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Abstract. In this paper, we introduce a novel definition of the anisotropic centroidal Voronoi
tessellation (ACVT) corresponding to a given Riemann metric tensor. A directional distance function
is used in the definition to simplify the computation. We provide algorithms to approximate the
ACVT using the Lloyd iteration and the construction of anisotropic Delaunay triangulation under the
given Riemannian metric. The ACVT is applied to the optimization of two-dimensional anisotropic
Delaunay triangulation, to the generation of surface CVT, and high-quality triangular mesh on
general surfaces. Various numerical examples demonstrating the effectiveness of the proposed method
are presented.
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1. Introduction. Anisotropic triangulations, in particular anisotropic Delaunay
triangulations, have attracted the attention of many researchers (see [6, 9, 10, 11, 22,
25, 28, 29, 31, 34] and the references cited therein) due to their various applications
ranging from volume and surface mesh generation to surface representation and image
morphing. For best-performing triangulations, from the approximation theory point
of view, it is well known that the aspect ratios and orientations of the triangles or
tetrahedra should depend on the problems whose solutions are to be approximated.
For problems such as the boundary layer in fluid flow, the solutions often display
anisotropic behavior and are best resolved with anisotropic meshes.

The quality of an anisotropic triangulation, the same as in the isotropic case
[1, 19], is closely related to the distribution of the vertices. In [12], a methodology for
optimal points placement in regions, i.e., volumes, in Rd has been developed, based on
the notion of centroidal Voronoi tessellations (CVTs). A CVT is a Voronoi tessella-
tion whose generating points are the centroids (centers of mass) of the corresponding
Voronoi regions associated with a given density. CVTs enjoy an optimization char-
acteristic so that they themselves turn out to be useful in many applications such
as image and data analysis, vector quantization, resource optimizations, statistics,
and meshless computing; see, e.g., [12, 14, 15]. The concept of CVT has also been
successfully applied to high-quality mesh generation and optimization [13, 17, 18, 19]
and to the numerical solution of partial differential equations.

The basic definition of the CVT can be generalized to very broad settings rang-
ing from abstract spaces to discrete point sets [12]. The purpose of this paper is to
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introduce a new and consistent definition for anisotropic centroidal Voronoi tessella-
tions in the Euclidean space but related to a given Riemannian metric tensor which
possesses anisotropy and to develop computational algorithms for their efficient con-
struction. By introducing a directional distance definition for any two points as a
significant simplification of the classical Riemannian distance measure, the notion of
anisotropic Voronoi region (AVR), anisotropic Voronoi tessellation (AVT), and the
corresponding anisotropic Delaunay triangulation (ADT) can be suitably defined.
Their definitions are different from the standard ones in [12], and they also differ
from other popular definitions used in the literature [25, 28]. As our definition leads
to a straightforward definition of the mass centroids, it thus provides a consistent
definition of the anisotropic centroidal Voronoi tessellations (ACVTs), which is the
main concept to be discussed in this paper. The ACVTs enjoy useful optimization
properties that are naturally tied to the basic function approximation theory, and
they reduce to the standard CVTs for isotropic Riemannian tensors. When applied
to surface tessellation and triangulation, our definition is also different from the notion
of constrained CVTs discussed in [14], where the distance remains to be measured in
the Euclidean metric and only the definition of the mass centroids reflects the surface
geometry.

Even with the simplified notion of directional distances, the direct construction
of AVT is still computationally challenging due to the generality and the complexity
of the Riemannian metric. We employ the method of unit meshing proposed in [6, 22]
to give an approximate construction of the ADT and subsequently the AVT. A key
observation based on our computational experience is that the AVTs can often be
well approximated by their visibility regions. Finally, to compute the ACVT, we
extend the classical Lloyd method which iterates between the computation of the
AVT with given generators and the computation of mass centroids with a given AVT.
Our proposed algorithm is shown to be very effective for various examples.

A direct application of ACVT is the two-dimensional ADT via the optimal aniso-
tropic centroidal Voronoi–Delaunay triangulation (ACVDT). Under the Riemannian
metric, the density function of ACVT is defined to be unit, which means that, asymp-
totically speaking, the dual triangulation ACVDT of the final converged ACVT has
approximately unit-length edges, and, accordingly, the triangulation is an almost reg-
ular anisotropic triangulation under the Riemannian metric. This is similar to our
previous work in isotropic meshing [19]. Numerous anisotropic examples vindicate
the above assertion. Another direct application of the ACVT constructed through
the Lloyd iteration is the surface tessellation and triangulation, similar to the work
in [14]. Various ACVTs and the resulting high-quality Delaunay meshes on general
surfaces demonstrate the effectiveness of the proposed method. In this regard, this
paper serves as a companion work of [14].

The remainder of the paper is organized as follows. First, in section 2, we review
the basic notion of the CVT and introduce our definition of ACVT. Then, in section 3,
we describe the algorithm for computing the ADT under general Riemannian metric
tensor. In section 4, we address the main point of the paper: the generation of
ACVT. We also give some ACVT examples. In section 5, we discuss the applications
of ACVT: optimization for two-dimensional ADT and high-quality surface meshing.
Some concluding remarks are given in section 6.

2. CVT and ACVT. For detailed discussions on CVT, we refer the reader to
[12]. For comparison purposes, some basic CVT terminologies in the Euclidean metric
are briefly reviewed here.



ANISOTROPIC CENTROIDAL VORONOI TESSELLATIONS 739

2.1. CVT in Euclidean metric. Let | · | denote the Euclidean norm in Rd.
Given a bounded open set Ω ⊂ Rd and a set of points {Zi}ni=1 belonging to Ω̄, let

Vi = {x ∈ Ω | |x− zi| < |x− zj | for j = 1, . . . , n, j �= i}, i = 1, . . . , n.

Clearly, we have Vi ∩ Vj = ∅ for i �= j and
⋃n

i=1 V̄i = Ω̄. The set {Vi}ni=1 is referred
to as a Voronoi tessellation (VT) or a Voronoi diagram of Ω, the members of the set
{zi}ni=1 are referred to as generating points or generators, and each Vi is referred to
as the Voronoi region or Voronoi cell corresponding to zi. The VTs are very useful in
many applications [12].

Given a density function ρ = ρ(x) defined on Ω̄ and positive and continuous
almost everywhere, for each Voronoi region Vi, we define its mass centroid z∗i by

z∗i =

∫
Vi

xρ(x)dx
∫
Vi

ρ(x)dx
for i = 1, . . . , n.

We call the tessellation defined as above a CVT if and only if

Zi = z∗i for i = 1, . . . , n;

i.e., the points Zi’s which serve as the generators associated with the Voronoi region
Vi’s are the mass centroids of those regions. The existence of CVTs for a given set
has been proved, but note that, in general, they are not uniquely defined [12]. The
dual Delaunay triangulation of CVT is referred to as the centroidal Voronoi Delaunay
triangulation (CVDT) [13, 19].

For any tessellation {Vi}n1 of the domain Ω and a set of points {zi}n1 in Ω, we can
define the following cost (or error or energy) functional:

F ({Vi}ni=1, {zi}ni=1) =

n∑

i=1

∫

Vi

ρ(x)||x− zi||2dx.(2.1)

The standard CVTs along with their generators are critical points of this cost func-
tional. In practice, the positions of the generators may be limited by various con-
straints, for instance to be confined to surfaces. Hence, the notion of constrained
CVT (CCVT) and its dual triangulation (CCVDT) have been introduced in [13, 14].
Simply, the CCVT is defined as the minimum of F under some specified constraints.

The CVT provides, in some sense, an optimal distribution of generating points
for meshing purposes. We have applied this tool to both two-dimensional and three-
dimensional optimal Delaunay mesh generation and optimization [13, 19]. Indeed, we
have shown that the construction of CVDT generalizes many existing local smooth-
ing techniques. The construction of CVT and CVDT is performed with respect to
a given density function which in principle should reflect the behavior of problems
whose solutions are to be sought after. The density function may be related to the
sizing function of the triangulation, and the CVT (or CVDT), by minimizing the cost
functional F , turns to improve element quality and reduce the sizing distortion. The
celebrated Gersho’s conjecture [23, 24] and extensive numerical studies concerning
the asymptotic property of the optimal Voronoi cells provide additional support for
the above optimal Delaunay triangulation framework.

There are several algorithms known for constructing CVT of a given set [12].
They can be classified as probabilistic and deterministic approaches. A representa-
tive probabilistic algorithm given by Macqueen is a very elegant random sequential
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method which divides sampling points into several subsets or clusters by sequentially
taking means of sampling points. The deterministic Lloyd algorithm is the obvi-
ous iteration between the computation of the Voronoi diagrams and mass centroids.
In quantization and clustering literature, one can also find the related h-means and
k-means algorithms for the construction of discrete CVTs.

The notions of Voronoi regions and centroids, and therefore the CVTs, can be
generalized to more abstract spaces and to metrics other than the Euclidean L2 norm,
since there are many applications in computer science, arts, archaeology, astronomy,
biology, crystallography, and physics that are related to generalized CVTs [12, 32].
In this paper, we are interested in the special two-dimensional space setting with a
positive definite Riemannian metric tensor.

2.2. The Riemannian structure and metric tensor. Although the discus-
sions here on the Riemannian structure can be easily extended to higher-dimensional
spaces, to simplify the notation and illustration, we merely present the two-dimensional
versions which are more directly related to the two-dimensional triangulation and sur-
face meshing applications considered in this paper.

Let P be a point of the planar domain Ω. A metric tensor at P refers to the
specification of a positive definite matrix (tensor)

M(p) =

(
a(p) b(p)
b(p) c(p)

)
,

where a(p) > 0, c(p) > 0, and a(p)c(p) − b(p)2 > 0.
The metric field (M(p))p∈Ω induces a Riemannian structure on Ω, and we denote

it by (Ω,M(p)). If M is constant, i.e., is independent of the position, we refer to it
as a constant or uniform Riemannian metric. Otherwise, it is nonuniform. If for all
points the metric tensor remains identity, or a constant multiple of the identity, it is
simplified (or equivalent) to the standard Euclidean structure.

Since M(P ) is positive definite, through diagonalization, we have

M(P ) = ETUE with E =

(
cos θ sin θ
− sin θ cos θ

)
, U =

(
λ1(P ) 0

0 λ2(P )

)
.(2.2)

Here, λ1(P ) and λ2(P ) are the two eigenvalues, and E are the corresponding eigen-
vectors of M(P ). Let h1(P ) =

√
1/λ1(P ), and h2(P ) =

√
1/λ2(P ); then h1(P ),

h2(P ), and θ can be interpreted as the lengths of the two radii and the rotation angle
of the ellipse shown in Figure 2.1, and the metric M = M(P ) corresponds to such
an ellipse with the specified orientation and aspect ratio [4, 6, 7, 22, 26, 27, 35]. If
h1(P ) = h2(P ) for all points P , i.e., the ellipses become conventional circles, then the
metric is called an isotropic metric; otherwise, we have an anisotropic metric field.

Let P,Q be two points in Ω, and let S = S(t) be a path connecting the two points
and parameterized by t ∈ [0, 1]. The length of S = S(t) corresponding to M can be
calculated by

LM (S) =

∫ 1

0

√
−−→
S′(t)

T

M(S(t))
−−→
S′(t)dt

with
−−→
S′(t) = (u1(t), u2(t))

T and denote M(S(t)) by

M(S(t)) =

(
as(t) bs(t)
bs(t) cs(t)

)
;
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Fig. 2.1. Anisotropy: Approximation by ellipse.

then

LM (S) =

∫ 1

0

√
as(t)u2

1(t) + 2bs(t)u1(t)u2(t) + cs(t)u2
2(t) dt,

and the minimum of LM (S) gives the conventional Riemannian distance dM (P,Q).
As pointed out in [25], it is often difficult to compute the above distance for

a general Riemannian metric. Moreover, even with the above distance definition,
the VT and its dual Delaunay triangulation are not always well defined unless some
conditions on the vertices are met [28]. We thus consider an alternative definition.

2.3. AVT in Riemannian metric. One crucial ingredient in the definition of
the general CVT in the Euclidean space is the minimization of the corresponding cost
functional. Such an optimization property is key to the success of CVT in various
applications. To preserve such a property, a modified notion of distances and the
mass centroids with respect to a given Riemannian metric need to be introduced.

We introduce first the directional distance function, the AVR, and the AVT ;
afterwards, we present the definitions of the cost functional, mass centers, and the
ACVT.

Definition 2.1. Let P,Q be two points in Ω, and let M be a Riemannian metric
defined as (2.2). We define the following simplified distance measure as the directional
distance from Q to P :

dP (P,Q) =

√
−−→
PQ

T

M(P )
−−→
PQ .

The above directional distance between P and Q can be interpreted as a Rie-
mannian distance between the two points, with the metric being a constant metric
given by M(P ). Obviously, in contrast to the usual distance definitions, the above
directional distance is not symmetric. This, however, is well suited to our definition
of AVTs.

Definition 2.2. Given a set of points {Zi}ni=1 in the domain Ω and a positive
definite Riemannian metric M smoothly defined on Ω as in the above, the following
set is defined as the anisotropic Voronoi region (AVR) of a point P in Ω:

V (P ) = {x ∈ Ω | dx(x, P ) < dx(x, Zi) ∀ Zi �= P}.

Points having equal directional distances to any two generators Zi, Zj are called their
bisectors.
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Clearly, the above definition is an extension of the classical definition in the
isotropic case. The AVRs of any two distinct points are nonoverlapping, and the union
of all the AVRs of {Zi}ni=1 covers the domain. The smoothness of the Riemannian
metric assures that the bisectors have measure zero and consist of piecewise smooth
curves, though in practice the smoothness of the Riemannian metric is not always a
necessity.

Given two points P,Q and their midpoint Xm = (P+Q)/2, since
−−−→
XmQ = −

−−−→
XmP ,

we easily see that dXm
(Xm, Q) = dXm

(Xm, P ). This leads to the following interesting
property.

Lemma 2.1. The bisector of two generators defined using the directional distance
always passes through their midpoint.

We may attribute the above property as the midpoint of two generators being
blind to the anisotropy with respect to the two generators. Note that AVRs defined
as above are not necessarily connected. This is not surprising, as it is also the case for
the AVRs defined in [25, 28]. We refer to the subregion of an AVR which contains the
corresponding generator as its main subregion, while the other subregions that do not
contain the generator we refer to as orphan subregions, just like in [25]. However, in
most practical applications and with a sufficient number of generators, the appearance
of orphan subregions is very rare. The part of the main subregion which is visible from
the corresponding generator is called the visibility region in the AVR. The visibility
regions are star-shaped with respect to the corresponding generators, and they serve
as good approximations to the AVRs in practice.

With well-defined AVRs and bisectors, the VT corresponding to the directional
distance can be defined.

Definition 2.3. Given a set of points {Zi}ni=1 in the domain Ω and a positive
definite Riemann metric M defined as above on Ω, the tessellation of Ω by the set
of anisotropic Voronoi regions {Vi = V (Zi)}ni=1 is called the anisotropic Voronoi
tessellation (AVT). The dual triangulation obtained by joining generators whose main
subregions share common bisectors is called the anisotropic Delaunay triangulation
(ADT).

Some examples of the AVRs and AVTs in a two-dimensional square [−1, 1]2 with
various Riemannian metric are illustrated in Figure 2.2. Five generators are taken,
with one at the center and four on the vertices. Note that for M = I we get the
standard isotropic VTs. For M = diag(4, 1), we see the symmetry breaking due to
the anisotropy and similarly for M(x, y) = diag(7 − 6.3|x|, 1). In the latter case, we
also get two orphan subregions near points (−1, 0) and (1, 0) belonging to the AVR
associated with the point at the center.

Since our notion of AVT differs significantly from the conventional definition,
some comments are in order.

First of all, the use of a directional distance is not new. In fact, as we are finishing
up this paper, it comes to our attention that such a notion is also used in a recent
work [25]. There, the AVR is defined as

V (P ) = {x ∈ Ω | dP (x, P ) < dZi
(x, Zi) ∀Zi �= P}.

Note that, to determine the membership of the Voronoi cells, the distances used in
the above are in the opposite directions to that in our definition. Historically, the
multiplicative weighted Voronoi tessellation (MWVT) may also serve as an earlier
application of directional distances [3]. The definition of the multiplicative weighted
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Fig. 2.2. AVTs of [−1, 1]2 for M = I, M = diag(4, 1), and M = diag(7 − 6.3|x|, 1).

Voronoi region [3, 32] is defined as

Vi = {x ∈ Ω | wid(x, Zi) < wjd(x, Zj) ∀Zj �= Zi}

with d being the standard Euclidean distance and {wi} being a set of predetermined
positive weights. As stated in [25], if we set dZi

(x, Zi) = wid(x, Zi), then the MWVT
is a special case of the AVR given in [25].

We are motivated by our interpretation of the space and distance distortion ef-
fected by the Riemannian metric tensor: to determine the membership of a point x in
a tessellation, the distance and space distortion should be generally viewed through
the Riemannian metric tensor at the point x rather than through the different tensors
at the respective generators. That is, locally at a given point x, the space and distance
distortion is fixed when measuring distances from it to different generators while the
distortion is only sensed when varying the location x. It will be seen later that, in
the context when the set of generators is viewed as variables of some optimization
process, our definition leads to an optimization property. Moreover, the following
simple proposition implies that our definition offers a consistent generalization to the
standard VT in the isotropic metric.

Proposition 2.1. If the Riemannian metric tensor M(P ) is isotropic, that is,
λ1(P ) = λ2(P ) = ρ(P ), or, equivalently, M(P ) = ρ(P )I at all points, with I being
the identity and ρ = ρ(P ) being a scalar field, then the anisotropic Voronoi region
reduces to the conventional Voronoi region in the Euclidean metric taking the form of
a convex polyhedra.

On the other hand, even for an isotropic Riemannian tensor, the AVR given in [25]
does not reduce to the conventional Voronoi region unless the tensor is uniform, that
is, ρ(P ) is a constant field. Of course, for the truly anisotropic case, an AVR defined
in this paper may have very complicated geometry, and, in comparison, the definition
in [25] leads to an AVR with a relatively less complicated boundary. In fact, the
boundary curves of the AVRs there consist of piecewise quadratic curves (quadratic
surfaces in higher dimension), and the AVRs can be viewed as the projection of the
lower envelope of the lifted paraboloids {pi(x) = dZi

(x, Zi)}. In our case, the lifted
functions become {pi(x) = dx(x, Zi)} whose graphs are generally not paraboloids.
Note, however, that, unlike in our case, the bisectors of the generators in the AVR
definition of [25] do not pass through the midpoints of the generators.

Even with our definition of AVRs and the dependence on the local Riemannian
metric tensor, it remains simple to determine the membership of a given point in
an AVT as the computation of the directional distance is very straightforward. Of



744 QIANG DU AND DESHENG WANG

course, the bisector of any two points in the above anisotropic case may be very
complicated for a general metric. It is generally impossible to solve the bisectors
exactly, not to say with polynomial complexity. Thus, finding efficient algorithms
for a direct construction of the AVT remains nontrivial. In practice, however, one
is more interested in finding good approximations, so some methods for the detailed
constructions and approximations of the AVT and the ADT are given in the following
sections.

2.4. Anisotropic mass center (centroids). To define the anisotropic mass
center for the AVR of a generator, we recall that the mass center of a standard
Voronoi region with respect to the Euclidean metric is the point that minimizes the
cost functional (the mean square Euclidean distance to such a point) in the given
region. Thus, we first define the following anisotropic cost functional.

Definition 2.4. Let V (P ) be the anisotropic Voronoi region of point P ; the
following integral is called the anisotropic cost functional or anisotropic energy func-
tional of V (P ):

F (Y ) =

∫

V (P )

d2
X(X,Y )dX.

Here, different from [12, 13, 19], the density function is simplified to be the iden-
tity, as its role is often reflected in the underlying Riemannian metric. Also, the
integral can be interpreted either as an integration with respect to the Riemannian
metric [4, 22] or the usual Lebesgue integral corresponding to the standard Lebesgue
measure. Of course, for a given problem, only one interpretation is allowed. The
details are to be discussed in section 4.

Minimizing the above quadratic functional with respect to Y , we are led to the
following.

Definition 2.5. The anisotropic mass center of V (P ) is given by

Yc =

[ ∫

V (P )

M(X)dX

]−1[ ∫

V (P )

(M(X), X)dX

]
.

Here, (M(X), X) is the product of M(X) and X; A−1 denotes the inverse of
matrix A. It is easy to see that the following lemma is true.

Lemma 2.2. If M = M(P ) is a smoothly defined positive definite Riemannian
metric, then

∫
V (P )

M(X)dX is a positive definite matrix for any V (P ) with nonempty
interior.

Thus, the notion of the anisotropic mass center given earlier is well defined.
Clearly, it is a natural generalization of the corresponding definition in the Euclidean
case. Moreover, once the AVR is given, the explicit formula makes the computation
of the mass centers fairly straightforward. Had the functional F (Y ) been replaced by

F̂ (Y ) =

∫

V (P )

d2
Y (X,Y )dX,

there would be more issues to be addressed in defining and computing the mass
centers.

2.5. Anisotropic centroidal Voronoi tessellations. Once the AVRs and
their mass centers are defined, the anisotropic centroidal Voronoi tessellation (ACVT)
and its dual ACVDT can then be defined.
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Definition 2.6. Given the set of points {Zi}ni=1 in the domain Ω and a smoothly
defined positive definite Riemannian metric M defined as above on Ω, a Voronoi
tessellation under the directional distance function is called an anisotropic centroidal
Voronoi tessellation (ACVT) if

zi = z∗i , i = 1, . . . , k;

i.e., the points {zi} that serve as generators for the anisotropic Voronoi regions {Vi}
are themselves the anisotropic mass centers (centroids) of those regions. The corre-
sponding dual triangulation is referred to as the anisotropic centroidal Voronoi De-
launay triangulation (ACVDT).

We first observe the following trivial but important fact.
Proposition 2.2. If the Riemannian metric tensor M(P ) is isotropic, that is,

λ1(P ) = λ2(P ) = ρ(P ) for all points P , or, equivalently, M(P ) = ρ(P )I with I being
the identity and ρ = ρ(P ) being a scalar positive density function, then the anisotropic
centroidal Voronoi tessellation reduces to the standard centroidal Voronoi tessellation
corresponding to the Euclidean distance and the density function ρ = ρ(P ).

The above proposition concludes that our definition of ACVT is a consistent
generalization of the conventional CVT. If other definitions of directional distances
were used, such a conclusion may not hold.

Similar to the standard CVT, the above-defined ACVT enjoys the following op-
timality property.

Proposition 2.3. Given a compact set Ω ⊂ Rd, a positive integer n, and a
smoothly defined positive definite Riemannian metric M(·), let {Zi}ni=1 denote any
set of n points belonging to Ω, and let {Vi}ni=1 denote any tessellation of Ω into n
regions. Define the energy (cost) functional for {(Zi, Vi)}ni=1 by

F({(Zi, Vi)}ni=1) =

n∑

i=1

∫

X∈Vi

d2
X(X,Zi) dX.(2.3)

A necessary condition for F to be minimized is that the Vi’s are the anisotropic
Voronoi regions corresponding to the Zi’s, and, simultaneously, the Zi’s are also
the anisotropic mass centroids of the corresponding Vi’s; i.e., {(Zi, Vi)}ni=1 is an
anisotropic centroidal Voronoi tessellation of Ω.

The proof follows easily from the definitions of the AVR and the anisotropic mass
centroids. The functional F is often also called distortion value or total variance
in different applications. In practice, it can be related to the errors of numerical
approximation, being errors of surface representation or errors of numerical solution
of some partial differential equations [13].

2.6. Relation to function approximation. Given a function f smoothly de-
fined in the compact set Ω ⊂ Rd, a set of n distinct points {Zi}ni=1 in Ω, and a
tessellation of Ω denoted by {Vi}ni=1, we consider how to approximate the function f
by a piecewise constant function fn defined by fn(x) = f(Zi)χi(x) for each i with χi

being the characteristic function of the set Vi.
We may measure the error of the approximation by

∫

Ω

|fn(X) − f(X)|2 dX =

n∑

i=1

∫

Vi

|fn(X) − f(Zi)|2 dX,
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which, by Taylor expansion, can be approximated to the leading order by

∫

Ω

|fn(X) − f(X)|2dX ≈
n∑

i=1

∫

Vi

−−→
XZi

T

∇f(X)∇T f(X)
−−→
XZi dX

≤
n∑

i=1

∫

Vi

d2
X(X,Zi) dX,(2.4)

where d = dX(X,Y ) can be any directional distance between X and Y corresponding
to a Riemannian tensor M = M(X) that bounds ∇f∇T f (e.g., M = αI + ∇f∇T f
with a small constant α > 0).

Clearly, if the elements of {Zi, Vi}ni=1 are allowed to vary in order to reduce the
error of approximation, we may choose to minimize the error bound given on the right-
hand side of (2.4) which is precisely in the form of the functional F({(Zi, Vi)}ni=1).
This observation, among others, is one of the motivations for the definition of the
energy functional. Hence, we see that, under the above metric (related to ∇f), the
ACVT defined in the paper turns to provide the optimal error bound on the piecewise
constant approximations of the given function f . Historically, such an idea has been
used by Thiessen in one of the earliest applications of the Voronoi diagrams to get
estimation of precipitation data in a given geographical region [32].

The relevant metric is obviously dependent on the quantities to be approximated
and on how the errors are measured. If one is interested in approximating the deriva-
tives ∇f by a piecewise vector-valued function

�vn(x) ≈
∑

∇f(Zi)χi(x)

and estimating the errors with

∫

Ω

|�vn(X) −∇f(X)|2 dX,

then the corresponding metric would be tied to the Hessian matrix of f . Of course,
the approximation error considered here is very generic, and in practical applications
such as the numerical solution of partial differential equations, more sophisticated
error estimators are desirable in order to ensure the optimal resolution. Nevertheless,
the above discussion provides a natural link between the problem of optimal tessel-
lation and the problem of optimal function (as well as surfaces to be discussed later)
representation and approximation.

2.7. On the construction of ACVT. The construction of ACVT can be done
with several different methods. Here, we mainly discuss the Lloyd algorithm, which
is a fixed-point iteration between the generators and the mass centers of the AVRs
[11, 12].

Given the generators, as mentioned before, the precise determination of the AVRs
and their boundary can be computationally cumbersome, and there is little control
in theory on the complexity of such procedures. However, in many applications, the
construction of ACVT can often be viewed as an optimization procedure; thus it is of
practical interest to compute good approximations of ACVT. Due to the complexity
of the AVRs and the existence of orphan regions, we make an effective approximation
in our construction of the ACVT: computing the visibility regions for the generators
and their mass centroids instead of the full AVRs. The generation of the visibility
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regions is helped by the classical ADT constructed by methods introduced in [4, 6, 22]
(here we use the term classical to differentiate from the definition of ADT given in
this paper).

In the next section, a systematic description of the algorithm for two-dimensional
classical ADT is provided; then, in section 4, the detailed description of the ACVT
construction is provided.

3. Classical ADT. In this section, we recall the technique of two-dimensional
classical ADT for any planar domain Ω, with respect to a given Riemannian structure
(Ω,M(P )P∈Ω) defined in Ω [4, 6, 22]. The concepts of Delaunay measure and the
generalized constrained Delaunay kernel are briefly reviewed; then, the traditional
anisotropic two-dimensional Delaunay triangulation and the so-called unit mesh gen-
eration procedure are discussed.

3.1. Generalized constrained Delaunay kernel. The constrained Delaunay
kernel, including the constructions of Base, Cavity, and Ball, is a procedure for insert-
ing a new point into an existing Delaunay triangulation; see, e.g., [5, 6, 8, 21, 22]. The
Delaunay criterion for insertion is based on the empty-circle (sphere for three dimen-
sions) test. When adding a point (say P ), the mesh updating kernel takes on the form
T = T − C(P ) + B(P ), where C(P ) is the Cavity associated with P , i.e., the set of
existing triangles whose circumdiscs contain P , and B(P ) is the local updated trian-
gulation of C(P ) enclosing P as a vertex, which is called the Ball of P ; T denotes both
the existing and newly updated Delaunay meshes. The Cavity can be constructed by
either recursive neighboring searching or other methods [5, 6, 8, 21, 22], based on a
proximity criterion, i.e., the empty-circle test.

The classical proximity criterion is not applicable to the anisotropic cases, and a
generalized kernel definition for the Riemannian metric is needed. The generalization
consists mainly of a redefinition of the Cavity C(P ). The Ball B(P ) can be constructed
similarly as in the classical case, provided that the Cavity is star-shaped to P .

First, we recall the Delaunay measures αM with respect to a given metric M
associated with the pair (P, k), where P is a vertex and k a triangle (detailed dis-
cussions may be found in [6, 22]). The measures αM vary with a reference point Q,
which is taken to be either P or any of the three vertices of k. First, let OQ and rQ
be the circum-disc center and the radius of k with respect to the (uniform) tensor

M = M(Q), i.e.,
−−→
vOQ

T

M(Q)
−−→
vOQ = r2

Q, for any vertex v of k. Then

αM (Q)(P, k) =

√
−−−→
POQ

T

M(Q)
−−−→
POQ/rQ,

which means that for each pair (P, k), four such α’s may be defined [6, 22]. Then, the
Cavity C(P ) is redefined as

C(P ) = C1(P )
⋃

C2(P ),

where
C1(P ) = {k ∈ T | k contains P},

i.e., the Base of P ; and

C2(P ) = {k ∈ T | if ∃ K∗ ∈ C(P ), k is adjacent to K∗,

and αM(P )(P, k)
∏

v

αM(v)(P, k) < 1, v is any

vertex of k and P is visible from the vertices of k}.
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Other variants of the definition of C2(P ) can also be found in [6, 22]. The above C(P )
can be constructed via the recursive adjacent search, beginning from the Base of P ,
i.e., C1(P ). Like the classical cases, this generalized Cavity is star-shaped with respect
to P , and, accordingly, the updated triangulation remains a valid triangulation. The
generalized Delaunay kernel still retains the form T = T − C(P ) + B(P ) but with a
generalized Cavity C(P ) defined as above.

3.2. Unit Delaunay meshing. The construction of the unit Delaunay mesh
consists of meshing the domain Ω with mesh edges being as close to the unit length size
as possible. Here, the edge length is evaluated with respect to the given Riemannian
metric M , and it can be obtained by numerical integration. That is, the goal is to
obtain a unit mesh with respect to M and such that every mesh edge PX connecting

P satisfies LM (
−−→
PX) ≈ 1 [6, 22].

The unit meshing process of Ω, with respect to (Ω,M) involves two steps:
1. The generation of the boundary unit mesh.
2. The generation of the unit mesh of Ω based on the boundary unit mesh.

For completeness, in the following, we briefly describe the main features of the above
two steps as given in [6, 22].

Unit meshing of the boundary. Assume that the input of the boundary consists
of a set of curved segments; a unit mesh of the boundary with respect to the given
Riemannian metric field is a discretization of these curved segments such that the ob-
tained segments have unit length with respect to the control space or the Riemannian
metric. Several methods have been discussed in [6, 22]. Here, a simple approach is
adopted: apply the adaptive Simpson quadrature formula to subdivide each curved
segment into a set of smaller curved segments with lengths less than a given threshold
δ (usually we let it be 0.1 for accuracy); then approximate the length of curved seg-
ment by summing up the lengths of all these smaller segments and follow the approach
in [6, 22] to get the final unit-length subdivisions of the curved segment.

Unit meshing of the domain. The unit meshing of the boundary of Ω described in
the above provides a set of constrained edges having a set of end points, denoted by
BP (Ω). First, an initial constrained Delaunay mesh of Ω is generated whose vertices
are only the members of BP (Ω) with the constrained edges being preserved. This
so-called empty mesh of Ω can be generated using the classical Delaunay kernel [6, 22].
Then, a new mesh is constructed by inserting iteratively field points into this empty
mesh as follows:

(a) Generate interior field points by the method of interior edges unit subdivision
or by the method of advancing front points generation [7, 21, 6, 22]; then,
apply filtering to the newly generated points so that the distance measured
in the Riemannian metric between any two points is no less than a given
threshold (say,

√
2/2).

(b) The remaining generated field points after the filtering are inserted into the
current mesh via the generalized constrained Delaunay kernel defined before.

The above iteration is repeated as long as the current mesh can be modified.
The iteration is terminated if no new field points get generated. The generated mesh
has the following property: most of the edges are with lengths (with respect to the
given Riemannian metric) close to 1.0. However, some edges may not have ideal
lengths, and an optimization of the mesh is often performed through both edges
swapping and optimal vertex smoothing [6, 22] to make the resulting edges much
closer to the unit length.
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The mesh generated in the above method is in good conformity with the given
Riemannian metric, and it is used as a good approximation to the dual of the gener-
alized AVT.

4. An algorithm for approximating the ACVT. Next, the Lloyd iteration
method is extended to construct the ACVT defined in section 2. The complete process
goes as follows:

0. Construct an initial constrained ADT of the given domain in the method
described in section 3. The triangulation is close to having a unit mesh with
respect to the given Riemannian metric field M . Store all the data of the
constrained boundary triangulation, i.e., the empty mesh.

1. Construct the approximate AVR for each interior point that is allowed to
change its position and compute the approximate mass center of each Voronoi
region. Here, the AVT and the mass centers are as defined in section 2. The
approximate construction of the AVT is done using the existing anisotropic
Voronoi triangulation as an auxiliary tool.

2. Insert the computed mass centers into the stored empty mesh by the gener-
alized Delaunay insertion procedure described in section 3 and construct an
updated ADT.

3. Compute the difference D =
∑k

i=1 |Pi−Pic|2: {Pi} is the set of interior points
allowed to change; {Pic} is the set of corresponding computed mass centroids.

4. If D is less than a given tolerance, terminate; otherwise, return to step 1.
Naturally, other stopping criteria can also be applied, such as using the measure-

ment on the reduction of the energy functional.
The success of the above algorithm relies on the resolution of two issues: first,

the efficient approximation of AVR with the help of the constructed or updated ADT
and then the approximation of the mass center for each AVR. We address these two
critical issues next.

4.1. The approximation of AVR. For the classic (isotropic) Delaunay trian-
gulation, the Voronoi region of each interior point can be computed easily, as the rela-
tionship between the VT and the Delaunay triangulation is straightforward [32, 2, 10].
But, for the AVT and the ADT, due to the generality and the complexity of the metric
and the derived distance function, it is difficult to characterize their duality in simple
terms. Hence, numerical approximations are needed based on the definitions given in
section 2.

Recall that for any interior point P , under the Riemannian metric M = M(P ),
its AVR defined in section 2 is given by

V (P ) = {Q ∈ Ω | dQ(Q,P ) < dQ(Q,Pi), Q ∈ Ω, Pi �= P, Pi ∈ V T},

where V T is the set of input generators. To compute V (P ), two special sets are
defined. The first set, denoted by Ω∗, is the testing region, which basically can be any
region that contains V (P ). In another word, only the points in Ω∗(P ) can possibly be
in V (P ). It is obvious from an algorithmic point of view that the smaller the Ω∗(P ),
the more efficient the determination of V (P ) becomes. The second set V ∗(P ) is called
the set of testing vertices defined by

V ∗(P ) = {P ∗ ∈ V T | ∃ Q ∈ Ω∗(P ), dQ(Q,P ∗) < dQ(Q,P ) and P ∗ �= P}.

Clearly, V ∗(P ) is dependent on the testing region Ω∗(P ).
The following proposition can be easily verified.
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Fig. 4.1. Approximation of the AVR.

Proposition 4.1. The anisotropic Voronoi region of P can be redefined as

V (P ) = {Q | dQ(Q,P ) < dQ(Q,Pi), Q ∈ Ω∗(P ), Pi �= P, Pi ∈ V ∗(P )}.(4.1)

Computationally, it is important to define appropriate sets Ω∗(P ) and V ∗(P )
in order to construct the AVRs efficiently. The approach adopted by us is to define
Ω∗(P ) and V ∗(P ) with the help of the traditional ADT discussed earlier.

Denote the triangles connecting P by B∗(P ), and define the set C∗(P ) as

C∗(P ) = {t | ∃ t∗ ∈ B∗(P ), t connects t∗ by an edge of t∗}.

C∗(P ) includes the triangles which are neighbors of B∗(P ) sharing common edges.
In Figure 4.1, B∗(P ) is the set of dotted triangles and C∗(P ) is the set of triangles
marked with stars. We then choose B∗(P )

⋃
C∗(P ) for Ω∗(P ).

Let V̄ contain the vertices of the triangles B∗(P )
⋃
C∗(P ) except P . In Figure 4.1,

V̄ is the set of circled vertices. V̄ is then chosen as V ∗(P ).
Intuitively, such a choice implies to some degree that, instead of constructing the

full AVR, we try to identify the visibility region of the corresponding generator in the
AVR. Such a region is inside the main subregion of the AVR and is also star-shaped.
The approximate visibility regions are taken as the approximate AVRs and are also
used in the computation of the mass centroids. Though orphan regions cannot be
eliminated, for practical applications and for sufficient large number of generators,
the visibility regions computed served as good approximations to the whole AVRs.
Indeed, our numerical examples show that the choices for V ∗(P ) and Ω∗(P ) are well
suited for the approximation of V (P ).

With the above preparations, we can describe the approximate construction of
the AVR V (P ) restricted by (4.1). The procedure in the pseudocode form is given as
follows:

(a) Find the sets of triangles B∗(P ) and C∗(P ), and order them CCW (counter-
clockwise). Denote the degree of B∗(P ) by NT . The number of elements of
C∗(P ) is equal to that of B∗(P ), except near the boundary.

(b) Set VB(P ) = φ.
(c) For i = 1 to NT , do the following:

denote the ith triangle in B∗(P ) and C∗(P ) by Ti and Ni, respectively;
denote the other three vertices by Ai, Bi, Ci (see Figure 4.1);
divide the edge AiBi into ND equal subedges and denote their end points in
order as {Qj , j = 0, . . . , ND} where Q0 = Ai.
For j = 0 to ND − 1, do the following:
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connect PQj and CiQj , and divide the poly-segment PQjCi into MD

subsegments; denote the interior division points in CCW order as
{Qkj , k = 1, . . . ,MD, Q1j = P}.
For k = 2 to MD, do the following:

Compare the distance dQkj
(Qkj , P ) with {dQkj

(Qkj , q), q ∈ V ∗(P )}.
If there exists Q̂ ∈ V ∗(P ),dQkj

(Qkj , P ) > dQkj
(Qkj , Q̂), then

VB(P ) = VB(P )
⋃{Qkj}

Exit this inner loop; move to the next poly-segment.
Endif

End Do
End Do

End Do
(d) As the points in VB(P ) are in CCW order, we can connect them in such

an order and get a closed polygon denoted by V̂ (P ) as shown in Figure 4.1.

Then, V̂ (P ) is an approximation for V (P ).

From the above construction, it is obvious that V̂ (P ) produced by the algorithm
is star-shaped with respect to P . It is taken as an approximation of the visibility
region and in fact the AVR corresponding to P .

Note that due to Lemma 2.1, we actually can shrink the domain C∗(P ) even more
by considering the convex hull formed by the vertices of B∗(P ) (except P ) and the
midpoints of P and the vertices in C∗(P ). The rest of the algorithm is similar to
the one given above. The resulting test regions and testing vertices still offer good
approximations. Obviously, if MD and ND go to infinity, the approximation error goes
to zero. In practice, we set them to be around 10, and various numerical examples
show that such a choice is enough to achieve good accuracy.

With the AVR V (P ) being approximated as above, the computation of the mass
center of V (P ) defined in section 2 is discussed next.

4.2. Computation of mass centers. Naturally, with the AVR V (P ) being ap-
proximately decomposed into NTD = NT ·ND triangles of the form {△PQ∗

iQ
∗
i+1, Q

∗
i ∈

V B(P ), i = 1, . . . , NTD}, the mass center of V (P ) may be expressed as

[∫

V (P )

M(Y )dY

]−1 [∫

V (P )

(M(Y ), Y )dY

]

≈
[
NTD∑

i=1

∫

△i

M(Y )dY

]−1 [
NTD∑

i=1

∫

△i

(M(Y ), Y )dY

]
,

where △i is the triangle △PQ∗
iQ

∗
i+1.

Now, the remaining issue is how to compute
∫
△i

(M(Y ), Y )dY and
∫
△i

M(Y )dY
through numerical quadratures.

The area of a triangle △ABC under a given Riemann metric M can be approxi-
mated by

[∫

△ABC

ds

]
≈

√
det(M)S(△ABC),

where S(△ABC) is the triangle area in the usual Euclidean metric [4, 22, 20] and
det(M) is the determinant of the metric tensor M at the geometric center of △ABC.
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Fig. 4.2. ACVTs in a disc with a uniform metric and in a square with a nonuniform metric.

For standard Lebesgue measures and integrations, the above quadrature is simplified
by taking det(M) = 1.

To approximate the integral [
∫
△i

(M(Y ), Y )dY ] (or [
∫
△i

M(Y )dY ]), we divide
the triangle △i into mi subtriangles. The division is made along the direction of the

radius
−−→
PQ∗

i , since the triangle △PQ∗
iQ

∗
i+1 is long only in the

−−→
PQ∗

i direction and thin
in other directions. Then, [

∫
△i

(M(Y ), Y )dY ] can be approximated by

∫

△i

(M(Y ), Y )dY =

mi∑

j=1

[∫

△ij

(M(Y ), Y )dY

]

≈
mi∑

j=1

[√
det(Mij)(M(Yij), Yij)S(△ij)

]
,

where Yij is the geometric centroid of △ij , Mij is the metric of Yij , and S(△ij) is the
Euclidean area of △ij . A similar formula can be given for [

∫
△i

M(Y )dY ].

Finally, the mass center Y of V (P ) can be approximated by

Y ≈

⎡

⎣
NTD∑

i=1

mi∑

j=1

√
det(Mij)Mi,jS(△ij)

⎤

⎦
−1 ⎡

⎣
NTD∑

i=1

mi∑

j=1

√
det(Mij)(Mij , Yij)S(△ij)

⎤

⎦ .

Again, if we use the standard Lebesgue measures and integrations in defining
the mass centers, then the above quadrature is applied with det(M) = 1. When
computing the mass centers, similar to that in [13], if a quadrature point is outside the
given domain, its contribution is not included. For the examples given in the paper,
in the construction of ACVT, the boundary points are fixed. In more general settings,
we can apply the projection and merging techniques developed in [13, 19] to allow
redistributions of boundary points while conforming to boundary constraints. For a
two-dimensional domain with a simple boundary, the vertices of the unit boundary
mesh are often well positioned with respect to the given Riemannian metric. In this
simple case, there is seldom need for using the projection and merging techniques.

To end this section, we give a couple of numerical examples in Figure 4.2 for the
approximations of ACVTs computed by our approach: one is for a circle of radius
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10 with a constant metric given by θ = π/4, h1 = 1.5, and h2 = 0.3; and the
other is for a quadrilateral domain [0, 4]2 corresponding to the metric with θ = 0,
h1(x, y) = 0.031 + x/4.0, and h2(x, y) = 0.031 + y/4.0. The resulting ACVTs clearly
reflect the features of their respective metrics.

5. Application of ACVTs. Through a series of papers [13, 14, 15, 16, 17, 18,
19], it has been demonstrated that the CVT and their variants such as those satisfying
certain constraints are very useful tools in mesh generation and optimization, surface
representation, and other applications.

For instance, the CVDT concept provides a good theoretical explanation to the
mesh smoothing process: by successively moving generators to the mass centers (of the
Voronoi regions), the cost functional as defined in (2.1) is reduced. Here, smoothing
means both node movement and node reconnection. With a suitable choice of the
density function, the cost functional may be assumed to be related to the distortion
of element quality and sizing conformity. The resulting CVDT turns out to have
minimum distortion of element quality and sizing conformity, i.e., provides optimal
mesh quality. Furthermore, for the multidimensional CVT, the celebrated Gersho’s
conjecture [23] implies that asymptotically, as the number of generators becomes large,
the total cost (error) is approximately equipartitioned by congruent Voronoi cells. It
was shown that the congruent cells are regular hexagons in two dimensions, with
its dual Delaunay triangulation consisting of equilateral triangles. This gives strong
substantiation to the claim that CVDT provides a high-quality mesh.

Based on these properties of CVDT, we have generated high-quality Delaunay
triangular mesh and tetrahedral mesh through the construction of CVDT [13, 19].
The density function ρ = ρ(P ) is generally related to the sizing function H(P ) by
ρ(P ) = cH(P )−2−d, where c is a scaling constant and d is the space dimensions.

As the anisotropy often appears in many practical problems, it is natural to expect
broad applications of the ACVTs studied in this paper. In this section, a few of these
representative applications are briefly outlined.

5.1. Optimization for two-dimensional ADT. Along with the constructed
ACVT, its dual tessellation, the ACVDT, is obtained as a by-product of the Lloyd
iteration. Similar to the conventional CVT case, the construction of ACVDT through
the Lloyd iteration can be viewed from a different angle as a smoothing and optimiza-
tion process of an initial mesh [19].

For a two-dimensional initial ADT, it is desirable that the resulting mesh has the
unit mesh edge property, or, equivalently speaking, the mesh conforms with unit sizing
in the Riemannian metric. This property guarantees the optimal element quality
as measured using the Riemannian metric. However, in most cases, the numerical
data on the edge lengths indicate that it is very hard to achieve near perfect unit
sizing, even with a combination of postprocessing and optimization techniques such
as edge swappings. Thus, the construction of two-dimensional ACVT and ACVDT
provides a natural optimization for the initial two-dimensional ADT, similar to the
two-dimensional and three-dimensional isotropic cases considered in [13, 19]. The
final ACVDT gives a high-quality anisotropic Delaunay mesh.

As numerical examples, we first present the ACVT and ACVDT for a parallel-
ogram domain with a constant metric that corresponds to θ = 0.0, h1 = 2.0, and
h2 = 0.5. To illustrate the optimization effect of the method, a points distribution
is generated with half of them clustered to the center point of the domain. Then, 30
Lloyd iterations are applied to generate the approximate ACVT and its dual ACVDT.
The AVTs and ADTs corresponding to the initial stage, after 5 and 30 Lloyd itera-
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Fig. 5.1. Iterations of AVTs for a parallelogram with uniform metric.

tions, are shown in Figures 5.1 and 5.2.
Obviously, the ADT is more and more in conformity with the metric, and it

gradually evolves into a high-quality mesh. To measure the anisotropic triangular
element quality, the formulae discussed in [6, 22, 4] are used. The average values
of element quality for these three meshes are 0.432, 0.852, 0.987, respectively. The
minimum values of the element quality for these three meshes are 0.0003, 0.131, 0.852.
The average values of the edge length measured under the given metric for the three
meshes are 0.234, 0.422, 0.972; that is to say, they become closer and closer to unit
edge length. These element-quality and edge-length statistics show that our method
for the ADT optimization is effective.

Another example (shown in Figure 5.3) is for a square domain [0, 10]2 with a
given nonuniform metric corresponding to θ = 0, h1(x, y) = |y − 5|/5 + 0.04, and
h2(x, y) =

∣∣5 − 4|y − 5|/5
∣∣ · h1(x, y). This means that a line refinement at y = 5 is to

be introduced. Different from example 1, we start with an almost even initial point
distribution which gives an ADT badly conformed with the given metric. The results
of the initial configurations and those after 10 and 60 Lloyds iterations are shown
in Figure 5.3. With 60 iterations, the final approximate ACVDT becomes very well
conformed to the given metric. The average element quality is up to 0.982, and the
minimum quality is 0.781. The average edge length is 1.15. This further shows that
the optimization is also effective in nonuniform metric cases.

In the above, we have not performed any classical optimizations for the initial
meshes, such as edges swapping and optimal vertex repositioning, before the con-
struction of ACVDT. Of course, they can be combined with the Lloyd iteration to
speed up the construction of ACVDT, an idea to be explored in our future works.

5.2. Application of ACVT to quality surface meshing. There are many
instances in which optimal points distributions lying on surfaces or triangulated
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Fig. 5.2. Corresponding dual ADTs for a parallelogram with uniform metric.

Fig. 5.3. Optimizing ADT example 2 with nonuniform metric.

surfaces and surface meshing or more general subdivisions of surfaces are needed.
Examples include spherical meshes for geophysical calculations on the surface of the
earth, collocation or nodal points for boundary finite element methods, and the geo-
metric representation of surfaces by panels or other simple objects. In [14], a precise
definition of the CCVT on general surfaces is given and a number of properties
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are derived, including their characterization as minimizers of an “energy,” and the
generated optimal CCVT point sets are applied to polynomial interpolation and nu-
merical integration on the sphere. The CCVT defined on general surfaces mainly
involves constructing the CVT with respect to the isotropic Euclidean metric but
constraining the mass centers on the surfaces. Thus, the distance used does not re-
flect the general landscape of the surfaces which are best described by Riemannian
metrics. A direct application of the ACVT is to construct CVT on general surfaces
which would naturally incorporate the information of the Riemannian metric associ-
ated with the surface.

Let Ψ be a parametric surface defined by σ : (u, v) ∈ Ω → σ(u, v) ∈ Ψ with
Ω being a planar domain, and let σ be a function of class C2 (it is sufficient to
have just class C1). It is assumed that Ω is closed and bounded. Let M3D be a
three-dimensional metric tensor which defines directional sizings requirement on the
surface Ψ. Then, for a given point (u, v) of Ω, i.e., the two-dimensional parametric
domain, a Riemannian metric M∗

2D(u, v) can be deduced as

M∗
2D(u, v) = (σu, σv)

TM3D(σu, σv),

where the vectors σu and σv are the first-order derivatives or tangents to the constant
parameter lines on the surface.

If M3D = H(P )−2I, this is the so-called isotropic controlling metric, which means
that at each point P of Ψ, a length size H(P ) is specified which indicates that the
ideal distance between other points and P is H(P ) in every direction [7, 22, 26, 27];
otherwise, the surface mesh will be anisotropic [7, 20, 22]. There are two typical types
of M3D for anisotropic cases. The first is

M3D(P ) = diag(1/H1(P )2, 1/H2(P )2, 1/H3(P )2),(5.1)

where {Hi(P )} specifies the sizings in the coordinate directions. The second is for
the geometric surface meshing where the metric tensor is related to the curvatures of
the surface. In this case, M3D takes the form

M3D(P ) = [
−−→
vmin,

−−→
vmax, �n]diag

(
K2

min

g(ǫ)2
,
K2

max

g(ǫ)2
, L

)
[
−−→
vmin,

−−→
vmax, �n]T ,(5.2)

where Kmax and Kmin are the principal curvatures at P , �vmax and �vmin are the two
corresponding principal directions, and �n is the unit normal direction, all evaluated
at the point P . Here, g = g(ǫ) is an auxiliary function of the tolerance ǫ used in the
approximation, and L can be any constant; see [7, 20, 26, 27] for details of the above
definitions. The metric (5.2) is used to prescribe the geometric anisotropic meshing.

In [7, 22], the above Riemannian metric M∗
2D is used to generate a unit anisotropic

mesh on Ω and subsequently map it to generate a surface mesh on Ψ. It is very natural
for us to use M∗

2D to construct an ACVT on Ω by the method given in section 4; then
the ACVT is mapped back to Ψ. The resulting tessellation on Ψ is accordingly a
CVT on the surface well conformed with the prescribed metric: it is either isotropic
or anisotropic. The corresponding ACVDT provides a high-quality surface Delaunay
triangular mesh on Ψ measured under the given metric tensor; see [20] for details of
surface mesh evaluation.

To illustrate this application, three isotropic examples are presented here: ACVT
and ACVDT on an ellipsoid, a paraboloid, and a torus. For each surface, a nonuniform
sizing with either a point, a line, or a circle refinement is considered. That is, more
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Fig. 5.4. ACVDT and ACVT on an ellipsoid: with point refinement, top view.

Fig. 5.5. ACVT and ACVDT on a paraboloid: with line refinement, side view.

refined meshes are generated near those objects. The results are shown in Figures 5.4,
5.5, and 5.6, respectively. An anisotropic example is also given for the ACVT and
ACVDT on a saddle surface z = 2x2−4y2; the results are given in Figures 5.7 and 5.8.

In the isotropic cases, the average elements quality of the three ACVDTs are
0.984, 0.979, 0.978, respectively; and the minimum elements quality are all above 0.50.
Here, the surface element quality measure is in the range [0, 1] as defined in [20], with
1 being the optimal value. These statistics demonstrate that the generated ACVTs
on the surfaces provide well-distributed vertices, which in turn produces high-quality
isotropic triangular surface meshes.
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Fig. 5.6. ACVT and CVDT on a torus: with circle refinement, top view.

Fig. 5.7. ACVT and CVDT on a saddle: with the metric tensor of type (5.1).

In the saddle surface example, two cases are considered: one of type (5.1) with
H1 : H2 : H3 = 1 : 10 : 1 and the other based on a curvature-related metric of
type (5.2). The ACVTs and ACVDTs of the two cases are shown in Figures 5.7
and 5.8, and the average elements quality of the two ACVDTs are 0.971 and 0.968,
respectively; also, both have minimum element qualities above 0.45. These elements
quality statistics are measured under the given metric, and they demonstrate that our
proposed method is indeed effective in anisotropic cases.

6. Conclusion and future work. In this paper, a novel definition of ACVTs
with respect to a given Riemannian metric is introduced. It is a consistent general-
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Fig. 5.8. ACVT and CVDT on a saddle: with a curvature controlled tensor of type (5.2).

ization of the standard CVTs in the Euclidean metric, and the ACVTs share similar
optimization and best approximation properties as their conventional CVT coun-
terparts in the Euclidean metric which make them valuable for high-quality mesh
generation and optimization. Comparisons with related concepts previously studied
in the literature are also made.

To approximate the ACVT, we apply the Lloyd iterations to move the generators
to their desired positions. An effective and efficient approximation of the AVR is
proposed using the ADT governed by the Riemannian metric. The ACVT is then
applied to the two-dimensional anisotropic Delaunay mesh optimization and to quality
meshing on general surfaces. Numerical examples demonstrate that the proposed
definition of ACVT and its construction are computationally effective and lead to
successful applications.

There are a number of issues to be studied further. In particular, more pre-
cise theoretical analysis are needed in identifying conditions on the metric, geometry,
and the generator distributions that guarantee the well-defined duality between the
AVTs and the ADTs. Systematic studies on the errors associated with the algorithms
proposed here for the approximate constructions of the ACVTs are also worthwhile.
Computationally, the acceleration of the Lloyd iteration and various other complex-
ity issues remain to be investigated. The three-dimensional realizations may also be
explored. In addition, we are also working on the applications of the ACVTs and the
corresponding ACVDT meshes to numerical partial differential equations in both Eu-
clidean spaces and on Riemannian manifolds [18], especially in the context of adaptive
algorithms.

Acknowledgments. The authors would like to thank the referees for their valu-
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paper.
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