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Anisotropic dark energy cosmological models have been constructed in a Bianchi V space-time, with the energymomentum tensor
consisting of two noninteracting �uids, namely, bulk viscous �uid and dark energy �uid. Twodi�erentmodels are constructed based
on the power law cosmology and de Sitter universe. 	e constructed model was also embedded with di�erent pressure gradients
along di�erent spatial directions. 	e variable equation of state (EoS) parameter and skewness parameters for both models are
obtained and analysed. 	e physical properties of the models obtained with the use of scale factors of power law and de Sitter law
are also presented.

1. Introduction

	e most popular problem in modern cosmology has been
invoked by the current discovery of accelerated expansion
of the universe. 	is has been conrmed as an established
fact through di�erent observational data, such as Type Ia
Supernovae (SNIa) [1, 2], CMB radiation [3–5], and gravi-
tational lensing [6, 7]. 	is development is explained at the
backdrop of general relativity (GR) through the introduction
of an unknown energy source termed as dark energy (DE).
	is DE provides a repulsive gravity that helps in driving
the acceleration by generating a strong negative force lead-
ing to an antigravity e�ect. In Friedman-Robertson-Walker
(FRW) universes, viscosity appears as the only dissipate
phenomenon, so a considerable amount of interest is seen
in the study of cosmological models with bulk viscous �uid.
In the in�ationary phase, the contribution of bulk viscosity
is well recognized, which gives rise to a negative pressure
that simulates a repulsive gravity. 	e equation of state (EoS)
parameter of the viscous �uid, having value lower than −1,
is generally considered to be signicant in the context of DE
cosmology, which is also indictaed by observational results
[3–5]. However, DE crossing phantom divide line having �
greater than or equal to 1 is lightly favoured. In consistency
with the observational results, Copeland et al. [8] and Li et al.

[9] have used the scalar eld approach with an introduction
of time-dependent EoS parameter to obtain the acceptable
range for �. Another way to achieve this result is to reveal
the solutions of Einstein’s eld equations by incorporating
some kinematical assumptions, which are in consistency with
the observed kinematics of the universe. As a testimony
to this, Hubble parameter has been widely used to obtain
explicit accelerating cosmological models in the framework
of spatially homogeneous space-time [10].

It can be noted that dominance of an anisotropic stress
gives rise to an anisotropic expansion. 	is dominance
will have a considerable impact via anisotropic stress on
cosmological evolutions such as magnetic elds, hydrody-
namic shear viscosity, and collisionless relativistic particles
[11, 12]. However, researches on DE with homogeneous
and anisotropic space-time with time-varying EoS param-
eter observed that, at late time of cosmic evolution, DE
yields isotropic pressure [13, 14]. On the other hand, sev-
eral researchers [15–17] focused on the fact that Wilkin-
son Microwave Anisotropy Probe (WMAP) data [18, 19]
requires Bianchi type morphology instead of Friedman-
Robertson-Walker (FRW) type for better accurate expla-
nation of the anisotropic universe. Campanelli et al. [20]
revealed that, irrespective of the level of anisotropy in
geometry of the universe and dark energy EoS, the SNIa
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data are always more consistent with standard isotropic
universe.

Mishra et al. [21] have constructed the cosmological
model based on pressure anisotropy in the presence of a
gauge function, whereas Mishra et al. [22] have studied
the anisotropic universe with general forms of scale factor.
Several cosmological models were obtained with constant
deceleration parameter, where the matter is in the form of
perfect �uid or ordinary matter. However, many of those
matters are not enough to describe the dynamics of an
accelerating universe relating to anisotropy. 	is motivates
us to consider the model of the accelerating universe lled
with noninteracting �uids [23–25]. Akarsu andKilinc [26, 27]
have assumed constant deceleration parameter to construct
and investigate DEmodels in Bianchi I and Bianchi III space-
time. Yadav et al. [28] have assumed variable EoS param-
eter but constant deceleration parameter to construct the
DE cosmological model in a locally rotationally symmetric
Bianchi V space-time. 	eoretical models of interacting and
noninteracting DE have been discussed widely in the litera-
ture [29–31]. 	e paper is arranged as follows: in Section 2,
a mathematical formalism of an anisotropic DE universe
is presented along with the relevant physical parameters.
Two dark energy cosmological models, one with power law
cosmology and the other with de Sitter universe, have been
constructed and analysed in Section 3.	e summary is given
in Section 4.

2. Formalism

From an observational viewpoint, one of the most important
results is the theorem ofWald [32], which states that universe
with accelerating expansion tends towards isotropy at late
phase. As a matter of fact, if the universe undergoes an early
period of in�ation, the present day universe will seem to be
highly isotropic. Further, since the universe has now started
accelerating, any kind of anisotropy will remain small in the
late phase of cosmic acceleration. Bianchi universes are the
class of cosmological models that are homogeneous but not
necessarily isotropic on spatial slices. It contains, as a subclass,
the standard isotropic model known as FRW universe.
Calculations of nucleosynthesis and microwave background
anisotropies in Bianchi models have been compared against
data from the real universe, typically giving null results which
can be translated into upper limits on anisotropy. Tentative
detections of nonzero anisotropic shear by Ja�e et al. [33]
are currently believed to be in consistency with other known
cosmological parameters [34] and with polarization of the
microwave background [35]. However, these models remain
widely studied for their pedagogical value, mainly making
them exact tractable solutions of Einstein’s eld equation.

In the present paper, we are interested in studying the
behaviour of anisotropy universe in the DE cosmological
model. 	e standard FRW universe is homogeneous and
isotropic. But, in order to address the small-scale anisotropy
nature of the universe, Bianchi space-time is well accepted
as it represents a globally hyperbolic spatially homogeneous
but not isotropic space-time. Among all 9 space-times of
Bianchi, Bianchi V space-time is very intuitive as it has

more degrees of freedom characterized by Lie groups and
generates pseudospherical space.Hence, in order to construct
an anisotropic DE cosmological model in GR, we have
considered here Bianchi V space-time in the form

��2 = ��2 − 3∑
�=1

�2����2� �	2� , (1)

where �� = ��(�), 
 = 1, 2, 3, are the directional scale factors
considered to be di�erent along three orthogonal directions
and thereby provide a source for anisotropic expansion. Here,
we choose �1 = 0, and �2 = �3 = �, with � being a
nonzero arbitrary constant. Assuming that GR is well dened
at cosmic scales, we incorporate Einstein’s eld equations,

��� ≅ ��� − 12���� = ����, (2)

where ���, ���, �, and ���, respectively, denote the Einstein
tensor, Ricci tensor, Ricci scalar, and total e�ective energy

momentum tensor (EMT) and � = 8��/�4. � is the
Newtonian gravitational constant and � is the speed of light
with 8�� = � = 1. Here, EMT consists of two di�erent
components: the barotropic bulk viscous �uid (�vis

�� ) and DE

�uid (�de

�� ). In case of barotropic cosmic �uid, the proper

pressure � is given as = ��(0 ≤ � ≤ 1). 	e pressure with the
contribution from bulk viscosity is also directly proportional
to energy density; that is, 3�� = �0�, where �0 ≥ 0 is the

proportionality constant [36, 37] and ���;� = 3��. Hence, the
e�ects of both proper pressure and barotropic bulk viscous
pressure together can be expressed as

� = � − 3�� = (� − �0) � = ��, (3)

where � is the bulk viscous coe�cient. One can infer that
such a relation bears similarity to the pressure term with
the contribution from perfect �uid (� = ��), where � is
the equation of state parameter for perfect �uid. However,
a major part of the EoS in � of the present model comes
from barotropic bulk viscosity. So, in no viscosity condition,
the pressure term � reduces to the pressure of perfect �uid.
Hence, the EMT for viscous �uid is given as

�vis

�� = (� + �) ���� − ����, (4)

where �� are the four velocity vectors of the �uid. It may be
noted that there are no observational reasons to conclude
that pressure is isotropic in DE. However, since the �uids are
comoving, one may get this isotropic pressure in DE. Subse-
quently both the DE �uid and EoS parameter are direction-
dependent. Hence, the EMT of DE �uid is considered in the
form

�de

�� = diag [�de, −�de

� , −�de

� , −�de

� ]
= diag [�, −�de

� , −�de

� , −�de

� ] �de
= diag [1, − (�de + ") , − (�de + $) , − (�de + %)] �de,

(5)
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where �de is the EoS parameter of the DE �uid along

the dimensional axes 	, &, and '. �de is the dark energy

density. 	e deviations of �de from 	-axis, &-axis, and '-
axis, respectively, denote the skewness parameters ", $, and%. In the presence of EMT, Einstein’s eld equations (2)
corresponding to Bianchi type V space-time (1) lead to the
following:

̈�2�2 +
̈�3�3 +

̇�2 ̇�3�2�3 −
�2�21 = −� + 3�� − (�de + ") �de, (6)

̈�1�1 +
̈�3�3 +

̇�1 ̇�3�1�3 −
�2�21 = −� + 3�� − (�de + $) �de, (7)

̈�1�1 +
̈�2�2 +

̇�1 ̇�2�1�2 −
�2�21 = −� + 3�� − (�de + %) �de, (8)

̇�1 ̇�2�1�2 +
̇�2 ̇�3�2�3 +

̇�3 ̇�1�3�1 −
3�2�21 = � + �de, (9)

2 ̇�1�1 −
̇�2�2 −

̇�3�3 = 0, (10)

where an over dot over the eld variable represents the
derivatives with respect to the cosmic time �. Moreover,
the unit of cosmic time is considered as follows: 1 unit of
cosmic time = 10 billion years. 	e average scale factor �
and volumetric scale factor . for the model are, respectively,� = (�1�2�3)1/3 and . = �3 = �1�2�3. 	e generalized
mean Hubble parameter � can be expressed as � = �̇/� =(1/3)(�� + �� + ��), where �� = ̇�1/�1, �� = ̇�2/�2, and�� = ̇�3/�3 are the directional Hubble parameters in the
directions of 	,&, and ', respectively. Now, the eld equations
(6)–(10) can be framed in Hubble terms as

�̇� + �̇� + �2� + �2� + ���� − �2�21
= −� − (�de + ") �de,

(11)

�̇� + �̇� + �2� + �2� + ���� − �2�21
= −� − (�de + $) �de,

(12)

�̇� + �̇� + �2� + �2� + ���� − �2�21
= −� − (�de + %) �de,

(13)

���� + ���� + ���� − 3�2�21 = � + �de, (14)

2�� − �� − �� = 0. (15)

	e energy conservation equation for viscous �uid,�(vis)��;� = 0, yields
̇� + 3 (� + �)� = 0. (16)

	e energy conservation equation for dark energy �uid,���(de);� = 0, yields
̇�de + 3�de (�de + 1)� + �de ("�� + $�� + %��)
= 0. (17)

From (16), incorporating the relation betweenHubble param-
eter and average scale factor, we get

� = �0�−3(�+1) = �0 (�1�2�3)−(�+1) , (18)

where �0 is the integration constant or rest energy density.
From (14), we have

�de = ���� + ���� + ���� − 3�2�21 − �. (19)

In order to solve (17), we split the conservation equation into
two parts: one corresponds to the deviation of equation of

the state parameters as �de("�� + $�� + %��) = 0 and

other is the deviation-free part as ̇�de + 3�de(�de + 1)� = 0
[26]. It can be observed that the behaviour of energy density�de is controlled by the deviation-free part of EoS parameter,
whereas anisotropic pressure along di�erent directions can
be obtained from second part of the above conservation
equation as it corresponds to the conservation of matter eld
with equal pressure along all directions. Hence, we obtained
the dark energy density as

̇�de + 3�de (�de + 1)� = 0 5⇒ �de = �de0 �−3(	de+1). (20)

Now, from (13), incorporating the value of %, we get
−�de�de = (�� + ��3� ) ̈�1�1 + (�� + ��3� ) ̈�2�2

+ (�� + ��3� ) ̈�3�3 +
��3�

̇�1 ̇�2�1�2 +
��3�

̇�2 ̇�3�2�3
+ ��3�

̇�1 ̇�3�1�3 −
�2�21 + � − 3��.

(21)

Again, from (10), with the choice of integrating constant

to be unity, we get �21 = �2�3. Moreover, for an anisotropic
relation, we assume that �2 = �
3 , where < is the average
anisotropy parameter [38]. Hence,

�1 = �(
+1)/23 . (22)

Now, the dark energy density and e�ective EoS parameter

with the function Φ(�) = ((2�̇ + 3�2)/(< + 1)) can be
reformulated, respectively, as

�de = [2(<2 + 4< + 1)
(< + 1)2 ]�2 − 3�2�21 − �, (23)

�de�de = −23 (<2 + 4< + 1< + 1 )Φ (�) + �2�21 − �. (24)
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With the help of (18)–(21), (11)–(13) can be expressed in
functional form as

$ = (5 + <6�de )F (<) G (�) ,
% = −(5< + 16�de )F (<) G (�) ,
" = −(< − 13�de )F (<) G (�) ,

(25)

where F(<) = (<− 1)/(<+ 1) G(�) = Φ(�) + 3�2/(<+ 1).
3. Cosmological Models and Their Behaviours

From the above formalism, it is quite clear that obtaining
an exact solution to the eld equations is a cumbersome
process.	erefore, without violating any physical meaning of
the expression and in order to study the cosmological model
in this formalism, we have assumed two scale factors: one
leads to power law expansion and the other leads to de Sitter
expansion.

3.1. Power Law Expansion Model. Recently, many observa-
tional results as well as experiments predict a tensor-to-
scalar ratio that provides convincing results for standard
in�ationary scenario even though the value of the ratio
contradicts the limits from Planck data. During a power law
expansion, the in�ationary scenario predicts the generation
of gravitational waves. In this model, the scale factor for

power law cosmology can be represented as � = ��, whereH is a positive constant and H = ((< + 1)/2)I. Also, < and I
are positive constants. Now, the volume scale factor . = �3�
and Hubble parameter � = H/�. It is obvious that, for H > 1,
the model will be an accelerating one. Now, subsequently, the
directional Hubble parameters can be obtained as�� = ((<+1)/2)(I/�), �� = <I/�, and �� = I/� and consequently the
mean deceleration parameter becomes K = −1 + 2/I(< + 1).
	e deceleration parameter is a negative constant quantity forI > 2/(< + 1), since < and I are positive constants and this
is in good agreement with the present observational data that
predicts an accelerating universe; therefore, in order to get
an accelerating model with this power law scale factor, the
exponent I > 1 if < < 1; otherwise it has to be decided fromI > 2/(< + 1).

	e universe, in general, is isotropic; but, according to
the observational results of CMB temperature anisotropy, a
small amount of anisotropy in the universe cannot be ruled
out. However, any anisotropy in spatial expansion must be
considered as a little perturbation of the isotropic behaviour,
which suggests that the exponent<must be close to 1. In fact,
according to the present result from the analysis of anisotropy
as predicted from Planck data [39, 40] and from our earlier
work, < ≈ 1.0001633[21, 38]. 	e power law model is quite
successful in the sense that it neither encounters the horizon
problem nor witnesses the �atness problem with I ⩾ 2/(< +

1). 	e energy density contribution coming from the usual
cosmic �uid for the power law model reduces to

� = �0�(3/2)(
+1)(�+1)� . (26)

Now, with the help of (26), the dark energy density and
dark energy EoS parameter as described in (23) and (24) can
be, respectively, reduced to

�de = [(<2 + 4< + 1) I2
2 ] 1�2 − 3�2��(
+1)

− �0�(3/2)(
+1)(�+1)� ,
�de = 1�de [{I (<2 + 4< + 1) (4 − 3I (< + 1))

6 (< + 1) } 1�2
+ �2��(
+1) − �] ,

(27)

where � = ��de0 . 	e skewness parameters , $, and % reduce to
$ = (5 + <) (< − 1)

3 (< + 1)2 (3H2 − H�2 ) 1�de ,
% = −(5< + 1) (< − 1)

3 (< + 1)2 (3H2 − H�2 ) 1�de ,
" = −2 (< − 1)2

3 (< + 1)2 (
3H2 − H�2 ) 1�de ,

(28)

where H = I(< + 1)/2. It is seen that both � and �de decrease
with the increase in time. 	e decrease in �de is decided by

three di�erent factors, that is, �−2 in the rst term, �−�(
+1) in
the second term, and �3/2(1+�)(
+1)� in the third term.	e role
of bulk viscous cosmic �uid comes through the third term.
One may note that if � = −1, even though the contribution
coming from the usual cosmic �uid does not vanish, it
does not contribute to the time variation of the dark energy
density. For � = −1/3, the time variations of second and
third terms can be clubbed together. Consequently, for this
choice, the skewness parameters become constant quantity
and appear to be a simple time-independent deviation from
the usual isotropic pressure.

	e gures in the manuscript have been drawn for
di�erent physical quantities which are expressed in Planckian
unit system (� = � = H = ℎ = 1). Also, 1 unit of
cosmic time = 10 billion years. In Figures 1 and 2, we have
observed, respectively, that the matter energy density � and

the dark energy density�de remain positive during the cosmic
evolution for the representative value of the constants (< =1.0001633, I = 1.7, � = 0.01, and �0 = 0.001). Hence, it
indicates that both weak energy condition (WEC) and null
energy condition (NEC) are satised in the derived model.

Further, both � and �de decrease with increase in time and
slowly reach small positive values in the present epoch. 	e
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Figure 1: Variation of � versus � for representative values of the
parameters < = 1.0001633, I = 1.7, and �0 = 0.001 with di�erent� = −1/3, −2/3, −1.
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Figure 2: Variation of �de versus � for representative values of the
parameters < = 1.0001633, I = 1.7, � = 0.01, and �0 = 0.001 with
di�erent � = −1/3.

value of dark energy density comes closer to zero and then
smoothly approaches small positive value, which indicates
that the considered two �uids a�ect the dark energy density.
It is worth noting here that, irrespective of the value of the

viscous coe�cient �, the behaviour of �de remains alike. So, in
Figure 2, we have chosen the value of the viscous coe�cient
to be −1/3. However, a small e�ect of viscous �uid in dark
energy density cannot be ruled out. Figure 3 represents the

variation of �de with cosmic time for di�erent values of
viscous coe�cients �. 	e range value of EoS parameter
suggested by combination of SNIa data with CMB anisotropy
and galaxy clustering statistics is [−1.33, −0.79] [10], whereas
the range suggested by recent observations is reduced to
more stringent constraints around −1 [34, 41, 42]. However,
we consider here the earlier data range, since power law
behaviour dominates the cosmic dynamics in early phase
of cosmic evolution [38]. For � = −1/3, −2/3, −1, Figure 3
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of the parameters < = 1.0001633, I = 1.7, � = 0.01, and �0 = 0.001
for � = −1/3.

clearly shows that � evolves within a range, which is almost
aligned with SNIa and CMB observations. Moreover, it is
observed that when the bulk viscous coe�cient increases, the
EoS parameter gradually converges to Λ CDM at late time.

	e behaviour of the skewness parameters obtained in
(28) has been graphically represented in Figures 4, 5, and
6, respectively, for � = −1/3, � = −2/3, and � = −1. In
these gures, it can be noted that the behaviours of skewness
parameters are totally controlled by the behaviour of the
anisotropic parameter< [23–25, 38]. For< = 1, the skewness
parameters vanish, giving an indication that the viscous
matter a�ects the skewness parameter. We have observed
that, at an early cosmic phase, % starts with a negative value
far from zero, increases with the cosmic time to become
maximum, and then becomes constant with further increase
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in cosmic time. 	e skewness parameter " also starts from
a small negative value close to zero and becomes constant
with respect to cosmic time. 	e evolutionary behaviour of$ is just the mirror image of %. It can be noted that the
pressure anisotropy factors along 	-axis, &-axis, and '-axis(%, ", and $) evolve with di�erent nature, attain their extreme
values in a denite range of cosmic time, 0.001 < � < 0.003,
and remain constant at later time.	erefore, it can be inferred
that, in power law cosmology, at an early phase of cosmic
evolution, the pressure was assumed to be isotropic; however,
in the late phase, pressure anisotropies still remain. It can
also be noted that the behaviours of skewness parameters are
independent of the choice of the bulk viscous coe�cient.

3.2. de Sitter Expansion Model. In de Sitter model, the scale

factor is taken as � = �((
+1)/2)��, where � is a positive
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Figure 7: Variation of � versus � for representative values of the
parameters < = 1.0001633, �0 = 0.001, and � = 0.08 with di�erent� = −1/3, −2/3, −1.
constant. In this model, the Hubble parameter is a constant
quantity and remains the same throughout the cosmic evo-
lution. 	e directional Hubble rates along di�erent spatial
directions are also constants and can be expressed as �� =((< + 1)/2)�,�� = <�, and�� = �. So, � can be expressed as� = 2�/(< + 1). With this assumption of the scale factor, the
energy density contribution coming from the usual cosmic
bulk viscous �uid for the de Sitter model reduces to

� = �0�(3/2)(1+�)(
+1)�� . (29)

	e energy density increases with the decrease in the value
of � and vice versa. For the particular choice � = −1, �
becomes independent of time and assumes a constant value�0 throughout the cosmic evolution (Figure 7).

	e rest energy density �de and the dark energy EoS

parameter �de for the de Sitter universe can now be obtained
as

�de = �2 (<2 + 4< + 12 ) − 3�2
��(
+1)�

− �0�(3/2)(1+�)(
+1)�� ,
�de = 1�de [−(<2 + 4< + 1) �2

2 + �2
��(
+1)� − �] ,

(30)

where � = ��de0 . Subsequently, the skewness parameters , $,
and % can be expressed as

$ = (5 + <) (< − 1)4 ( �2�de) ,
% = −(5< + 1) (< − 1)4 ( �2�de) ,
" = −2 (< − 1)24 ( �2�de) .

(31)
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Figure 8: Variation of �de versus � for representative values of the
parameters < = 1.0001633, �0 = 0.001, � = 0.01, and � = 0.08 with
di�erent � = −1/3, −2/3, −1.
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Figure 9: Variation of �de versus � for representative values of the
parameters < = 1.0001633, �0 = 0.001, � = 0.01, and � = 0.08 with
di�erent � = −1/3, −2/3, −1.

In the de Sitter model, the dark energy density decreases
with increase in time and asymptotically reduces to a positive

constant. 	e decrement in �de is decided by four di�erent
factors in the second and third terms, namely, <, �, �, and�0. 	e role of bulk viscous cosmic �uid comes through the
third term. 	e contribution from the bulk viscous cosmic
�uid becomes time-independent for � = −1. 	e pressure
anisotropies dened earlier in di�erent axis depend on the
behaviours of skewness parameters, whereas the dark energy

density �de depends on the barotropic equation of state �
(Figure 8).

	e EoS parameter in Figure 9 is very much sensitive to
the choice of �. For di�erent choices, they start from di�erent
values at the early phase and maintain the same evolutionary
state at late phase, falling in the observed range as obtained in
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Figure 10: Variation of ", $, and % versus � for representative values
of the parameters< = 1.0001633, �0 = 0.001, U = 0.01, and � = 0.08
for � = −1/3.

2015 Planck data� = −1.019+0.075−0.080 [34].	e behaviours of EoS
parameters are directly proportional to the increasing values
of viscous coe�cient. At early phase of cosmic evolution, the
EoS parameters gathered some amount of energy; however,
at late phase, they behave di�erently. 	e reason why the
dynamics of EoS are greatly a�ected at early phases is that the
bulk viscous �uid has a substantial contribution to the density
parameter at that corresponding phase. But, at late phase, the
dark energy dominates in spite of the presence of bulk viscous
�uid. Hence, cosmic bulk viscous �uid has a very little impact
on the dynamics of EoS parameter [37].

	e DE skewness parameters are plotted as a function of
cosmic time for three representative values of bulk viscous
coe�cient: � = −1, −2/3, −1/3. 	e corresponding skewness
parameters are shown for these three viscous coe�cients,
respectively, in Figures 10, 11, and 12. With increase of viscous
coe�cient of matter, skewness parameters show nonevolving
behaviour in past epoch and rapidly evolve at late phase. 	e
anisotropy in the DE pressure along direction 	 is almost
una�ected by cosmic expansion for all three considered
viscous coe�cient values. So, the pressure anisotropy van-
ishes along 	-axis. "’s are less a�ected by the presence of
cosmic �uid compared to $’s and %’s. 	e DE pressures along
directions & and ' are mostly a�ected.	e reason behind the
sensitivitymay be due to the consideration of assumingmean
Hubble parameter the same as directional Hubble parameter
along 	-axis. At early times, the universe is predicted to
have almost isotropic �uid that became anisotropic with the
growth of cosmic time. Due to presence of bulk viscous
�uid, the anisotropy in DE pressure continues along with the
cosmic expansion and decreases slowly at the later period as
shown in Figures 10, 11, and 12.

4. Conclusion

In the present work, we have investigated the role of
anisotropic components on the dynamical aspects of DE
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model in Bianchi V space-time in two �uid situations. Two
cosmological models have been constructed: one pertaining
to power law cosmology and the other pertaining to de Sitter
universe. 	e present model favours a quintessence energy

dominated universe in the later universe as −1 < �de < 0;
however, in early universe, it favours phantom region. In
power law model, EoS parameter lies within the predicted
range by observational data. In the de Sitter model, DE
dominates at late phase of EoS parameter and bulk viscous
�uid plays an important role at early universe. 	e skewness
parameters are dynamically evolving with respect to cosmic
expansion. In power law, skewness parameters evolve with
di�erent values at early phase, whereas they remain constant
at late phase, indicating constant anisotropy rate. However,
in de Sitter model, the skewness parameters decrease at the
later cosmic period and show a small amount of anisotropy in

future cosmic time. 	e behaviours of skewness parameters
are independent of the choice of the bulk viscous coe�cient.
	ere are a lot of observational evidences to support Λ CDM,
such as CMB and redshi�-distance relation. However, our
consideredmodel is a generalization of FRWmodel orΛ CDM

model as discussed in Section 2. Also, our model is scale-
factor-dependent and may change its behaviour in di�erent
scale factors; however, the formalism developed here clearly
indicates the accelerating behaviour of the expanding uni-
verse. Moreover, there is resemblance of data of considered
modelwith standardΛ CDMmodel; ourmodel foundhere also
aligned with the present day observational outcomes.

	ere are ways to know whether the model approaching
to Λ CDM model is accurate or not. One way is that Λ CDM

universes may converge to de Sitter universe under special
conditions as de Sitter model has the exponential growth. In
our investigation also, the EoS parameter in de Sitter universe
is similar to EoS parameter of Λ CDM model at late cosmic
time of evolution. Another way is the state nder diagnostics,
which checks the validity of themodel.Λ CDM model has state
nder pair (V, �) = (1, 0). 	e model discussed here also
conrms the acceptability by state nder analysis with the
pair (1, 0) both for the de Sitter universe and for power law
for large value of the exponent<.
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