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Anisotropic charged fluid spheres in D space–time
dimensions
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The equations describing the hydrostatic equilibrium~mass continuity and
Tolman–Oppenheimer–Volkoff! of a static anisotropic general relativistic fluid
sphere are obtained inD (D>4) space–time dimensions in the presence of a
cosmological constant. The formalism thus developed is used to study homoge-
neous anisotropic constant density charged fluid spheres and homogeneous aniso-
tropic charged spheres with a neutral isotropic core in higher dimensions. For these
configurations and with a particular choice of the proper charge density a complete
solution of the coupled Einstein–Maxwell equations is obtained. ©2000 Ameri-
can Institute of Physics.@S0022-2488~00!04807-6#

I. INTRODUCTION

The study of the static anisotropic fluid spheres is important for relativistic astrophysics
theoretical investigations of Ruderman1 about more realistic stellar models show that the ste
matter may be anisotropic at least in certain very high density ranges (r.1015g/cm3), where the
nuclear interactions must be treated relativistically. According to these views in such ma
stellar objects the radial pressure may not be equal to the tangential one. No celestial b
composed of purely perfect fluid. Anisotropy in fluid pressure could be introduced by the
tence of a solid core, by the presence of type 3A superfluid or by other physical phenomen
starting point in the study of fluid spheres is represented by the interior Schwarzschild so
from which all problems involving spherical symmetry can be modelled. Bowers and Liang2 have
investigated the possible importance of locally anisotropic equations of state for relativistic
spheres by generalizing the equations of hydrostatic equilibrium to include the effects of
anisotropy. Their study shows that anisotropy may have non-negligible effects on such para
as maximum equilibrium mass and surface red-shift. Consenza, Herrera, Esculpi, and W3

Bayin,4 Krori, Bargohain and Devi,5 Maharaj and Maartens6 have obtained different exact solu
tions of the Einstein field equations describing the interior gravitational field of anisotropic
spheres. Bohra and Mehra7 and Omote and Sato8 have studied charged spheres in the presenc
matter with mass-charge and radius charge relations emerging from the static solution. S
other anisotropic fluid sphere configurations have been analyzed using various ansatz.9–12 Ana-
lytical solutions of the Einstein–Maxwell equations for various charged static spherically
metric configurations~both isotropic and anisotropic! have been obtained in the papers.13–19

Lately there has been an increasing interest in the study of compact astrophysical objecD
space–time dimensions, prior to any compactification. Hence Krori, Borgohain, and Das20 have
extended the interior Schwarzschild solution with vanishing normal pressure of Florides21 to D
space–time dimensions in the presence of a cosmological constant. Wolf has analyze
spheres22 and charged fluid spheres23 in D space–time dimensions with the condition of vanishi
normal pressure. The Tolman–Oppenheimer–Volkoff~TOV! equation has been generalized toD
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(D>4) space–time dimensions with isotropic fluid pressures and the model of the homoge
star has been solved in the paper24 while charged isotropic fluidD-dimensional spheres in th
presence of a cosmological constant have been considered in the paper.25

The purpose of the present paper is to obtain the equations which describe the hydr
equilibrium of an anisotropic, spherically symmetric, static fluid configuration inD space–time
dimensions,D>4 and in the presence of a cosmological constant~generalized mass-continuit
and TOV equations!. The formalism thus developed is used to study the homogeneous ch
fluid sphere inD (D>4) space–time dimensions with a particular choice of the proper ch
density and with anisotropy factor proportional to the electric field. A generalization of the m
in the case of a homogeneous anisotropic chargedD-dimensional sphere with neutral core is al
developed. Exact solutions of the TOV and gravitational field equations are obtained and
charge and radius-charge relations are deduced in both cases.

The present paper is organized as follows: In Sec. II, using the Einstein gravitationa
equations inD space–time dimensions we deduce the generalized mass-continuity and
equations for a static anisotropic fluid sphere. A nondimensional form of these equations
obtained. The hydrostatic equilibrium equations for an anisotropic charged fluid sphere
constant mass density and with a particular choice of the proper charge are formulated in S
and their exact solutions are found in Sec. IV. The case of a homogeneousD-dimensional homo-
geneous charged sphere with neutral core is considered in Sec. V. The results are summa
Sec. VI.

II. GENERALIZED TOLMAN–OPPENHEIMER–VOLKOFF EQUATION IN D SPACE–TIME
DIMENSIONS

In D (D>4) space–time dimensions the spherically symmetric line element takes the fo23

ds25en(r )~dx0!22el(r )dr22r 2du1
22r 2 sin2 u1du2

22r 2 sin2 u1 sin2 u2du3
2

2¯2r 2 sin2 u1¯sin2 uD23dw2. ~1!

Here,

x05ct, x15r , x25u1 , x35u2 ,..., xD225uD23 , xD215w

~r is the radial coordinate inD space–time dimensions! with domain 0<r ,`, 0<u i<p( i
51, . . . ,D23), 0<w<2p. The Einstein gravitational field equations in the presence of a
mological constant are

Ri
k2

1

2
Rd i

k5
8pG

c4 Ti
k1

8pG

c4 Ld i
k . ~2!

For a spherically symmetric anisotropic matter distribution the components of the en
momentum tensor are given by

Ti
k5~rc21p'!uiu

k2p'd i
k1~pr2p'!x ix

k, ~3!

whereui is theD-dimensional velocity,ui5d0
i e2 (n/2), x i is the unit spacelike vector in the radia

direction,x i5d1
i e2 (l/2), r is the energy density,pr is the pressure in the direction ofx i ~normal

pressure!, andp' is the pressure on the (D22) space orthogonal tox i ~transversal pressure!. In
the present paper we supposeprÞp' . The casepr5p' corresponds to the isotropic fluid spher
D5p'2pr is a measure of the anisotropy and is called the anisotropy factor.15

For the metric~1!, the gravitational field equations~2! become

~D22!l8e2l

2r
2

~D22!~D23!~e2l21!

2r 2 5
8pG

c2 r1
8pG

c4 L, ~4!
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~D22!n8e2l

2r
1

~D22!~D23!~e2l21!

2r 2 5
8pG

c4 pr2
8pG

c4 L, ~5!

e2lS n9

2
1

n82

4
2

n8l8

4
1

~D22!~n82l8!

4r D1
~D23!~D24!~e2l21!

2r 2 5
8pG

c4 p'2
8pG

c4 L,

~6!

where we have denoted85 d/dr. From the Bianchi identitiesTi ;k
k 50 it follows

n852
2pr8

rc21pr
1

2~D22!~p'2pr !

~rc21pr !r
. ~7!

From Eq.~4! we immediately obtain

d~r D23e2l!

dr
5~D23!r D242

8pG

c2

2

D22
rr D222

16pGL

~D22!c4 r D22 ~8!

or

e2l512
8pG

c2

2

D22

1

r D23 E
0

r

r~r !r D22dr2
16pGL

~D21!~D22!c4 r 2 ~9!

and

e2l512
2GF~D !M ~r !

r D23 2
16pGL

~D21!~D22!c4 r 2, ~10!

where we have denoted

F~D !5
1

~D22!2D25 and M ~r !5
1

c2 E
0

r

p2D22r~r !r D22dr. ~11!

Using Eqs.~7!, ~9!, and~11! in the gravitational field equation~5! we obtain the generalized
TOV equation in arbitraryD space–time dimensions, describing the equilibrium of an anisotr
spherically symmetric configuration in the presence of a cosmological constant,

dpr

dr
52

G~rc21pr !F 8p

~D22!c4 S pr2
2L

D21D r D211~D23!F~D !M ~r !G
r D22S 12

2GF~D !M ~r !

r D23 2
16pGL

~D21!~D22!c4 r 2D 1
~D22!~p'2pr !

r
.

~12!

A dimensionless form of the generalized TOV equation~12! and of the mass continuity
equation,

dM

dr
5

1

c2 2D22pr~r !r D22 ~13!

can be obtained if we introduce a dimensionless independent variableh and the dimensionles
functions«(h), Pr(h), P'(h) by means of the transformations,

r 5ah, r5rc«, pr5rcc
2Pr , p'5rcc

2P' , M5M* m. ~14!
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Herea is a scale factor~a characteristic length!, rc andM* being a characteristic density an
mass, respectively.

With the use of~14! in Eqs.~12! and~13! we obtain the following dimensionless forms of th
mass continuity and TOV equations:

dm

dh
5hD22«, ~15!

dPr

dh
52

~«1Pr !@~Pr2m!hD211~D23!m#

hD22S 12
2m

hD23 2mh2D 1
~D22!~P'2Pr !

h
, ~16!

where we have taken

M* 5
1

c2 p2D22rca
D21, a25

~D22!c2

8pGrc
, m5

2L

~D21!rcc
2 . ~17!

If the normal and tangential pressuresPr and P' are independent variables then the TO
equation~16! is, from mathematical point of view, a Riccati-type equation of the form26

dPr

dh
5A~h!Pr

21B~h!Pr1C~h! ~18!

with

A~h!52
h

12
2m

hD23 2mh2

, B~h!52
~D23!m1~«2m!hD21

hD22S 12
2m

hD23 2mh2D 2
D22

h

and

C~h!52
@~D23!m2mhD21#«

hD22S 12
2m

hD23 2mh2D 1
~D22!P'

h
.

Equations~15!–~16! form a system of two coupled differential equations in four variablesm,
«, Pr , and P' . To obtain a general solution of the system we have to specify two physi
reasonable functional relations among the four variables. Usually suitable forms of« and Pr are
chosen.

The system~12!–~13! or ~15!–~16! must be integrated with some boundary conditions. Th
conditions depend on the explicit physical meaning of the energy densityr, normal and tangentia
pressurespr andp' and they have to be specified in every given physical situation.

III. HOMOGENEOUS ANISOTROPIC STATIC CHARGED FLUID SPHERES IN D
SPACE–TIME DIMENSIONS

The Lagrangian of the electromagnetic field inD space–time dimensions is given by23,27

L52
1

K
FikFik2

1

c
j iAi , ~19!

where j i , i 50, . . . ,D21 is the D dimensional current density that for nonconducting flu
becomesj i5reu

i ~with re the proper charge density!, Ai is theD-dimensional potential, andK is
 06 Nov 2006 to 147.8.21.97. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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a constant. The electromagnetic field tensorFik is defined in terms of the potentialAi through
Fik5(]Ak /]xi) 2 (]Ai /]xk). The field tensorFik satisfies the Maxwell equations

Fik; l1Fkl; i1Fli ;k50. ~20!

In the rest frame of reference we adopt the gaugeAi(F(r ),0, . . . ,0). Varying ~19! with
respect toAi gives theD-dimensional Maxwell equations23

1

A2g

]

]xk ~A2gFik!52
K

4c
j i . ~21!

In D (D>4) space-time dimensions the energy-momentum tensor of the electromagneti
from ~19! can be represented in the form,

Ti
k52

4

K
Fil F

lk1
1

K
FlmFlmd i

k . ~22!

For a static charged fluid sphere the current densityj i has, forr ,R ~R is the radius of the
sphere!, only one component,

j 05re

dx0

ds
5ree

2 ~n/2!. ~23!

In the following we shall consider static charged spherically symmetric configurations
acterized by a particular form of the proper charge density obtained by setting

re5r0e2 ~l/2!, ~24!

and we shall suppose thatr0 is a constant.
The electromagnetic field has only one nonzero componentF01 and the Maxwell equation

~21! gives

F0152
e2 @~n1l!/2#

r D22 Q~r !, ~25!

where we have denoted

Q~r !5
K

4 E
0

r

r0r D22dr5
Kr0

4~D21!
r D21. ~26!

The electric field intensityE is defined as usual byE252F01F
015Q2(r )/r 2(D22)

5 K2r0
2/16(D21)2 r 2.

In order thatQ represents the charge within the (D21) dimensional sphere we have23

K5
4~D21!p~D21!/2

S D21

2 D !

~27!

~K516p for D54!.
For the components of the energy momentum tensor of theD dimensional massive charge

anisotropic fluid sphere with proper charge density given by Eq.~24! we find, by using Eqs.~26!
and ~22!,
 06 Nov 2006 to 147.8.21.97. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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T0
05rc25rmc21

2

K

Q2~r !

r 2(D22) , T1
152pr52pmr1

2

K

Q2~r !

r 2(D22) , ~28!

T2
25 ¯ 5TD21

D2152p'52pm'2
2

K

Q2~r !

r 2(D22) , ~29!

whererm is the mass density andpmr and pm' are the normal and transversal hydrostatic pr
sures of the matter fluid, respectively.

In the following, we shall restrict our analysis only to the case of the homogeneous
sphere, that is we shall suppose that the energy densityrm of the matter is constant.

We shall introduce now the transformations~14! ~with rc5rm5constant! in the form,

r 5ah, r5rm«, pmr5rmc2Pmr , pm'5rmc2Pm' , pr5rmc2Pr , p'5rmc2P' ,
~30!

which give

«511
a

2~D21!
h2, Pr5Pmr2

a

2~D21!
h2, P'5Pm'1

a

2~D21!
h2, ~31!

where we have denoted

a5
~D22!

~D21!

Kr0
2

32pGrm
2 .

By supposing that the dynamical anisotropy in the fluid is due to the presence of the e
field, it is reasonable to prescribe the energy-momentum tensor of the matter and the anis
factor such that the tangential and radial matter pressures are linearly related with the electr
Therefore we assume that

D5pm'2pmr5a8E2, ~32!

with a8 a constant. Hence in the dimensionless variables introduced above by Eqs.~30! we have

Pm'2Pmr5
aa8

4~D21!
h2. ~33!

By using Eqs.~33! and~31!, Eqs.~15!–~16! which describe the hydrostatic equilibrium of a
anisotropic homogeneous static charged fluid sphere inD space–time dimensions take the form

dm

dh
5hD22F11

a

2~D21!
h2G , ~34!

dPmr

dh
52

~11Pmr!FPmr2m1
D23

D21
2

2a

D221
h2Gh

12S 2

D21
1m Dh22

a

D221
h4

1bh, ~35!

where we have denoted

b5
a

D21 F11~D22!S 11
a8

4 D G . ~36!

For r .R from the Maxwell equations we obtain
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F0152
Q

r D22 , ~37!

and, consequently,

T0
05T1

15
Q2

r 2(D22) , ~38!

whereQ5constant is the charge included within radiusR.
In this case the Einstein equations~4!–~6! give (n1l50),

en5e2l512
2GMtF~D !

c2

1

r D23 1
32pGQ2

~D22!~D23!c4

1

r 2(D23) 2
16pGL

~D21!~D22!c4 r 2, ~39!

whereMt is the total mass of the charged fluid sphere. Equation~39! represents theD-dimensional
generalization of the Reissner–Nordstrom–de Sitter solution for a central chargeQ.

In order to represent a physically acceptable anisotropic fluid sphere the TOV equ
~34!–~35! must be integrated with the boundary conditions,

m~0!50, ~40!

Pmr~0!5Pc . ~41!

Equation~41! assumes that the radial matter pressurePmr remains finite at the center of th
sphere. We shall also require vanishing of the radial pressure at the boundary

Pmr~hS!50, ~42!

wherehs5R/a is the value of the variableh at the surface of the sphere. In the absence of sur
concentration of charge atr 5R, we require the continuity of the field tensorFik . From the
continuity of the radial electric field we obtain the condition,

E~R!5
Q

R2 . ~43!

Finally, we have to match the interior line element~1! with the D-dimensional Reissner–
Nordstrom–de Sitter metric across the boundary, requiring the continuity of the gravita
potentialsen andel at r 5R.

IV. GENERAL SOLUTION OF THE GRAVITATIONAL FIELD EQUATIONS FOR A
HOMOGENEOUS ANISOTROPIC CHARGED FLUID SPHERE

With the use of the boundary condition~40! the mass-continuity Eq.~34! can be immediately
integrated to give

m~h!5
hD21

D21 F11
a

2~D11!
h2G . ~44!

In order to solve the TOV equation~35! we shall introduce a new variable,

y5
h2

2
1

~D221!g

4a
5

h2

2
1yc , yP@yc ,yS#, ~45!

where we have denoted
 06 Nov 2006 to 147.8.21.97. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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g5
2

D21
1m

and the values of the new variabley at the center of theD-dimensional sphere and at the surfa
are

yc5
~D221!g

4a

and

yS5
hS

2

2
1

~D221!g

4a
,

respectively. We also denote

d25

S g1
1

yc
D yc

2

g
, P0511Pmr . ~46!

Hence Eq.~35! becomes

dP0

dy
52

P0S P02
g

yc
yD

g

yc
~d22y2!

1b, ~47!

and must be integrated with the boundary condition,

P0~yc!511Pc . ~48!

Equation~47! is a Riccati-type equation. After trying many forms ofP0 , we have obtained
two particular solutions of the form,

P01,25
g

yc
~y6b~d22y2!1/2!, ~49!

whereb5A(byc2g)/g. By means of the standard transformation,

w5
P02P01

P02P02
, ~50!

the Riccati equation~47! is transformed into a first order linear differential equation of the fo

dw

dy
1

2b

~d22y2!1/2w50 ~51!

with the general solution given by

w~y!5C expF22b sin21S y

d D G , ~52!
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with C.0 a constant of integration. The constant of integration is determined from the bou
condition Pmr(yc)511P0(yc), thus leading to the following expression of the normal ma
pressurePmr :

Pmr~y!5
g

yc
Fy2b~d22y2!1/2cotanhS F2b sin21S y

d D D G21, ~53!

where we have introduced a new constant denoted by

F5
1

2
lnU S 211g1Abyc2g

yc
2PcD expF2Abyc2g

yc
sin21SA gyc

gyc11D G
211g2Abyc2g

yc
2Pc

U .

The transversal matter pressure of the chargedD-dimensional fluid sphere follows from Eq.~33!
and is given by

Pm'~y!5
g

yc
Fy2b~d22y2!1/2cotanhS F2b sin21S y

d D D G211
aa8

2~D21!
~y2yc!. ~54!

Equations~44!, ~53!, ~54! represent the exact general solution of the equations which des
the hydrostatic equilibrium of a charged, homogeneous fluid sphere inD space–time dimensions

From Eq.~7! a straightforward integration yields

en(y)5
C0F~y!

~11Pmr~y!!2 , ~55!

where we have denoted

F~y!5expF 2a

D21 F11~D22!S a8

4
11D G E dy

11Pmr~y!G
andC0 is a non-negative constant of integration.

In the variabley we can represent the variation of the metric tensor componentel in the
interior of the sphere in the simple form,

el(y)5
yc

g

1

d22y2 . ~56!

The radiusR of the static anisotropic chargedD-dimensional fluid configuration is determine
from the conditionPmr(R)50 and can be represented as

R5A~gyc11!yc

g
sinS gvS

Abyc2g
D , ~57!

wherevs is a solution of the algebraic equation,

gd

yc
sin~vS!5

gbd

yc
cos~vS!cotanh~F2vS!11. ~58!

In order to match the above metric smoothly on the boundary surfacer 5R with the Reissner–
Nordstrom–de Sitter metric we have to require the continuity of the gravitational potential a
 06 Nov 2006 to 147.8.21.97. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



nal
-

niso-
:

ere.

r this
lution
eralize
rged

d to be
me
of the

ity,
e of a

4761J. Math. Phys., Vol. 41, No. 7, July 2000 Higher dimensional anisotropic charged fluid stars

Downloaded
that surface. Matching Eq.~56! with the exterior Reissner–Nordstrom–de Sitter gravitatio
metric tensor component~39! at the boundaryy5yS5(hS

2/2) 1yc gives the value of the integra
tion constantC0 in the form

C05
g~d22yS

2!

ycF~yS!
. ~59!

From Eq.~26! we obtain the total charge of the charged fluid configuration as

Q5
Kr0RD21

4~D21!
, ~60!

while the total massMt of the sphere is given by

Mt5
1

D21 S R

a D DS a

R
1

a

2~D11!

R

a D . ~61!

Equation~61! leads to the following relation relating the total mass of a homogeneous a
tropic fluid sphere with anisotropy factor proportional to the electric field to its total charge

Mt5
Q

aD F4~D21!a

Kr0
1

a

2a~D221! S 4~D21!

Kr0
D ~D11!/~D21!

Q2/~D21!G . ~62!

For the present solution the electric field is also continuous at the boundary of the sph

V. HOMOGENEOUS ANISOTROPIC CHARGED FLUID SPHERES WITH NEUTRAL CORE

In the previous section we have analyzed a homogeneous anisotropicD-dimensional charged
fluid sphere with the electric charge distributed continuously throughout the sphere. Fo
configuration and for a particular choice of the proper electric charge density the general so
of the Einstein–Maxwell equations has been obtained. In the present section we shall gen
the previous model by considering a spherical distribution of an anisotropic cha
D-dimensional fluid, with proper electric charge density given again by Eq.~24!, which surrounds
a neutral core of isotropic homogeneous fluid. The energy density of the matter is suppose
a constant in the whole sphere,rm5constant and for simplicity we suppose that it has the sa
value in both neutral and charged regions. The radius of the core and of the outer surface
sphere arer I and r S , respectively.

For the homogeneous neutral core~region I! the massmI , isotropic matter pressurePmI

(Pr5P'5Pm), metric functionseI
2l andeI

n can be obtained by integrating the mass-continu
TOV and gravitational field equations for a homogeneous isotropic sphere in the presenc
cosmological constant and are given in the dimensionless variables~14! by

mI~h!5
hD21

D21
, ~63!

PmI~h!5
~12g!~11Pc!2@~12g!1Pc#A12gh2

@~12g!1Pc#A12gh22~11Pc!
, ~64!

eI
2l(h)512

2mI

hD23 2mh2, ~65!

eI
n(h)5CI@~11Pc2g!A12gh22~11Pc!#

2. ~66!
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CI is a constant of integration and the boundary conditionsmI(0)50 andPmI(0)5Pc have been
used.

In the second region~II !, which contains an anisotropic chargedD-dimensional homogeneou
fluid distribution restricted in the domainh I<h<hs of the dimensionless space variable t
general solution of the mass continuity, TOV and gravitational field equations are

mII~h!5
hD21

D21 F11
a

2~D11!
h2G2

h I
D21

D21 F11
a

2~D11!
h I

2G . ~67!

PmrII~y!5
g

yc
FCIIe

22b sin21(y/d)~y2bAd22y2!2~y1bAd22y2!

CIIe
22b sin21(y/d)21

G21, ~68!

eII
2l512h2F 2

D21 S 11
a

2~D11!
h2D1mG1

2h I
2

D21 S 11
a

2~D11!
h I

2D , ~69!

eII
n(y)5

C0IIF~y!

~11PmrII~y!!2 . ~70!

The total charge contained in the second region is given by

Q5
Kr0

4~D21!
~RD212r I

D21!, ~71!

whereR is the total radius of the sphere.
In the third region~III !, r .R, the geometry of theD-dimensional spherically symmetric stat

space–time is described by the Reissner–Nordstrom–de Sitter solution of the gravitationa
equations,

eIII
n 5eIII

2l512
2ms

hD23 1
a~hS

D212h I
D21!2

~D22!~D23!h2(D23) 2mh2. ~72!

Matching the radial pressure with the matter pressure of the neutral core atr 5h I , PmI(h I)
5PmrII(h I) leads to the expressions of the constantCII and of the complete form of the radia
pressure given by

PmrII~y!5
g

yc
Fy2b~d22y2!1/2cotanhS F II2b sin21S y

d D D G21, ~73!

where we denoted the newly introduced constants byyI5h I
2/21yc and

F II5b sin21S yI

d D1
1

2
lnU g

yc
~yI1bAd22yI

2!212
~12g!~11Pc!2~11Pc2g!A12gh I

2

~11Pc2g!A12gh I
22~11Pc!

g

yc
~yI2bAd22yI

2!212
~12g!~11Pc!2~11Pc2g!A12gh I

2

~11Pc2g!A12gh I
22~11Pc!

U .

The radius of the stellar configuration is obtained from the condition of the vanishing r
pressure at the outer surface of the sphere, that is, by solving the algebraic equationPmrII(yS)
50, and can again be represented in the following parametrical form:

R5A~gyc11!yc

g
sinS gvS

Abyc2g
D , ~74!
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wherevS is a solution of the algebraic equation,

gd

yc
sin~vS!5

gbd

yc
cos~vS!cotanh~F2vS!11. ~75!

By applying the condition of continuity of the metric functionen at the boundariesr 5h and
r 5R, eI

n(h I)5eII
n (h I) and eII

n (hS)5eIII
n (hS) we obtain the expressions of the constantsCI and

C0II ,

CI5
g

yc

~d22yS
2!F~yS!

@~11Pc2g!A12gh I
22~11Pc!#

2~11PmrII~yI!!
, ~76!

C0II5
g~d22yS

2!F~yS!

yc
. ~77!

The continuity of the metric tensor componentel and of the radial electric fieldE across the
two boundaries separating the neutral core and the charged region and the outer surface
sphere from the vacuum is also satisfied by the present solutions.

VI. DISCUSSIONS AND FINAL REMARKS

In the present paper we have obtained inD space–time dimensions a complete solution fo
homogeneous anisotropic charged fluid sphere, whose proper charge density is represe
re5r0e2 (l/2), wherer0 is a constant and for an anisotropic charged fluid sphere with a ne
core. The obtained solutions, corresponding to this particular functional form of the charge d
are nonsingular throughout the sphere. We have not discussed the stability of such sphere
would most likely be unstable since the electrostatic repulsion would tend to destabilize it.

From Eqs.~54! and~68! it follows that the variabley must satisfy the conditiony,d, for all
y. Particularly, fory5yS , with yS the value ofy at the surface of the sphere, we obtain

hS,~2yc!
1/2F S 11

1

gyc
D 1/2

21G1/2

5hmax. ~78!

Hence,hmax gives an upper limit of the radius of the charged fluid sphere with proper ch
density given by Eq.~24! as a function of the values of the cosmological constant and of
electrical charge. Similarly, from Eq.~44! we obtain for the total mass of the charged sphere

ms<
hmax

D21

~D21! F11
a

2~D11!
hmax

2 G5mmax. ~79!

Thereforemmax is the upper limit of the total mass of the charged fluid sphere correspon
to the particular charge density~24!.

The results obtained in the present paper essentially depend on the functional form
proper charge density given by Eq.~24!. This form has been chosen mainly for mathemati
convenience, in order to provide an exact closed form solution of the gravitational field equa
Other, physically better motivated charge density profiles, could lead to different mass and
distributions inside the higher dimensional charged fluid sphere and, consequently, to di
results on the maximum allowable mass and radius of this type of general relativistic objec

An interesting question is the possibility of observing such higher dimensional charged
tivistic objects in an astrophysical setting. The observation ofg-ray bursts prompted investigator
to suggest that there might be a relation between the strong-coupling phase of QED a
detectedg-ray bursts. The presence of certain anomalies in the spectrum ofg-ray bursts led some
scientists to speculate that these very violent cosmic events are emissions from charged ob
more than four space–time dimensions.28 On the other hand compact stellar objects formed fr
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a mixture of quarks and gluons are also supposed to form at the final stages of stellar evo
The quark-gluon plasma could exist at sufficiently high densities as a result of the gravita
collapse. In the case of neutron stars a phase transition of neutron matter to quark matter
temperature or temperatures small compared to degeneracy temperature allows the exis
hybrid stars, i.e., stars having a quark core and a crust of neutron matter with appropriate p
balancing at the interface. In fact, quark matter with nonzero electrically charged consti
rather than neutron matter could hold the large magnetic field of the pulsars29 and hence it is
possible that for strange-matter made stars the effects of the nonzero electrical charge be
tant.
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