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Abstract 

 

Magnetic properties and the magnetocaloric effect (MCE) have been investigated in               

La0.7Ca0.3MnO3 single crystal with applied field along both the ab-plane and the c-direction. 

Due to the magnetocrystalline anisotropy, the crystal exhibits anisotropy in the MCE. Upon 

application of a 5 T field, the magnetic entropy changes (ΔSM), reaching values of           

7.668 J/kg K and 6.412 J/kgK for both the ab-plane and the c-direction, respectively. A 

magnetic entropy change of 3.3 J/kgK was achieved for a magnetic field change of 1.5 T at 

the Curie temperature, TC = 245 K. Due to the absence of grains in the single crystal, the ΔSM 

distribution here is much more uniform than for gadolinium (Gd) and other polycrystalline 

manganites, which is desirable for an Ericsson-cycle magnetic refrigerator. For a field change 

of 5 T, the relative cooling power, RCP, reached 358.17 J/kg, while the maximum adiabatic 

temperature change of 5.33 K and a magnetoresistance (MR) ratio of 507.88% at TC were 

observed. We analysed the magnetization of La0.7Ca0.3MnO3 single crystal at TC and 

estimated several parameters of spin fluctuation on the basis of a self-consistent 

renormalization theory of spin fluctuations, with reciprocal susceptibility above TC. We found 

that the magnetic property of La0.7Ca0.3MnO3 is weakly itinerant ferromagnetic. A large 

reversible MCE and no hysteresis loss with a considerable value of refrigerant capacity 

indicate that La0.7Ca0.3MnO3 single crystal is a potential candidate as a magnetic refrigerant. 
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1. Introduction 

 

The magnetocaloric effect (MCE) is a basic characteristic of magnetic materials and is 

understood as an isothermal magnetic entropy change or an adiabatic temperature change of a 

magnetic material upon the application of a magnetic field. It has been shown that the heating 

and cooling in the magnetic refrigeration process are proportional to the size of the magnetic 

moments and to the applied magnetic field. That is why research on magnetic refrigeration 

has been exclusively conducted on heavy rare-earth elements and their compounds [1, 2]. 

Among the rare-earth metals, gadolinium was found to show the highest MCE [2].  

Nonetheless, the cost of gadolinium as a magnetic refrigerant is quite expensive (~$4000/kg), 

and this actually limits the usage of it as an active magnetic refrigerant (AMR) in magnetic 

refrigerators. Since the discovery of the giant MCE phenomenon, a giant MCE has been 

found in a large variety of magnetic materials, including Gd5(Si1-xGex)4, MnAs1-xSbx, 

MnFe(P1-xAsx), La(Fe13-xSix), and RM2 (where R = rare earth, M = Al, Co, Ni) [3-8]. Further 

efforts to discover new materials, especially materials without rare-earth elements and 

exhibiting large MCE in response to low applied field, are of significant importance. Among 

them, perovskite-type manganese oxide materials [9-13] having large MCEs are believed to 

be good candidates for magnetic refrigeration at various temperatures. 

In view of the AMR requirements, note that besides the requirement that an AMR material 

should have a large magnetic entropy change (ΔSM) induced by a low magnetic field change, 

the ΔSM distribution also plays an important role in achieving magnetic cooling efficiency 

[14, 5]. Unfortunately, a non-uniform ΔSM distribution, which is not beneficial for an 

Ericsson-cycle magnetic refrigerator, has been found for several AMR materials, such as 

gadolinium [1] and polycrystalline perovskite manganites, due to structural inhomogeneity 

[11, 12].  

There are two key requirements for a magnetic material to possess a large MCE. One is a 

large enough spontaneous magnetization, which is characteristic of a class of heavy rare-earth 

metals. The second is that it exhibit sharp drop in magnetization, which is associated with the 

ferromagnetic-paramagnetic transition at the Curie temperature, as was found in perovskite 

manganites. The magnetic properties of manganites, the Curie temperature, and the saturation 

magnetization are strongly doping-dependent. So, these materials may be good candidates for 

MR at various temperatures. Manganite magnetocaloric materials can be promising 
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candidates for active magnetic regenerative (AMR) refrigeration, because they show large 

MCEs that are comparable to those of Gd and other magnetic refrigerant candidate materials.  

It is interesting to note that, when compared with Gd and other candidate materials, 

La0.7Ca0.3MnO3 single crystal perovskite manganite is more convenient to prepare and exhibit 

higher chemical stability, as well as the higher resistivity that is favorable for lowering eddy 

current heating. In addition, the manganites possess much smaller thermal and field hysteresis 

than any rare earth and 3d-transition metal based alloy. In addition, this material is the 

cheapest among the existing magnetic refrigerants. These superior features may make it more 

promising for future MR technology.  

In this context, study of the MCE in lanthanum manganite single crystals can be of great 

interest, because the absence of grains in these materials would be expected to allow a 

uniform ΔSM distribution, which is desirable for an Ericsson-cycle magnetic refrigerator. 

Here, we report on the excellent magnetocaloric properties of La0.7Ca0.3MnO3 single crystal, 

with which the requirements for an AMR material can be fulfilled. 

Moriya and his co-workers self-consistently fed back the effects of spin fluctuations to the 

magnetic susceptibility, and succeeded in theoretically reproducing the Curie-Weiss 

behaviour of ferromagnetic materials originated in the linear growing of spin fluctuations, 

e.g., square of local spin density S2
L, with T. This self-consistent renormalization (SCR) 

theory of spin fluctuations succeeded in clarifying the nature of nearly and weakly itinerant 

ferromagnetic metals. Furthermore, Takahashi, one of Moriya’s co-workers, developed the 

SCR theory by assuming that the sum of zero-point and thermal spin fluctuations is 

conserved against temperature [15-18]. We estimated the spin fluctuation parameters by 

adopting Takahashi’s developed spin-fluctuation theory and calculated 1/χ. We show that the 

magnetic property of La0.7Ca0.3MnO3 is weakly itinerant ferromagnetic (WIF). 
 

2. Experimental Details 

 

A high-quality single crystal of La0.7Ca0.3MnO3 was prepared by the floating zone method, 

using an infrared radiation convergence-type image furnace that consists of four mirrors and 

a halogen lamp. The starting ceramic rods were synthesized by the standard methods of solid-

state reaction of a stoichiometric mixture of La2O3, CaCO3, and MnO2. X-ray diffraction data 

and electron-probe microanalysis confirmed the quality of the crystal. The magnetic 

measurements were performed using a physical properties measurement system 14 T (PPMS-

14T) magnetometer. 
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3. Results and Discussion 

 

The phase composition and crystal structure of the sample was characterized by X-ray 

diffraction (XRD), and high purity and perovskite structure were confirmed. The XRD pattern 

of the sample is shown in Fig. 1. A single-phase diffraction pattern was obtained, yielding an 

orthorhombic structure with the P n m a space group. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  XRD pattern of the La0.7Ca0.3MnO3 single crystal. 

 

Fig. 2 shows the temperature dependence of the magnetization (M-T curves) in a 1.59×104 

A/m field with the direction of the magnetic field along both the ab-plane and the c-direction 

of the La0.7Ca0.3MnO3 single crystal. The Curie temperature (TC), defined by the maximum in 

the absolute value of dM/dT, has been determined from the M-T curve to be about 245 K. 

The magnetization in the ab-plane is much bigger than that in the c-direction, suggesting that 

the magnetic easy axis lies in the ab-plane of the crystal. A steep change in the magnetization 

occurs at TC, implying a first-order transition, leading to expectations that the material will 

show a large MCE near the Curie temperature. 
 

In order to confirm this, the isothermal magnetization of the sample was measured in the 

range of 0-5 T for a range of temperatures around TC. To ensure the readability of the figure, 

only some of isothermals are presented in Fig. 3. It can be seen from Fig. 3 that there is a 

drastic change in the magnetization around TC, indicating a large magnetic entropy change. 
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In order to evaluate the MCE of the present material, we calculated the changes in the 

magnetic entropy ΔSM caused by the application of external magnetic fields from the 

isothermal curves of magnetization versus applied field.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Temperature dependence of magnetization along the ab-plane and the c-direction of           

La0.7Ca0.3MnO3 single crystal. Inset: hysteresis curve of the sample at 265 K. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Magnetic field dependence of magnetization measured at various temperatures around 

TC for La0.7Ca0.3MnO3 single crystal along (a) the ab-plane and (b) the c-direction. 
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Fig. 4 shows the magnetic entropy change as a function of temperature in different magnetic 

fields ranging from 0 to 5 T for (a) the ab-plane and (b) the c-direction. The maximum value 

of ΔSM, corresponding to external field changes of 1.5 T and 5 T for both the ab-plane and 

the c-direction reaches about 3.33 and 2.364 J/kg K, and 7.668 and 6.412 J/kg K, 

respectively. These values are higher than the result found by Phan et. al. [19] and Tian et. al. 

[20] for the same single crystal La0.7Ca0.3MnO3. We have compared the peak values of ΔSM 

between the ab-plane and c-direction as a function of magnetic field. In the whole field range 

from 0 to 5 T, ΔSM in the ab-plane is larger than along the c-direction. The maximum 

differences at 1.5 T and 5 T are about 1 and 1.37 J/kg K, respectively. The large anisotropic 

magnetic entropy change in La0.7Ca0.3MnO3 single crystal is ascribed to the strong 

magnetocrystalline anisotropy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Magnetic entropy change ΔSM as a function of temperature for the magnetic field 

along (a) the ab-plane and (b) the c-direction of the La0.7Ca0.3MnO3 single crystal. 

 

Another interesting result is that the magnitude of the large low-field magnetic entropy 

change along the ab- plane of the single crystal is 3.3 J/kg K for a magnetic field change of 

1.5 T. This value of ΔSM is of the same magnitude as that of Gd [2] and also is larger than for 

many cubic perovskite manganites [21, 22]. This low-field MCE is beneficial for the practical 
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application of MCE because the low field can be directly supplied by Nd2Fe14B or other 

permanent magnets. This low-field large magnetic entropy change in the La0.7Ca0.3MnO3 

single crystal is due to the rapid change in the magnetization near the Curie temperature in 

the easy magnetizing plane. 

 The symmetrical and uniform distribution of ΔSM is observed for single crystal, even in high 

fields, and is much more uniform than for gadolinium and polycrystalline manganites        

[12, 23-26]. This is ascribed to the absence of grains in such a single-crystalline material, 

where there was a symmetric and uniform distribution of the temperature dependence of 

magnetoresistance [27, 28]. In contrast to the single crystalline manganite, considerable and 

asymmetrical variations in the ΔSM curves with external magnetic field, particularly under 

high magnetic fields, for the polycrystalline manganites were observed and are likely due to 

the grain boundary effects [27-29]. The nonuniform distribution of ΔSM in polycrystalline 

perovskite manganites is also believe to be attributable to a spread of the ferromagnetic 

clusters caused by the inhomogeneity of structure and stoichiometry [24, 25]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Arrott plots of the La0.7Ca0.3MnO3 single crystal with the direction of the magnetic 

field along (a) the ab-plane and (b) the c-direction. 
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A first-order magnetic transition is of particular importance for giant MCE. The first order 

nature of the phase transition of the single crystal can be confirmed by the Banerjee criterion 

[30]. According to the Banerjee criterion, a negative slope in a relatively small M2 region 

above TC indicates that the magnetic phase transition is first order, as is shown in Fig. 5. The 

curves have negative slopes or inflection points above TC, also indicating a metamagnetic 

transition from a paramagnetic to a ferromagnetic state [31]. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Temperature dependence of Landau coefficients for La0.7Ca0.3MnO3 single crystal 

along (left) the ab-plane and (right) the c-direction. The units of c1(T), c3(T), and c5(T) are T2 

m/A, T4 m3/A3, and T6 m5/A5, respectively.  

 

To gain more insight into the magnetic transition, the Landau coefficients c1(TC), c3(TC), and 

c5(TC) were determined by fitting the magnetic field against magnetization using the equation 

[32]          

μoH = c1(T)M + c3(T)M3 + c5(T)M5     (1) 
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where H is the magnetic field strength and unit is A/m. This magnetic field strength can be 

expressed by the equation B = μoH, where B is the magnetic field and μo is the magnetic 

permeability of the space. The details of the fitting method have been reported elsewhere 

[33]. The temperature dependence of the Landau coefficients derived from these fitting 

results is shown in Fig. 6. The value of c3(TC) at TC is negative for both field directions, again 

confirming that the magnetic phase transition is  first-order.  

In Fig. 5, M2 does not show a linear relation, but does have a convex curvature against B/M 

for every temperature. The convex curvature of M2 against B/M reminds us of the typical 

weakly itinerant ferromagnet (WIF) property of the magnetization which is found in MnSi 

[34]. To the best of our knowledge, the convex curvature of M2 against B/M has been 

reproduced only by Takahashi’s developed spin-fluctuation theory so far [18]. In this theory, 

it is assumed that the sum of the zero point and thermal spin fluctuations is conserved against 

T, and as a consequence of this assumption, he argued the importance of the sixth coefficient 

of the free energy when the system has a relatively large η [= (TC/T0 )
1/3] value. Here, T0 

characterizes the energy width of the dynamical spin-fluctuation spectrum. In such a case, the 

magnetization obeys the following relation at TC because the fourth coefficient becomes zero 

[35]: 

H* = [TA/3(2+√5) TC]2p5      (2) 

where H* = B/2μB and p are the magnetic field strength and the magnetization in μB unit 

respectively. The parameter TA characterizes the dispersion of the static magnetic 

susceptibility in wave vector (q) space. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. M4 versus B/M for La0.7Ca0.3MnO3 single crystal along the ab-plane at various 

temperatures. Around TC, M4 is almost linear against B/M. 
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We plotted the isothermal magnetization curves in the form of M4 vs. B/M, as shown in     

Fig. 7. Here, M4 is almost linear against B/M around TC ≈ 245 K. Strictly speaking, M4 is not 

completely linear with respect to B/M around TC, as seen in Figs. 7 and 8(b). However, most 

itinerant ferromagnets show concave behaviour when plotted in the form of M4 vs. B/M [36]. 

Furthermore, M4 of the typical itinerant ferromagnetic compound MnSi is also not exactly 

linear with respect to B/M [34]. According to Takahashi’s theory, in the case of the 

coefficient of M4 in the Landau expansion of free energy being zero, M4 becomes linear 

against B/M. Thus, complete linearity is only obtained in a delicate condition. 

La0.7Ca0.3MnO3 is not just on this condition, but seems to be very near it, as well as having a 

quantum critical point due to spin fluctuations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Linear fitting for (a) M2 versus B/M and (b) M4 versus B/M for La0.7Ca0.3MnO3 single 

crystal along the ab-plane at T = 245 K. Straight lines are the results of linear fitting to the 

data. 
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We show the results of linear fitting to M2 and M4 plotted against B/M at TC ≈ 245 K in     

Fig. 8. This figure clearly shows that at TC ≈ 245 K, the M4 curve shows higher linearity 

against B/M than the M2 curve against B/M. Equation (2) can be transformed to the relation 

of M4 vs. B/M as [35] 

M4 = 1.17×1019(T2
C/ T3

A)(B/M)     (3) 

where M and B are in units of A/m and T, respectively. By putting the value of the slope at 

TC ≈ 245 K into Eq. (3), we obtained TA as 2.5 × 106 K.  

According to the SCR theory for WIF materials [15-17], TC is related to Ps, TA, and T0 by the 

following relation [35]: 

TC = (60c)-3/4 Ps
3/2 TA

3/4 T0
1/4      (4) 

where c and Ps are constants equals to 0.335 and 2.67. By putting the value of TA determined 

by Takahashi’s theory into Eq. (4), we obtained T0 as 6 × 10-4 K. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. MS(T) and 1/χ(T) of La0.7Ca0.3MnO3 single crystal along the ab-plane estimated from 

the Arrott plot (a). Inset: MS
2 and 1/χ plotted against T4/3. Adiabatic temperature change ΔTad 
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as a function of temperature under field change of 1.5 and 5 T, respectively (b). Inset: 

Magnetoresistance plotted against temperature. 

We estimated the saturation magnetization, MS(T), below TC and the reciprocal magnetic 

susceptibility, 1/χ (= limH → B/M) above TC from Figs. 5(a) and 7, respectively. The MS and 

1/χ are estimated as the values of the intersections of natural extrapolations of the M2 (M4) 

curves with the vertical and horizontal axes, respectively. The values estimated from the M2 

and the M4 curves were almost the same, so we only show the values estimated from the M2 

curves. The obtained MS and 1/χ are shown in Fig. 9(a). We also show the MS
2 and 1/χ vs. 

T4/3 plots in the inset of Fig. 9(a), since the MS
2 and 1/χ of WIFs are predicted to show non-

Fermi-liquid behaviour and to obey a T4/3 relation according to the SCR theory of spin 

fluctuations. MS
2 and 1/χ show linear relations against T4/3 over a relatively wide temperature 

range, in good agreement with the SCR theory around TC. 

 

In order to further make sure of the great potential of the present La0.7Ca0.3MnO3 single 

crystal along the ab-plane as a candidate for magnetic refrigerant, we have measured the 

adiabatic temperature change, ΔTad, by the equation ΔTad (T, ΔB) =  - 
),( BTc

T

p

 ΔSM (T, ΔB) 

for magnetic field change up to 5 T. Fig. 9(b) displays the temperature-dependence of ΔTad. 

The estimated ΔTad value is 5.53 K for a field change from 0 to 5 T. This value is about 70% 

of that of Gd and higher than for many manganese oxides [22]. Large magnetoresistance 

(MR) is the phenomenon where resistance of a material drops drastically on application of 

magnetic field. It has tremendous applications in recording information on hard disks, 

magnetic sensors, and spin-electronic devices [37, 38].  The MR ratio, defined as MR = (ρ(0)/ 

ρ(H) – 1), exhibits a maximum value of 507.88 % at TC under a magnetic field of 5 T, as 

shown in the inset to Fig. 9(b). 

The value of the refrigerant capacity (RC) of La0.7Ca0.3MnO3 single crystal along the ab-plane 

is calculated by numerically integrating the area under the corresponding ∆S−T curve, with 

the temperature difference for the full width at half maximum (FWHM) of the peak, δTFWHM, 

used for the integration limits, as shown in Fig. 10 [39]. The maximum value of RC is found 

to be 358.17 J/kg under a magnetic field change from 0 to 5 T. For the RC value, however, it 

is necessary to take into account the hysteresis loss. We have also noted a very small (almost 

negligible) hysteresis loop exhibited by the M (H) curve (inset to Fig. 2). Small magnetic 

losses are beneficial to the magnetic cooling efficiency. Large hysteretic losses reduce the 

magnetic refrigeration effect by about 23% in Gd5Ge2Si2 [40, 41], in which the magnetic 
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loops exceed those of perovskite like magnetic refrigerants by a factor of about 40. The large 

magnetic loops in Gd5Ge2Si2 are caused by a first order structural phase transition, induced 

by magnetic field. The structural transition shows large hysteresis with field, which, in turn, 

causes the high magnetic loop and large hysteretic losses. Magnetization-demagnetization 

processes in La0.7Ca0.3MnO3 single crystal lanthanum manganites are not accompanied by 

any structural transition, and because of this, the hysteresis loops are very small. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Relative cooling power values (RCP) versus applied magnetic field for                      

La0.7Ca0.3MnO3 single crystal along the ab-plane and the c-direction. 

 

In our case, the hysteresis loss is almost negligible, so the effective refrigerant capacity 

(RCeff) is the same as the RC. For our sample, the value of RCeff at 358.17 K is comparable to 

that of Gd5Ge1.9Si2Fe0.1 (about 355 J/kg) [41]. This value is also much larger than those of 

some other magnetocaloric materials for a field change of 0–5 T, such as Gd5Si2Ge2 (about 

240 J/kg) [41], Ni50Mn34In16 (about 181 J/kg) [42], LaFe11.0Co0.9Si1.1 (about 275 J/kg) [43], 

and LaFe11.2Co0.7Si1.1C0.1 (about 320 J/kg) [44]. Our study shows that the large values of RCeff 

and the lack of magnetic hysteresis in La0.7Ca0.3MnO3 single crystal favours practical 

application of the material near room temperature. This relatively high RC arises from the 

strongly asymmetric distribution of |∆SM| and the large δTFWHM. In addition, the composition 

inhomogeneity and/or non-stoichiometry of the phase may also contribute to the large 

δTFWHM.  
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4. Conclusions 

We have studied the MCE in La0.7Ca0.3MnO3 single crystal. Due to the strong 

magnetocrystalline anisotropy, the crystal shows anisotropic magnetic entropy change. The 

uniformity of the ΔSM distribution and the lack of any hysteresis loss are desirable for an 

Ericsson-cycle magnetic refrigerator and for high magnetic cooling efficiency. The nature of 

the magnetic transition is confirmed by the Landau coefficients. By adopting Takahashi’s 

spin-fluctuation theory, we estimated the spin fluctuation parameters and calculated 1/χ. The 

convex curvature of M2 against B/M in the form of an Arrott plot indicates that 

La0.7Ca0.3MnO3 is WIF, and the characteristics of its spin fluctuations can be understood 

within three-dimensional SCR and Takahashi’s spin-fluctuation theories, at least around TC.  
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