting to the local structure’s scale, shape and orientation. σbase thus

becomes indicative of the minimum desired detail in the data space. This

is opposed to traditional Mean Shift - where the bandwidth scalar is in-

dicative of the scale at which data space has to be partitioned.

As Figs. 1, 2(a) indicate, reasonable local bandwidths arise, robustly

identifying modes and salient clusters, by adapting according to local

structure.
(a) Clustering (23 clusters) over color data (left) by the proposed approach. Segment image is shown on right.

(b) Comparitive results with standard MS (left) and variable-bandwidth isotropic MS, (VarMS, right), at sim-

ilar clustering levels, 25 & 27 respectively, are shown. MS with correctly chosen bandwidth detected more

coherent modes than VarMS, but looses partition saliency (bushes, water, sky in background). VarMS better

adapts to scales but oversegments at places, and smooths over others (face). Both smoothed over details, failed

to detect some modes at lower scales (trouser edges, maroon on shirt & shoes).

Figure 2: Exemplar illustrative result of our approach, AAAMS (a), is shown along with conventional MS re-

sults (b), at comparable clustering levels. As is indicated by the plots and segment images, AAAMS effectively

adapts to local scale and preserves anisotropic details. This results in more salient yet parsimonius partitions.
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Figure 3: Example AAAMS results are shown, along with comparisons with standard joint domain Mean

Shift (JMS). A single parameter set was used for AAAMS to show its adaptivity on varied images. At similar

clustering levels, AAAMS preserved more details and affected more salient segmentations.

Promising qualitative and quantitative results were attained over image

and point datasets - indicating the efficacy of the presented approach.

Future work would focus on experimenting with different merging schemes,

and on more varied data spaces.


