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Abstract We generalize Penrose’s notion of conformal infinity of spacetime, to
situations with anisotropic scaling. This is relevant not only for Lifshitz-type aniso-
tropic gravity models, but also in standard general relativity and string theory, for
spacetimes exhibiting a natural asymptotic anisotropy. Examples include the Lifshitz
and Schrödinger spaces (proposed as AdS/CFT duals of nonrelativistic field theories),
warped Ad S3, and the near-horizon extreme Kerr geometry. The anisotropic confor-
mal boundary appears crucial for resolving puzzles of holographic renormalization in
such spacetimes.

Keywords AdS/CFT correspondence · Holography for nonrelativistic field
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P. Hořava (B) · C. M. Melby-Thompson
Berkeley Center for Theoretical Physics, Department of Physics,
University of California, Berkeley, CA 94720-7300, USA
e-mail: horava@berkeley.edu
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1 Introduction

Recently, string theory and quantum gravity have begun to expand into territories
traditionally associated with theoretical condensed matter physics. In the process, the
apparent divide between relativistic and nonrelativistic systems is becoming signifi-
cantly blurred. For example, relativistic gravity solutions have been proposed as duals
of nonrelativistic quantum field theories (NRQFTs) [1,2] characterized by anisotropic
scaling of time and space,

t → λz t, xi → λxi , (1.1)

with dynamical exponent z �= 1. In another development, gravity models have been
proposed [3–5] in which the gravitational field itself is subject to anisotropic scaling
(1.1) at short spacetime distances, leading to an improved ultraviolet behavior.

At this new interface of condensed matter with quantum gravity, challenges and
puzzles emerge. For example, extending the concept of holographic renormalization
(see, e.g. [6] for a review) to nonrelativistic QFTs has proven surprisingly difficult.
In standard holographic renormalization, the counterterms in a relativistic field theory
are constructed from the analysis of the asymptotic behavior of bulk gravity near the
boundary of spacetime. Many of the difficulties with holographic renormalization of
NRQFTs can be traced to the fact that the proposed gravity duals have a degenerate
conformal boundary, as defined in the sense of Penrose [7,8]. This degenerate behavior
indicates that Penrose’s definition of conformal infinity is insufficient to handle holog-
raphy in such spacetimes, and that it needs to be generalized to incorporate systems
with anisotropic scaling.

In this paper, we present such a generalization of conformal infinity of spacetime.
Our construction is based on concepts first developed in the context of quantum gravity
with anisotropic scaling [3,4]. Here we focus on the main idea of the construction,
illustrated by a few examples; further details will appear elsewhere [9].

2 Anisotropic conformal infinity: the spatially isotropic case

One feature common to geometries dual to NRQFTs is that their asymptotic behavior
“near the boundary” reflects the anisotropic scaling (1.1) of the dual NRQFT. This
suggests that the correct notion of asymptopia and conformal infinity should reflect
this anisotropy in the conformal transformations near the boundary. However, the idea
of using anisotropic conformal transformations to define the boundary of spacetime
immediately leads to apparent conflicts: the conformal boundary must be a geometric
object, defined such that it is preserved by the symmetries of gravity; but spacetime
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Anisotropic conformal infinity 1393

diffeomorphisms only allow isotropic Weyl transformations, reducing us to Penrose’s
original definition.

2.1 The main idea

The observation crucial for resolving these conflicts was made [3] in gravity models
with anisotropic scaling: Appropriately defined local anisotropic Weyl transforma-
tions are compatible with the restricted group Diff(M;F) of those diffeomorphisms
of spacetime M that preserve a preferred foliation F of M by fixed time slices. This
fact allows us to define the concept of anisotropic conformal infinity, which legiti-
mizes the asymptopia of many spacetimes, including those that appeared as duals of
NRQFTs.

In the anisotropic gravity models of [3,4], the reduction of symmetries to
Diff(M;F) is a consequence of the gauge symmetries of the system. However, our
construction of anisotropic conformal infinity is valid beyond the context of [3,4], and
applies naturally to a large class of solutions of standard general relativity and string
theory: It is sufficient that the symmetries reduce to Diff(M;F) only asymptotically,
near the spacetime boundary. As we will see, this is indeed the behavior exhibited
by the gravity duals of NRQFTs. This shows that the ideas of [3,4] find meaningful
applications beyond the context of anisotropic gravity models.

The group Diff(M;F) of foliation-preserving diffeomorphisms is generated by

ξ ≡ f (t)∂t + ξ i (t, x j )∂i . (2.1)

Diff(M;F) appeared in [3,4] as the gauge symmetry of gravity with anisotropic
scaling (1.1). In the canonical (ADM) parametrization of the metric,

ds2 = −N 2dt2 + gi j (dxi + N i dt)(dx j + N j dt), (2.2)

the Diff(M;F) generators act via

δξ N = f Ṅ + ḟ N + ξ i∂i N ,

δξ Ni = f Ṅi + ḟ Ni + ξ j∂ j Ni + ∂iξ
j N j + ξ̇ j gi j , (2.3)

δξ gi j = f ġi j + ξ k∂k gi j + ∂iξ
k g jk + ∂ jξ

k gik .

Using an arbitrary smooth nonzero scale factor �(t, xi ), we define the anisotropic
Weyl transformations to be

˜N = �z N , g̃i j = �2gi j , ˜Ni = �2 Ni . (2.4)

It was observed in [3,4] that the generators δω of these anisotropic Weyl transforma-
tions form a closed algebra with the generators of Diff(M;F):

[δξ , δω] = δ� , with � = f ω̇ + ξ i∂iω. (2.5)
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Given (2.4), our definition of anisotropic conformal infinity of spacetime M with met-
ric ds2 is essentially the same as in the isotropic case: We map M by an anisotropic
Weyl transformation � to an auxiliary spacetime ˜M with a rescaled metric ˜ds2, choos-
ing � such that the region near infinity in M is mapped to points inside a compact
region of ˜M . Under this map, the ideal points at anisotropic conformal infinity of
M correspond to the boundary of the image of M inside ˜M , where the scale factor
� vanishes while d� �= 0. We will denote the anisotropic conformal infinity of M
by ∂ M .

2.2 Asymptotic structure of the Lifshitz space

Our first example is the Lifshitz spacetime, with metric

ds2 = − dt2

w2z
+ dx2 + dw2

w2 . (2.6)

This geometry was proposed in [10] as the gravity dual for NRQFTs with Lifshitz-
type scaling without Galilean invariance. With the choice of � = w, we find that the
Lifshitz spacetime is anisotropically conformal to the portion of the flat spacetime
with w > 0, with the standard metric

˜ds2 = −dt2 + dx2 + dw2. (2.7)

The anisotropic conformal boundary at infinity in (2.6) is mapped to w = 0 in (2.7).
In this example, we see that

(a) the anisotropic boundary is of codimension one,
(b) the bulk metric induces an anisotropic conformal class of metrics in the boundary,

and
(c) the action of the anisotropic conformal symmetry in the boundary is induced

from the action of the bulk isometries.

Point (c) deserves a closer explanation: In analogy with the isotropic case, we
define anisotropic conformal transformations of a fixed metric on ∂ M to be those
Diff(∂ M;F) transformations that map the metric to itself up to an anisotropic Weyl
transformation. Here −dt2 + dx2 is a representative of the anisotropic conformal
class of metrics at the boundary of the Lifshitz space. The corresponding group of
anisotropic conformal transformations is finite-dimensional, generated by time trans-
lations, spatial translations and rotations, and the anisotropic scaling transformation
(1.1). It is this conformal symmetry group whose action on ∂ M is induced from the
bulk isometries of the Lifshitz space M .

3 Spatially anisotropic conformal infinity

Our other examples require a more refined structure, with several dynamical exponents
and with nested foliations of spacetime. We consider the case with scaling

t → λzt, xi → λxi , ya → λζ ya, (3.1)
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and look for anisotropic Weyl transformations which reduce for a constant �2 ≡ λ to
(3.1), and form a closed group with those spacetime diffeomorphisms Diff(M;F2)

that preserve the structure of a nested foliation F2 of spacetime. Diff(M;F2) is
generated by

ξ ≡ f (t)∂t + ξ i (t, x j )∂i + ηa(t, x j , yb)∂a . (3.2)

One could first assume that gab is invertible, and simply iterate the logic from the
single-foliation case. Examples with this behavior would include the obvious gener-
alizations of the Lifshitz spacetime, with an additional spatial anisotropy and scaling
(3.1); the anisotropic conformal infinity of such spacetimes again exhibits the same
features (a)–(c) as in the single-foliation Lifshitz space.

We will be interested in a different class of examples, in which gab is not necessarily
invertible. The most interesting case corresponds to ζ = 0; spatial dimensions with
this scaling will be called “ultralocal.” We specialize to the case of just one ultralocal
dimension y, and parametrize the metric as

ds2 = gtt dt2 + 2gtydt dy + gyydy2

+gi j [dxi + gik(Akdt + Bkdy)][dx j + g j�(A�dt + B�dy)]. (3.3)

Just as in the case of the single foliation [3,4], the appropriate action of (3.2) on the
fields of (3.3) can be obtained [9] by taking a nonrelativistic scaling limit of full space-
time diffeomorphisms Diff(M), which results from substituting Ai → Ai/c, Bi →
cBi , parametrizing the generators of Diff(M) as (c f, ξ i , η/c), and taking c → ∞.
This process yields transformation rules for the metric components under the action
of Diff(M;F2) which are compatible with the anisotropic Weyl transformations

gtt → �2zgtt , gty → �2gty, gyy → gyy,

gi j → �2gi j , Ai → �2 Ai , Bi → �2 Bi .
(3.4)

As we now illustrate in a number of examples, this version of anisotropic Weyl trans-
formations again leads to a natural notion of anisotropic conformal infinity.

3.1 Asymptotic structure of null warped Ad S3

Perhaps the simplest example is null warped Ad S3 [11],

ds2 = −dt2

w4 + 2dt dθ + dw2

w2 . (3.5)

We choose the global scaling of the coordinates to be

t → λ2t, w → λw, θ → θ. (3.6)
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This is an example of the scaling defined in (3.1). Using (3.4) with � = w, the metric
is mapped to

˜ds2 = −dt2 + 2dt dθ + dw2. (3.7)

The anisotropic conformal boundary is again at w = 0, and satisfies properties (a)–(c)
just like the Lifshitz space, with one novelty: The group of anisotropic conformal
symmetries – defined again as those Diff(∂ M;F) elements that map the boundary
metric −dt2 + 2dt dθ to itself up to an anisotropic Weyl transformation – is now
infinite dimensional, with generators

F(t)∂t + G(t)∂θ , (3.8)

with F(t), G(t) arbitrary. Their action on the conformal class of metrics in ∂ M is
induced by asymptotic Diff(M;F2) isometries of null warped Ad S3. In the quan-
tum theory (3.8) will give rise to a Virasoro algebra together with a U (1) current
algebra.

3.2 Asymptotic structure of the Schrödinger space

Our next example, the Schrödinger space

ds2 = − dt2

w2z
+ 2dt dθ + dx2 + dw2

w2 , (3.9)

has been proposed [1,2] as a gravity dual of Galilean-invariant nonrelativistic CFTs
with dynamical exponent z. In order to get a well-behaved anisotropic conformal
infinity, we use the scalings of (3.1), with xi ≡ (w, x) and with y ≡ θ an ultralocal
dimension. Using (3.4) together with � = w yields

˜ds2 = −dt2 + 2dt dθ + dx2 + dw2, (3.10)

with ∂ M again at w = 0. Note an interesting feature: because θ scales with conformal
exponent ζ = 0, this dimension is present both in the bulk and in the boundary, even
if it is compactified; the conformal infinity is of codimension one. This interpreta-
tion of θ resolves some of the mysteries associated with this extra bulk dimension in
holography of Schrödinger spaces.

The bulk isometries of (3.9) again induce the action of anisotropic conformal sym-
metries on the anisotropic conformal class −dt2 +2dt dθ +dx2 of boundary metrics.
For example, in the case of z = 2, this group of conformal transformations of ∂ M
induced from the bulk isometries is generated by

t2∂t + t xi∂i − 1

2
x2∂θ , t∂i + xi∂θ ,

t∂t + 1

2
xi∂i , ∂i , ∂θ , xi∂ j − x j∂i .

(3.11)
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These are the generators of the Schrödinger conformal group. Asymptotic bulk
isometries formally extend this symmetry to an infinite-dimensional one [9,12,13],
analogous to (3.8).

The metric (3.9) describes the Schrödinger space in Poincaré-like coordinates. At
least when z = 2, it can be analytically continued beyond the Poincaré patch, to global
Schrödinger space [9,14]

ds2 = −
(

1 + x̂2

ŵ2 + 1

ŵ4

)

dt̂ 2 + 2dt̂d θ̂ + dx̂2 + dŵ2

ŵ2 . (3.12)

(3.9) and (3.12) are related by coordinate transformation

t̂ = arctan t, θ̂ = θ + t

2(1 + t2)
(x2 + w2)

x̂ i = xi

√
1 + t2

, ŵ = w√
1 + t2

.

(3.13)

It is reassuring that this transformation is a double-foliation preserving diffeomor-
phism, of the form (3.2). As a result, the anisotropic conformal boundary of global
Schrödinger space can also be analyzed in our framework.

4 Holographic renormalization and anisotropic conformal infinity

In the few examples presented above, we simply determined the correct form of folia-
tion-preserving diffeomorphisms and the correct anisotropic Weyl transformations by
inspection. More complicated examples may involve multiple foliations and multiple
anisotropies which obscure the precise details of the construction. It is therefore desir-
able to have an algorithmic tool for deriving the anisotropic asymptotic structure in
more general cases.

We now outline how such rules can be systematically derived from considerations
of holography in spacetimes with asymptotically anisotropic scaling.

4.1 The general prescription

The general prescription consists of the following steps:

(i) Identify consistent fall-off conditions on fields on M (This step, which we
take as an input, is a consequence of the precise definition of the dynamics,
designed to identify a consistent phase space of the theory; see, e.g. [15–18]. for
examples).

(ii) Identify the maximal subgroup of diffeomorphism symmetries compatible with
(i).

(iii) Identify the anisotropic Weyl transformations compatible with (ii).

Given (i)–(iii), one can then relax the asymptotic fall-off conditions on the back-
ground to allow for a generic boundary metricγ , and derive the action of the asymptotic
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symmetries from (ii) on γ . This action yields the appropriately scaled version of
appropriate foliation-preserving diffeomorphisms of ∂ M on the boundary metric γ .
The anisotropic Weyl transformations on γ are determined simply from the repara-
metrizations of the radial coordinate. Finally, we use (iii) to construct the anisotropic
conformal infinity of M .

This general prescription can be illustrated with spacelike warped Ad S3 as an
example.

4.2 Asymptotic structure of spacelike warped Ad S3

The metric of the spacelike warped Ad S3 in global coordinates is [16]

ds2 = −(1 + r2)du2 + dr2

1 + r2 + 4ν2

ν2 + 3
(r du + dv)2. (4.1)

Following steps (i)–(iii) outlined above, we get:

(i) Fall-off conditions on the deviations hμν of the metric from the background
(4.1) were proposed in [18],

huu = O(r), hvv = O
(

1

r

)

, hrr = O
(

1

r3

)

,

huv = O(1), hru = O
(

1

r

)

, hrv = O
(

1

r2

)

.

(4.2)

(ii) The group of diffeomorphisms preserving these fall-off conditions is generated
by

[

F(u)+O
(

1

r2

)]

∂u −
[

r F ′(u) + O
(

1

r

)]

∂r +
[

G(u)+O
(

1

r

)]

∂v, (4.3)

with F(u), G(u) arbitrary, and exhibits a natural asymptotic foliation structure.
(iii) Given (4.3), we choose the anisotropic Weyl transformations

guu → �4guu, guv → �2guv, gvv → gvv (4.4)

on the metric. These are of the form (3.4), with z = 2. Together with the
asymptotic diffeomorphisms (4.3), the Weyl transformations form an algebra
that closes up to subleading terms in 1/r . With the choice of � = r−1/2, we
obtain the anisotropic conformal infinity of spacelike warped Ad S3. The bound-
ary at anisotropic infinity is two-dimensional, and carries an induced anisotropic
conformal class of metrics represented by

− du2 + 4ν2

ν2 + 3
(du + dv)2. (4.5)
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The action of the correctly scaled form of Diff(∂ M;F) on the boundary metric γ (u, v)

can be determined by relaxing the background to

guu = r2γuu(u, v) + O(r), gvv = γvv(u, v) + O
(

1

r

)

,

guv = rγuv(u, v) + O(1), gru = O
(

1

r

)

,

grr = 1

r2 + O
(

1

r3

)

, grv = O
(

1

r2

)

,

(4.6)

and acting with the group of bulk diffeomorphisms which preserve this asymptotic
form of the metric,

[

F(u) + O
(

1

r2

)]

∂u +
[

r H(u) + O
(

1

r

)]

∂r +
[

G(u, v) + O
(

1

r

)]

∂v. (4.7)

The radial bulk diffeomorphisms generated by r H(u)∂r induce the correct anisotropic
Weyl transformation (4.4) on the boundary metric, with H as the generator. And the
diffeomorphisms along u and v precisely reproduce the action of Diff(∂ M;F) on γ

that we obtained from the c → ∞ scaling below Eq. (3.3)! We can use this action
of Diff(∂ M;F) to define the group of anisotropic conformal transformations of the
boundary metric. This group is found to be generated by

F(u)∂u + G(u)∂v. (4.8)

For compact u, this reproduces the Virasoro algebra and the U (1) current algebra
found in [18]. A closely related example is the near-horizon extreme Kerr geometry
[17,19], which can be viewed as a family of spacelike warped Ad S3’s, fibered over
the polar coordinate θ . In this example, θ is an ultralocal dimension, analogous to θ

of the Schrödinger space (3.9), but without translational invariance along θ .

5 Conclusions

The notion of anisotropic conformal infinity clarifies the asymptotic structure of vac-
uum spacetimes with asymptotically anisotropic scaling. As an application, we can
now give a precise definition of black holes in spacetimes with anisotropic asymptopia:
First, we define an event horizon in an asymptotically anisotropic spacetime as the
boundary of the causal past of the anisotropic infinity, and define black holes as solu-
tions with event horizons. Our definition of anisotropic conformal infinity naturally
extends to the black holes themselves: For example, one can show that the space-
like warped Ad S3 black holes of [16] share the asymptotic structure of the spacelike
warped Ad S3 vacuum determined above.

In relativistic gravity, the structure of conformal infinity is probed by null geodesics.
Spacetimes with anisotropic scaling appearing in the context of [3,4] can be similarly
probed, by Lifshitz particles [9] with a gapless nonrelativistic dispersion relation.
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Results of this paper illustrate that under pressure from the interface of quantum
gravity with condensed matter, some of the central notions of general relativity must be
revisited and adapted for the era in which quantum gravity is applied to systems with
anisotropic scaling. In the process, it appears that we must disentangle two concepts
which seemed so inseparable in the physics of the twentieth century: gravitation and
relativity.

Acknowledgments We wish to thank Stéphane Detournay for useful discussions. The results presented
in this paper were announced by one of us (PH) at Strings 2009 in Rome (June 2009), and at the Quantum
Criticality and AdS/CFT Correspondence Miniprogram at KITP, Santa Barbara (July 2009); PH wishes to
thank the orgainzers for their hospitality. This work has been supported by NSF Grants PHY-0555662 and
PHY-0855653, DOE Grant DE-AC02-05CH11231, and by the Berkeley Center for Theoretical Physics.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Son, D.T.: Toward an AdS/Cold Atoms Correspondence: a geometric realization of the Schrödinger
symmetry. Phys. Rev. D78, 046003 (2008). [arXiv:0804.3972]

2. Balasubramanian, K., McGreevy, J.: Gravity duals for non-relativistic CFTs. Phys. Rev. Lett. 101,
061601 (2008). [arXiv:0804.4053]
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5. Hořava, P.: Spectral dimension of the universe in quantum gravity at a Lifshitz point. Phys. Rev. Lett.

102, 161301 (2009). [arXiv:0902.3657]
6. Skenderis, K.: Lecture notes on holographic renormalization. Class. Quant. Grav. 19, 5849–5876

(2002). [hep-th/0209067]
7. Geroch, R.P., Kronheimer, E.H., Penrose, R.: Ideal points in space–time. Proc. R. Soc. Lond. A 327,

545–567 (1972)
8. Penrose, R., Rindler, W.: Spinors and space–time, vol. 2. Cambridge University Press, Cambridge

(1986)
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