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Anisotropic charged fluid spheres in D space—time
dimensions
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The equations describing the hydrostatic equilibriimass continuity and
Tolman—Oppenheimer—Volkoffof a static anisotropic general relativistic fluid
sphere are obtained iBD (D=4) space—time dimensions in the presence of a
cosmological constant. The formalism thus developed is used to study homoge-
neous anisotropic constant density charged fluid spheres and homogeneous aniso-
tropic charged spheres with a neutral isotropic core in higher dimensions. For these
configurations and with a particular choice of the proper charge density a complete
solution of the coupled Einstein—Maxwell equations is obtained.2@0 Ameri-

can Institute of Physic§S0022-2488)0)04807-6

I. INTRODUCTION

The study of the static anisotropic fluid spheres is important for relativistic astrophysics. The
theoretical investigations of Ruderrmaabout more realistic stellar models show that the stellar
matter may be anisotropic at least in certain very high density ranged@°g/cnt), where the
nuclear interactions must be treated relativistically. According to these views in such massive
stellar objects the radial pressure may not be equal to the tangential one. No celestial body is
composed of purely perfect fluid. Anisotropy in fluid pressure could be introduced by the exis-
tence of a solid core, by the presence of type 3A superfluid or by other physical phenomena. The
starting point in the study of fluid spheres is represented by the interior Schwarzschild solution
from which all problems involving spherical symmetry can be modelled. Bowers and?liave
investigated the possible importance of locally anisotropic equations of state for relativistic fluid
spheres by generalizing the equations of hydrostatic equilibrium to include the effects of local
anisotropy. Their study shows that anisotropy may have non-negligible effects on such parameters
as maximum equilibrium mass and surface red-shift. Consenza, Herrera, Esculpi, and®Witten,
Bayin;* Krori, Bargohain and Dewvi,Maharaj and Maartefihave obtained different exact solu-
tions of the Einstein field equations describing the interior gravitational field of anisotropic fluid
spheres. Bohra and MeHrand Omote and Sdtdave studied charged spheres in the presence of
matter with mass-charge and radius charge relations emerging from the static solution. Several
other anisotropic fluid sphere configurations have been analyzed using various®atfsatma-

Iytical solutions of the Einstein—Maxwell equations for various charged static spherically sym-
metric configurationgboth isotropic and anisotropihave been obtained in the pap&ts-®

Lately there has been an increasing interest in the study of compact astrophysical olijects in
space—time dimensions, prior to any compactification. Hence Krori, Borgohain, arfl lizas
extended the interior Schwarzschild solution with vanishing normal pressure of Fforide3
space—time dimensions in the presence of a cosmological constant. Wolf has analyzed fluid
sphere® and charged fluid spherdsn D space—time dimensions with the condition of vanishing
normal pressure. The Tolman—Oppenheimer—VolkdV) equation has been generalizedXo
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(D=4) space—time dimensions with isotropic fluid pressures and the model of the homogeneous
star has been solved in the pafferhile charged isotropic fluid-dimensional spheres in the
presence of a cosmological constant have been considered in thé?paper.

The purpose of the present paper is to obtain the equations which describe the hydrostatic
equilibrium of an anisotropic, spherically symmetric, static fluid configuratioB ispace—time
dimensionsD=4 and in the presence of a cosmological constgeneralized mass-continuity
and TOV equations The formalism thus developed is used to study the homogeneous charged
fluid sphere inD (D=4) space—time dimensions with a particular choice of the proper charge
density and with anisotropy factor proportional to the electric field. A generalization of the model
in the case of a homogeneous anisotropic chafelimensional sphere with neutral core is also
developed. Exact solutions of the TOV and gravitational field equations are obtained and mass-
charge and radius-charge relations are deduced in both cases.

The present paper is organized as follows: In Sec. Il, using the Einstein gravitational field
equations inD space—time dimensions we deduce the generalized mass-continuity and TOV
equations for a static anisotropic fluid sphere. A nondimensional form of these equations is also
obtained. The hydrostatic equilibrium equations for an anisotropic charged fluid sphere with
constant mass density and with a particular choice of the proper charge are formulated in Sec. IlI
and their exact solutions are found in Sec. IV. The case of a homogebedimensional homo-
geneous charged sphere with neutral core is considered in Sec. V. The results are summarized in
Sec. VI.

Il. GENERALIZED TOLMAN-OPPENHEIMER-VOLKOFF EQUATION IN D SPACE-TIME
DIMENSIONS

In D (D=4) space—time dimensions the spherically symmetric line element takes thé&*form,
dsg?=e"(0(dx°)2—erdr?—r2d#2—r? sir? 6;d 65— r? sir? 6, sir? 6,d 63
__r25|n2 01'S|n2 0D,3d(P2. (l)

Here,

D-1_

D72:0D*31 X =

x°=ct, x'=r, x°=6,, x3=60,,..., X
(r is the radial coordinate ilD space-time dimensiohsith domain O<sr<co, 0<6,< (i
=1,... D—-3), 0<¢=<2w. The Einstein gravitational field equations in the presence of a cos-
mological constant are

1 87G 87G

For a spherically symmetric anisotropic matter distribution the components of the energy-
momentum tensor are given by

T!(:(PCZ"‘ pL)uuf— pL‘S:(—i_(pr_pL)XiXk! C)

whereu' is theD-dimensional velocityy' = she ™ /2, y' is the unit spacelike vector in the radial

direction, x'= 8,e~ ™2, p is the energy density, is the pressure in the direction gf (normal
pressurg andp, is the pressure on théd(—2) space orthogonal tg; (transversal pressuren
the present paper we suppgsesp, . The case,=p, corresponds to the isotropic fluid sphere.
A=p, —p, is a measure of the anisotropy and is called the anisotropy fattor.

For the metric(1), the gravitational field equation®) become

(D-2)\'e™™ (D-2)(D-3)(e *-1) 8%wG 8#G
2r - 2r2 = CZ p+ C4 A! (4)
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(D-2)v'e* (D-2)(D-3)(e*~1) 87G  87G
2r + 2r2 - C4 pr— C4 A! (5)

Vow'? V’)\'+(D—2)(V'—)\’)+(D—3)(D—4)(e_)‘—1)_87TG 87G

—\ o o — _
12 * 4 4 4r 2r2 & Pim—z A,
(6)
where we have denotéd= d/dr. From the Bianchi identitieﬁ':ﬂk:O it follows
2p, 2(D-2 -
o 2P 20-2)(p—p) -
pC-+pr (pc=+po)r
From Eq.(4) we immediately obtain
d(rP3e™) o_4 87G 2 o_, 16mGA
Tar . P 5 T (g ®
or
., 871G 2 1 fr b-24 167GA 5 g
e i LA e T Tl ®
and
2GF(D)M(r) 167GA
“N_1q_ _ 2
e =" D-1)(D-2)c*" (10
where we have denoted
. . ' D-2 D-2
F(D)ZW and M(I’)Z? 0’772 p(r)r dr. (11)

Using Eqgs.(7), (9), and(11) in the gravitational field equatiofb) we obtain the generalized
TOV equation in arbitranD space—time dimensions, describing the equilibrium of an anisotropic
spherically symmetric configuration in the presence of a cosmological constant,

Glpc?+py)| o = ) P14 (D-3)F(D)M(r)
c - r - r
dp, e TPIo=2)c" P D1 , (D=2)(p.—p))
dr o2 2GF(D)M(r) 167GA 5 r '
' D=3 (D-1)(D-2)c*"
12
A dimensionless form of the generalized TOV equatid2) and of the mass continuity
equation,
dM 1
W=?2D*2wp(r)rD*2 (13

can be obtained if we introduce a dimensionless independent vargatel the dimensionless
functionse(7), P.(7%), P, (%) by means of the transformations,

r=an, p=pe, Pr=pcP, P =pcC’P,, M=M*m. (14)

Downloaded 06 Nov 2006 to 147.8.21.97. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



J. Math. Phys., Vol. 41, No. 7, July 2000 Higher dimensional anisotropic charged fluid stars 4755

Herea is a scale factofa characteristic lengthp. andM* being a characteristic density and
mass, respectively.

With the use 0f14) in Eqgs.(12) and(13) we obtain the following dimensionless forms of the
mass continuity and TOV equations:

dm

WZUD_ZS, (19
dPr:_(8+Pr)[(Pr_M)nD_1+(D_3)m]+(D_2)(PL_Pr) 16
dzy - 2m ) 7 '

7 1—770——3—/“7
where we have taken
1 (D—2)c? 2A
*x_ — _oD-2 D-1 2_ _
MP=2m2™ "pd™ 5 &= e, AT DD (7

If the normal and tangential pressures and P, are independent variables then the TOV
equation(16) is, from mathematical point of view, a Riccati-type equation of the f8rm

d77r=A(77)P,2+B(1;)Pr+C(77) (189
with
B 7 _ (D-3)m+(e—pm)n°"t D-2
A(7])__ om 2: B(’])—_ 5 s 2m ) - 7
1= —p5=3—un U 1-—p=3—uny
7 ]
and
_ _ D—-1 _
Clm=— [(D=3)m—un”"*le (D—-2)P,

_ 2m 7
77D 2( 1- 7]D—a _,U~772)

Equationg15)—(16) form a system of two coupled differential equations in four variabtes
e, P,, andP, . To obtain a general solution of the system we have to specify two physically
reasonable functional relations among the four variables. Usually suitable formarafP, are
chosen.

The system(12)—(13) or (15)—(16) must be integrated with some boundary conditions. These
conditions depend on the explicit physical meaning of the energy demsityrmal and tangential
pressurep, andp, and they have to be specified in every given physical situation.

IlI. HOMOGENEOUS ANISOTROPIC STATIC CHARGED FLUID SPHERES IN D
SPACE-TIME DIMENSIONS

The Lagrangian of the electromagnetic fieldDnspace—time dimensions is given’fy’

1 ik 1 i
L=—FuF = cI'A, 19
wherej', i=0,... D—1 is the D dimensional current density that for nonconducting fluids

becomeg'=peU' (with p, the proper charge densjify; is theD-dimensional potential, anid is
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a constant. The electromagnetic field tenbgy is defined in terms of the potentid|; through
Fic=(0A1x) — (A 19x¥). The field tensof , satisfies the Maxwell equations

Fici+Fri+Fi=0. (20

In the rest frame of reference we adopt the gaégeb(r),0,...,0). Varying (19 with
respect toA; gives theD-dimensional Maxwell equatiofs

1 J ik__i-i
fgmw—_gF )= 71" (21)

In D (D=4) space-time dimensions the energy-momentum tensor of the electromagnetic field
from (19) can be represented in the form,
4
K

1

< FinF'™a" (22

Th=— —F;F*+
For a static charged fluid sphere the current deniityas, forr <R (R is the radius of the
spherg, only one component,

. dx? _
JOZPeE=Pee (12), (23

In the following we shall consider static charged spherically symmetric configurations char-
acterized by a particular form of the proper charge density obtained by setting

pe=poe” M, (24

and we shall suppose thag is a constant.
The electromagnetic field has only one nonzero compoR&hiand the Maxwell equation
(21) gives

e~ [(r+N)12]
F01=—rD——zQ(r), (25

where we have denoted

KpO D-1

K (r
Q(f):ZfopofD_zdFZMF (26)

The electric field intensityE is defined as usual byE?=—Fq,FO=Q?(r)/r?(C~2

= K?p3/16(D—1)?r2.
In order thatQ represents the charge within thB £ 1) dimensional sphere we have

4(D-1)7P~ "2

K= D-1|
— !
(K=167 for D=4).
For the components of the energy momentum tensor oDtldmensional massive charged
anisotropic fluid sphere with proper charge density given by(E4). we find, by using Eqs(26)
and(22),

(27)
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2 Q4r) 2 QAr)
T8=p02=PmCZ+Kr—2‘(DTSv TiZ—Pr:—DmﬁRr—z‘(ﬂ, (28)
2 D-1 2 Q4r)
To=""" =TD,1=—DL=—DM—Rr_2(ﬁjv (29

wherep,, is the mass density ang,,, andp,,, are the normal and transversal hydrostatic pres-
sures of the matter fluid, respectively.

In the following, we shall restrict our analysis only to the case of the homogeneous fluid
sphere, that is we shall suppose that the energy depgityf the matter is constant.

We shall introduce now the transformatiofig}) (with p.= p,,=constankin the form,

r=amn, p=pme, pmr:PmCZPmrv prm_:meZPmJ.: pr:PmCZPry pJ.:PmCZPJ.y

(30)
which give
8:1+L,72 P,=P —an P, =P +an (32
2(b—-1) "’ romo2(b-1)"" Lom ot 2p-1) 7
where we have denoted
2
_(D-2) Kpj

“T(D—1) 32aGp%’

By supposing that the dynamical anisotropy in the fluid is due to the presence of the electric
field, it is reasonable to prescribe the energy-momentum tensor of the matter and the anisotropy
factor such that the tangential and radial matter pressures are linearly related with the electric field.
Therefore we assume that

A:pm_pmr:a’,Eza (32

with a’ a constant. Hence in the dimensionless variables introduced above b{BBqgae have

aa’

_ - = 2
By using Eqs(33) and(31), Egs.(15—(16) which describe the hydrostatic equilibrium of an
anisotropic homogeneous static charged fluid sphei2 gpace—time dimensions take the form,

dm
- __D-2 _* 2
D-3 20,
dp, . (1+Pyy) Poi—nt g7 " pz—17 |7
dg 2 o +B7, (35)
1—(m+/¢)772_D7__1774
where we have denoted
o o’
ﬁ:m 1+(D—2) 1+T } (36)

For r>R from the Maxwell equations we obtain
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Fo=— Iﬂiiv 37
and, consequently,
QZ
Tg:Tizﬁ_jrz EN (38)

whereQ= constant is the charge included within radRs
In this case the Einstein equatio®—(6) give (v+A=0),

2GM:F(D 1 321G Q? 1 160GA
er—g-h_g_ 2GMFD) Q 2 (39)

Z 03 (D_2)(D-3)c? 1203 (D_1)(D_2)c"
whereM, is the total mass of the charged fluid sphere. EquaB8nhrepresents thB-dimensional
generalization of the Reissner—Nordstrom—de Sitter solution for a central cQarge

In order to represent a physically acceptable anisotropic fluid sphere the TOV equations
(34)—(35) must be integrated with the boundary conditions,

m(0)=0, (40
Pm(0)=P;. (41)

Equation(41) assumes that the radial matter presgeigg remains finite at the center of the
sphere. We shall also require vanishing of the radial pressure at the boundary

Pmr(7s) =0, (42

wherens=R/a is the value of the variable at the surface of the sphere. In the absence of surface
concentration of charge at=R, we require the continuity of the field tensét,. From the
continuity of the radial electric field we obtain the condition,

Q

E(R)
Finally, we have to match the interior line elemdfj with the D-dimensional Reissner—
Nordstrom—de Sitter metric across the boundary, requiring the continuity of the gravitational
potentialse” ande* atr=R.

IV. GENERAL SOLUTION OF THE GRAVITATIONAL FIELD EQUATIONS FOR A
HOMOGENEOUS ANISOTROPIC CHARGED FLUID SPHERE

With the use of the boundary conditié#0) the mass-continuity Eq34) can be immediately
integrated to give

D-1
m(7n)= Y P— 2 (44)
P=p-1|"" 2D+ 7|
In order to solve the TOV equatia35) we shall introduce a new variable,
2 2 2
n° (D°=1)y 7§
Y=ot 2, ~ 7 Ve Yelyeysl (45

where we have denoted
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and the values of the new variabjeat the center of th®-dimensional sphere and at the surface

are
_(D*-1)y
Ye= Ao
and
2 2
78 (D*-1)y
Ys=73 ba
respectively. We also denote
1
r+ Ve ye
52:+, Po=1+Pp. (46)

Hence Eq(35) becomes

Y
Po| Po— —
dP0: 0( 0 ycy

—_— =+, 4
& B (47)
Ye
and must be integrated with the boundary condition,
Po(ye)=1+P¢. (48)

Equation(47) is a Riccati-type equation. After trying many forms Bf, we have obtained
two particular solutions of the form,

Y
P01,2=y—(yi b(8%—y?)1?), (49
(o3

whereb=/(By.— y)/y. By means of the standard transformation,

Po—Po
Po—Po2’

w= (50)

the Riccati equationi4?) is transformed into a first order linear differential equation of the form

dw 2b o ”
dy @y o

with the general solution given by

W(y)=CeX[{—2b sinl(%”, (52
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with C>0 a constant of integration. The constant of integration is determined from the boundary
condition P, (Y.) =1+ Pg(Y.), thus leading to the following expression of the normal matter
pressureP,,, :

Pmr(Y)= yl y—b( 52—y2)1’zcotanlf d—b sinl<%) ) } -1, (53

where we have introduced a new constant denoted by

BYc—y ) F{ BYc—v . ( YYe
—1+y+1/ —P.|exg2\/ sin | \/
4 y c y Yo+l

Cc Cc

BYc—vy

<I>—1I
_En

—1+y— —P.
The transversal matter pressure of the chafgedimensional fluid sphere follows from E3)
and is given by

y

)

Equationg44), (53), (54) represent the exact general solution of the equations which describe
the hydrostatic equilibrium of a charged, homogeneous fluid sphddespace—time dimensions.
From Eq.(7) a straightforward integration yields

!

aax
oYY B4

Pm (V)= yl y—b( 52—y2)1’200tan76 ®—bsin?t
C

CoF(y)
W=~ 55
(1 Pry(y))? 59
where we have denoted
F = 2a 1+(D-2 l 1 f dy
W=ep g1+ O=2\ 7| | 155,

andC, is a non-negative constant of integration.
In the variabley we can represent the variation of the metric tensor compogeim the
interior of the sphere in the simple form,

Ye 1
=22 . 56
y 6~y 8

The radiusk of the static anisotropic charg&tdimensional fluid configuration is determined
from the conditionP,,(R)=0 and can be represented as

(Yot Dye . Yws
R=/ sm( ) (57)
Y VBY:— Y

wherewg is a solution of the algebraic equation,

Yo ybé
y—3|n(w5)= y—cos{ws)cotanhjtb—wsHl. (58
C C

In order to match the above metric smoothly on the boundary surfaéewith the Reissner—
Nordstrom—de Sitter metric we have to require the continuity of the gravitational potential across
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that surface. Matching Eq56) with the exterior Reissner—Nordstrom—de Sitter gravitational
metric tensor componel(89) at the boundaryzysz(n§/2) +Y. gives the value of the integra-
tion constantC, in the form

R

Com 23
O y.F(ys)

(59

From Eq.(26) we obtain the total charge of the charged fluid configuration as

B KPORD_l

an-1) o0

while the total mas$/, of the sphere is given by
D

1
"D-1

R
a

a+ a R
R 2(D+1)a

M, . (61)

Equation(61) leads to the following relation relating the total mass of a homogeneous aniso-
tropic fluid sphere with anisotropy factor proportional to the electric field to its total charge:

Q 4(D_1))(D+1)/(D—1)

4D-1)a a
Mt:_D KPO

Kpg | 2a(D’—1)

QZ/(D*l) . (62)

a

For the present solution the electric field is also continuous at the boundary of the sphere.

V. HOMOGENEOUS ANISOTROPIC CHARGED FLUID SPHERES WITH NEUTRAL CORE

In the previous section we have analyzed a homogeneous anisdirafinensional charged
fluid sphere with the electric charge distributed continuously throughout the sphere. For this
configuration and for a particular choice of the proper electric charge density the general solution
of the Einstein—Maxwell equations has been obtained. In the present section we shall generalize
the previous model by considering a spherical distribution of an anisotropic charged
D-dimensional fluid, with proper electric charge density given again by(Zt, which surrounds
a neutral core of isotropic homogeneous fluid. The energy density of the matter is supposed to be
a constant in the whole spheyg,= constant and for simplicity we suppose that it has the same
value in both neutral and charged regions. The radius of the core and of the outer surface of the
sphere are, andrg, respectively.

For the homogeneous neutral cdregion ) the massm,, isotropic matter pressurB,,
(P,=P, =P,), metric functionse; * ande/ can be obtained by integrating the mass-continuity,
TOV and gravitational field equations for a homogeneous isotropic sphere in the presence of a
cosmological constant and are given in the dimensionless variébigdy

mmm=g;;, (63

Pml(n):(1—y><1+Pc>—[<1—y>+Pc]m 60
[(1=y)+PIV1-y7?—(1+Py)

a“”=1—jyé—u¥, (65)

e/ =C[(1+Pc— 91— y7*~(1+Py)]2 (66)

Downloaded 06 Nov 2006 to 147.8.21.97. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



4762 J. Math. Phys., Vol. 41, No. 7, July 2000 T. Harko and M. K. Mak

C, is a constant of integration and the boundary conditiof®)=0 andP,,(0)=P. have been
used.

In the second regiofil), which contains an anisotropic chargeeddimensional homogeneous
fluid distribution restricted in the domaim,< < 5, of the dimensionless space variable the
general solution of the mass continuity, TOV and gravitational field equations are

_n y o W 1+ 2 6
M= —1|M 30+ 7| -1/t 20+ ") 67
_ y[cie 0y by~ (y+ by y?)
Pmrll(y)_ y_c C”e‘zb sin’l(ylﬁ)_l -1, (68)
2 @ 277|2 @

“N_q_ .2 2 2
=t ”[D—l Yoo T o-1l 2o ) ®9
eﬁ(y)= COIIF(y) ;. (70)

(1+Pmu(y))
The total charge contained in the second region is given by
_ Kpo D-1_ ,.D-1

Q—m(R e, (72)

whereR is the total radius of the sphere.

In the third region(lll), r >R, the geometry of th®-dimensional spherically symmetric static
space—time is described by the Reissner—Nordstrom—de Sitter solution of the gravitational field
equations,

2mg  alps - H?
nD*3 (D_Z)(D_S)nZ(D73) A/

e =ey"=1- (72
Matching the radial pressure with the matter pressure of the neutral coregt, P, (7))

=Pmnm(7) leads to the expressions of the const@ptand of the complete form of the radial
pressure given by

RS

where we denoted the newly introduced constanty,byn,zlz +y. and

P (Y)= yl[y— b( 52—y2)1’200tam€ ®,—bsint
c

y (1= ) (1+Po) = (1+Pc— y)V1—y7f
—(y,+by&*—yf)—1-

g a2 (1+Pc=y)V1-y7 —(1+P)

y (1= ) (1+P)—(1+P.— yV1—yn?|
—(y,—by&—y?)—1-

yo i Y (14 Po— )1 y7—(1+Py)

)1
®,=bsin 1(5 +§In

The radius of the stellar configuration is obtained from the condition of the vanishing radial
pressure at the outer surface of the sphere, that is, by solving the algebraic edquations)
=0, and can again be represented in the following parametrical form;

/('yyc+1)yc . ( Yws )
Y VBYc— Y
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wherewg is a solution of the algebraic equation,

Vo vbé
—sin(wg) = —— cog wg)cotanid — wg) + 1. (75
Ye Ye

By applying the condition of continuity of the metric functieri at the boundaries= » and
r=R, e/(n)=e;(n) ande|(ns)=¢€|(ns) we obtain the expressions of the constaBitsand

COII!
_y (8~ Y9F(ys) 6
Yo [(14+Pe— Y VI— y 72— (1+ P IA(1+Pr(y)
(8°—y3F(ys)
OHZM, 7

Ye

The continuity of the metric tensor componeftand of the radial electric fiel& across the
two boundaries separating the neutral core and the charged region and the outer surface of the
sphere from the vacuum is also satisfied by the present solutions.

VI. DISCUSSIONS AND FINAL REMARKS

In the present paper we have obtainedirspace—time dimensions a complete solution for a
homogeneous anisotropic charged fluid sphere, whose proper charge density is represented by
pe=poe~ M2, wherep, is a constant and for an anisotropic charged fluid sphere with a neutral
core. The obtained solutions, corresponding to this particular functional form of the charge density
are nonsingular throughout the sphere. We have not discussed the stability of such spheres but it
would most likely be unstable since the electrostatic repulsion would tend to destabilize it.

From Egs.(54) and(68) it follows that the variabley must satisfy the conditiog< 6, for all
y. Particularly, fory=yg, with yg the value ofy at the surface of the sphere, we obtain

1/2
-1

1/2

Ns< (Zyc)l/2 = Mmax- (78)

1
1+ —
YYe
Hence,nmax gives an upper limit of the radius of the charged fluid sphere with proper charge

density given by Eq(24) as a function of the values of the cosmological constant and of the
electrical charge. Similarly, from Eq44) we obtain for the total mass of the charged sphere,

D—-1
Mma a

Thereforem,,,, is the upper limit of the total mass of the charged fluid sphere corresponding
to the particular charge densi(24).

The results obtained in the present paper essentially depend on the functional form of the
proper charge density given by E4). This form has been chosen mainly for mathematical
convenience, in order to provide an exact closed form solution of the gravitational field equations.
Other, physically better motivated charge density profiles, could lead to different mass and charge
distributions inside the higher dimensional charged fluid sphere and, consequently, to different
results on the maximum allowable mass and radius of this type of general relativistic object.

An interesting question is the possibility of observing such higher dimensional charged rela-
tivistic objects in an astrophysical setting. The observatiogn-tdy bursts prompted investigators
to suggest that there might be a relation between the strong-coupling phase of QED and the
detectedy-ray bursts. The presence of certain anomalies in the spectryarayf bursts led some
scientists to speculate that these very violent cosmic events are emissions from charged objects in
more than four space—time dimensiGA©n the other hand compact stellar objects formed from
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a mixture of quarks and gluons are also supposed to form at the final stages of stellar evolution.
The quark-gluon plasma could exist at sufficiently high densities as a result of the gravitational
collapse. In the case of neutron stars a phase transition of neutron matter to quark matter at zero
temperature or temperatures small compared to degeneracy temperature allows the existence of
hybrid stars, i.e., stars having a quark core and a crust of neutron matter with appropriate pressure
balancing at the interface. In fact, quark matter with nonzero electrically charged constituents
rather than neutron matter could hold the large magnetic field of the ptilsard hence it is
possible that for strange-matter made stars the effects of the nonzero electrical charge be impor-
tant.
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