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We develop a multiexposure image fusion method based on texture features, which exploits the edge preserving and intraregion
smoothing property of nonlinear di�usion �lters based on partial di�erential equations (PDE). With the captured multi-exposure
image series, we �rst decompose images into base layers and detail layers to extract sharp details and �ne details, respectively. 
e
magnitude of the gradient of the image intensity is utilized to encourage smoothness at homogeneous regions in preference to
inhomogeneous regions. 
en, we have considered texture features of the base layer to generate a mask (i.e., decision mask) that
guides the fusion of base layers in multiresolution fashion. Finally, well-exposed fused image is obtained that combines fused base
layer and the detail layers at each scale across all the input exposures. Proposed algorithm skipping complex High Dynamic Range
Image (HDRI) generation and tonemapping steps to produce detail preserving image for display on standard dynamic range display
devices.Moreover, our technique is e�ective for blending 
ash/no-
ash image pair andmultifocus images, that is, images focused on
di�erent targets.

1. Introduction

It is impossible to capture the entire dynamic range of the real
world scene with single exposure. Human eye is sensitive to
relative rather than absolute luminance values [1]. Human eye
can observe both indoor and outdoor details simultaneously.

is is because the eye adapts locally as we scan the di�erent
regions of the scene and can adapt 10 orders of magnitude
of intensity variations in the scene [2], while standard digital
cameras are unable to record the luminance variation in
the entire scene. Currently, there are many applications that
involve variable exposure photography to determine the
details to be captured optimally in the photographed scene.

e intention of exposure setting determination is to control
charge capacity of the Charge Coupled Device (CCD). An
example is shown in Figure 1(a), and long exposure yields
details in the poorly illuminated areas while short exposure
provides detail in the brightly illuminated area. 
erefore,

each exposure gives us trustworthy information about certain
pixels, that is, the optimally exposed pixels for that image. In
such type of images, for dark pixels, the relative contribution
of noise is high and for bright pixels, the sensor may have
been saturated. 
erefore, it is desirable to ignore very dark
and very bright pixels to achieve suprathreshold viewing con-
ditions [2]. Consequently, the scene contains very dark and
very bright areas which are partially under- or overexposed
in the optimally exposed photograph (see Figure 1(a)). 
is

is because of limited dynamic range (DR) of the standard

digital cameras (i.e., 102). 
e solution is to photograph the

scene several times with variable exposures and reconstruct

blended image that contains the whole details, even in

brightly and poorly illuminated areas. High dynamic range

imaging (HDRI) [3–7] techniques give the solution to recover

radiance maps from photographs taken with conventional
imaging equipment.
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Figure 1: (a) Images representingmultiple exposures; ((b), (c)) illustration of our detail-preserving exposure fusion result. Note that our result
contains more details in brightly and poorly illuminated areas with natural contrast. 
e �ne textures on the chair are accurately preserved.
(c) Our detail layer enhancement based on sigmoid function across all the inputs reveals more texture details in the fused image and does
not depict noticeable artifacts near strong edges.

To make the concept of dynamic range clear, let us re-
de�ne some useful terms. Image is said to be low dynamic
range (LDR) when its dynamic range is lower than that of the
output medium. A standard dynamic range (SDR) image is
the one whose dynamic range corresponds approximately to

that of the standard outputmedium (i.e., 0–255OR about 102)
and is called display-referred image. A high dynamic range
(HDR) image has dynamic range higher than that of the
output medium and it is called scene-referred image. Alter-
natively, the standard displays (LCD, CRT) and printers have
limited contrast ratio (i.e., dynamic range). 
erefore, these
devices are unable to reproduce full dynamic range that leads
to tone mapping problem. Tone mapping [8] is the technique
to remap the intensities for display HDR images on SDR
devices. Although few HDR display devices have been devel-
oped and will become generally available in the near future,
this technology is very expensive and not accessible by the
most users. To display HDR data directly, a number of HDR
display prototypes are proposed recently by [1, 9, 10]. As a
result, there will always be a need to prepare HDR imagery
for display on LDR devices or directly generate an image that
looks like tone-mapped image [1]. Consequently, we need
e�cient exposure fusion technique to preserve scene details
without intermediate representation. 
e goal of exposure
fusion mechanism is to maximize information content of the
synthesized scene from a set ofmultiexposure imageswithout
computing HDR radiance map and tone mapping (see
Figures 1(b) and 1(c)).

Compositing is done on the pixel intensity values rather
than irradiance values.
is approach does not care about the
exposure times and camera response function (CRF), which

is required to linearize the image data before combining LDR
exposures into HDR image [3]. Following the consideration
of pixel intensity based fusion, the major focus of this paper
is the utilization of conceptually simple, computationally
simple, and robust texture features, speci�cally local range
of base layer, for the identi�cation of well-exposed regions.

e base layers across all input images are fused by using
multiresolution pyramid approach [11] to preserve local
spatial structure that provides high quality spectral content
in the fused image. We have considered texture features
of the image to generate a mask that guides the fusion
of base layers computed across all the input images. 
e
base layer is computed by applying nonlinear �lter [12] that
preserves the locations where the magnitude of the gradient
has maximum value and the detail layer is then computed
as the di�erence between the original input image and the
base layer. 
e algorithm overcomes the major drawbacks
of conventional multiresolution pyramid based fusion [13],
namely, the blurring of edge details and the introduction of
artifacts.

A �rst step, in our algorithm, is multiscale decomposition
(MSD) of each image to extract details at arbitrary scales,
based on adaptive and edge preserving �lter (i.e., anisotropic
di�usion) [12]. Our algorithm takes� identically sizedmulti-
exposure images taken from a �xed viewpoint and produces
output image of the same size, in which well-exposed pixel
value is computed by combining detail information from
all of the input images at each scale of the decomposition.
Unlike earlier image-based compositing techniques [13], our
approach separates coarse scale details (i.e., base layer) from
�ne details (i.e., detail layer), while our approach is similar in
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spirit to the multiscale shape and detail enhancement from
multilight image collections (MLIC) approach of Fattal et al.
[14]. 
erefore, our approach is e�ective to control �ne and
coarse details separately during the compositing process and
needs no further postprocessing. A�er the manipulation of
each redundant layer and fused base layer, the detail layers
across all input images are recombined to produce well-
exposed image (see Figure 2).
us, themagnitude of the base
layer is modi�ed based on the decision map to ensure that
resulting fused image contains well-exposed regions, while
the magnitude of the detail layer is unchanged, thereby pre-
serving detail. To be able to deal with strong edges separately,
we use a nonlinear multiscale edge-preserving image decom-
position which permits us to manipulate and combine details
at multiple scales without introducing visible halos and arti-
facts.

Although the proposed framework does not require
human intervention, in practice, we provide set of parameters
in Section 4 that allow users to interactively control the detail
enhancement in the fused image. 
e rest of this paper is
organized as follows. A comprehensive review of previous
work related to exposure fusion and HDR generation is
provided in Section 2. Section 3 presents a description of two-
scale decomposition based onASD, texture features (i.e., local
range) of the base layer that provides the weight map to guide
the fusion process, and the multiresolution decomposition
that reconstruct a single well-exposed base layer from a set of
given multiple exposures acquired from the static scene.
Section 4 illustrates the experimental results and the com-
parison with the popular exposure fusion and tone-mapping
operators. Section 5 discusses future directions for this work
and concludes this paper.

2. Previous Works

Image fusion techniques blend information present in dif-
ferent images into a single image. Burt and Adelson [11]
�rst introduced the idea of image fusion based on Laplacian
pyramid. Image fusion techniques are generally classi�ed into
three categories: pixel level, feature level, and decision level,
which are reviewed by Smith and Heather [15]. Standard
capturing devices can only capture either detail present in the
poorly illuminated or brightly illuminated regions. Debevec
and Malik [3] and Mann and Picard [4] proposed a HDRI to
record the entire range of the scene radiances from di�erent
exposures thatwere acquiredwith a standard camera. Various
possible formats to store radiance maps are described by
Reinhard et al. [1]. “Floating point ti�” can encode a very high
dynamic range (∼79 orders of magnitude) without losing
information.

Unfortunately, HDR images cannot be displayed on ordi-
nary display devices with limited dynamic range. Many dif-
ferent global operators [1, 16–18] and local operators [8, 19–21]
have been suggested for dynamic range reduction for display-
ing HDR images on standard display devices. Global oper-
ators apply spatially uniform remapping function on every
pixel independently. For the local operators, di�erent opera-
tions based on adaptation of human visual system are applied

to di�erent pixels. However, global operators are computa-
tionally simple than local operators. Most of the tone map-
ping algorithms su�er from halo artifacts and require human
intervention in the parameter adjustment process. Transform
domain tone mapping approaches [22] became popular
compared to intensity domain. Dynamic range compression
based on the properties of human visual system in gradient
domain [22] is almost free of halo artifacts and require
no manual parameter tweaking. 
ey involve the gradient
manipulation of local neighboring pixel at various scales to
simulate adaptation behavior of human visual system. 
en
the image is reconstructed by solving the Poisson equation
on the modi�ed gradient �elds. Recently frequency based
algorithm [21] typically decomposes HDR image into base
layer and detail layer. Only the magnitude of the base layer is
compressed in the log domain, thereby preserving detail.
e
base layer of input HDR image is computed using an edge-
preserving �lter called the bilateral �lter and the detail layer
is the division of the input intensity by the base layer. 
e
detailed review of various tone-mapping operators is given
by Reinhard et al. [1].

In recent years, various fusion algorithms have been
developed to assemble information from several source
images to extend the depth-of-�eld and dynamic range of
the fused image. However, the large variations in the source
images, such as exposure value, focusing, modality, and envi-
ronmental conditions, o�enmake fusion extremely challeng-
ing. Ogden et al. [23] has proposed the use of Gaussian and
Laplacian pyramid for image fusion. 
e Laplacian pyramid
representation expresses an image as a sum of spatially band-
passed images while retaining local spatial information in
each band [11]. ImageGradient based fusion [24] provides the
solution to handle strong highlights and remove self-re
ec-
tions from 
ash and ambient images [25]. Li and Yang [26]
described region segmentation and spatial frequency based
multifocus image fusion. Weighted nonnegative matrix fac-
torization and focal point analysis based multifocus fusion
method [27] has been proposed to preserve feature informa-
tion in fused image.

Raman andChaudhuri [28] have utilized edge-preserving
�lter (i.e., bilateral �lter) for the fusion of multiexposure
images, in which appropriate matting function is generated
based on local contrast for automatic compositing process.
Image entropy based exposure fusion method was proposed
by Goshtasby [29], in which an image is considered best-
exposed within an area if it carries more information about
the area than any other image. 
e optimal block size and
width of the blending functions were determined using a
gradient-ascent algorithm to maximize information content
in the fused image. 
e optimal block size was varied from
image to image. Images representing scenes with highly
varying re
ectances, highly varying surface orientations, and
highly varying environmental factors such as shadows and
specularities produce smaller optimal block size.

Unlike previous multiexposure fusion method proposed
byGoshtasby [29], our approach calculates local range within
a �xed 3-by-3 block size that reduces complexity for com-
puting weight function to control the contribution of pixels
from input bracketed images. Szeliski [30] produces fused
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Figure 2: Proposed image domain fusion framework. Observation model illustrating the conceptual framework of the proposed texture
feature based pyramid fusion approach. Note that for the concept simplicity here we have generated base layers and detail layers of two input
exposures.

image with improved uniformity in exposure and tone based
on simple averaging the pixel brightness levels across auto-
bracketed shots. Multi-dimensional histogram was used to
analyze a set of bracketed images that projects pixels onto a
curve that �ts the data. Histogram equalization was used as
postprocessing operator for optimal contrast enhancement in
the fused image.

RecentlyMertens et al. [13] propose a technique for fusing
a bracketed exposure sequence into a high quality image,
without converting to HDR �rst, which is processed based
on Laplacian Pyramid. In that technique, “good” pixels are
selected from image sequence guided by simple quality
measures such as saturation, well-exposedness, and contrast.
Zhao et al. [31] introduced a Quadrature Mirror Filters
(QMFs) based subband approach for exposure fusion. Modi-
�ed subbands based on calculated gain control maps accord-
ing to image appearance measurements such as exposure,
contrast, and saturation are blended to remove nonlinear
distortion.

A number of non-adaptive MSD techniques have been
proposed recently [32–34] and have some limitations. 
e
�rst one is the introduction of distortions including halos and
visible artifacts. Secondly, it fails to preserve edges during the
decomposition. 
e e�ectiveness of edge preserving image
coarsening has been recognized as valuable tool for MSD
decomposition. Recently, the edge preserving MSD in [35–
40] has been widely used by the graphics researchers for the
image processing and the computational photography appli-
cations. Weighted least square (WLS) [36], bilateral �lter
(BLF) [41], anisotropic di�usion (ASD) [35], and guided
image �lter [40] are the popular MSD computation tech-
niques. Among these, BLF and ASD are the well-posed
approaches for preserving edges while the textures are
smoothed out. BLF was �rst proposed by Tomasi and Man-
duchi [42] in 1998. 
e BLF is an adaptive smoothing frame-
work that does a weighted sum of the pixels in a local neigh-
borhood; the weights depend on both the spatial domain

and the intensity domains which are used to manipulate
smooth regions while preserving strong edges. Bilateral �lter
based exposure fusion introduced by Raman and Chaudhuri
[28] uses the concept of local contrast [42] to preserve edge
details. 
e edge-preserving MSD proposed by Perona and
Malik [12] advocates the utilization of heat conduction PDE:��(�, �, �)/�� = div(∇�). 
at is, the intensity � of each pixel
is seen as heat and is propagated over time to its 4 neighbors
according to the heat spatial variation.

In this paper, we exploit anisotropic di�usion for the
fusion of images captured at di�erent exposure settings. 
e
base layer and detail layers are fused separately to preserve
texture details. In Section 3, we will discuss the two-scale
decomposition of input exposures for base layer and detail
layer extraction in detail. Our technique is 
exible enough to
fuse 
ash/no-
ash images and images focused on di�erent
targets (multifocus images), whereas methods proposed in
[24, 25] and [26, 27] are speci�cally designed for the fusion
of 
ash/no-
ash and multifocus image series, respectively.

3. Proposed Algorithm


e objective of our exposure fusion approach is to preserve
details in both brightly and poorly illuminated areas that
signi�cantly improve the quality of the fused image. It must
provide optimal contrast within the capabilities of the con-
ventional displaying medium and must not lead to artifacts
such as contrast reversal or black halos. Additionally, it should
produce realistic and pleasant images. 
e principal char-
acteristic of our exposure fusion is an adaptive adjustment
of local spatial information in the Laplacian pyramid [11]
depending on texture features (i.e., local range). To control
the contribution of pixels, we calculate weight that depends
on the maximum and minimum intensities of the neighbor-
ing pixels from the pixel under consideration. 
e weight
function and Gaussian-Laplacian pyramid are derived in
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the following sections. Figure 2 shows that the proposed
scheme contains three steps, which are analysis, scene detail
manipulation based on decision map, and synthesis.

More speci�cally, the goal of our exposure fusion algo-
rithm to produce well-exposed image by combining the
information across all of the input multiexposure images.
In our implementation, two-scale decomposition based on
anisotropic di�usion [12] is used to separate coarser and �ner
details from each input image. 
e base layer (B�) and detail
layer (D�) across all� input images are de�ned as

B� = aniso (��) , D� = �� − B�,
where � = 1, . . . , �. (1)


e well-exposed image is generated as

�� = B� + D�, (2)

where B� is the fused base layer that maximizes the coarser
details across all of the input base images B1,B2, . . . ,B�
and D� is the residual (i.e., fused detail layer) that maxi-
mizes the �ner details across all of the input detail layers
D1,D2 . . . ,D�. Before introducing the proposed approach,
we brie
y introduce anisotropic di�usion used to create two-
scale decomposition and local range used to generate weight
map for nonuniform scaling to control contribution of pixels
from base layers across all of the input exposure.

3.1. Data Acquisition and Two-Layer Decomposition

3.1.1. Scene Data Acquisition. Conventional digital photogra-
phy struggles with the high contrast scenes and can capture
brightest part (i.e., highlights) by choosing a low exposure
level (i.e., short exposure time) or the darkest part (i.e., shad-
ows) by choosing a high exposure level (i.e., long exposure
time). 
e information present in the fused LDR output
depends on the number of input exposures captured at
di�erent exposure settings. We assume that all input multiple
exposure images are photographed from static scene with the
help of tripod to avoid any spatial and global misalignment.
To apply our technique successfully, sequence of exposures is
captured from a scene with very dark and very bright details.

e aperture priority and the camera’s white balance are �xed
for the entire sequence. Sample input set of images with
di�erent exposure settings is illustrated in Figure 1(a).

3.1.2. Edge Preserving Anisotropic Di
usion. Anisotropic dif-
fusion has led to an e�cient new�eld to remove noise froman
image bymodifying the image via a Partial Di�erential Equa-
tion (PDE). 
e goal of edge preserving di�usion [12] is to
encourage smoothing at homogeneous region in preference
to inhomogeneous region (i.e., edge). Mathematically, the
isotropic di�usion equation ��(�, �, �) = div(∇�) is replaced
with

�� (�, �, �)
�� = div [� (‖∇�‖) ∇�] , (3)

where ∇� is the image gradient, ‖∇�‖ is the magnitude of the
gradient of image intensity, �(‖∇�‖) is an “edge-stopping

function” or “conduction coe�cient” that controls the dif-
fusion strength, (�, �) speci�es spatial position, and � is the
process ordering time parameter.


e di�usion strength in the image is in
uenced by the
conduction coe�cient which depends on the magnitude of
the gradient of the image intensity. 
e process of gradient
computation from the neighbors in 1D and 2D structure is
illustrated in Figures 3(a) and 3(b), respectively. If the con-
duction coe�cient is replaced by a constant value (i.e., �(⋅) =1), the di�usion process will be isotropic linear di�usion that
leads to Gaussian smoothing. Since isotropic di�usion does
not consider image structure, �ne textures as well as edges
are smoothed. 
us for anisotropic di�usion the conduction
coe�cient is chosen to satisfy �(�) → 0 when � → ∞
so that the di�usion process is “stopped” across the region
boundaries (i.e., edges) at locations of high gradients.

Two di�erent di�usion functions�(⋅) have been proposed
by Perona and Malik [12], which result in edge preserving
�lter de�ned as

�1 (∇�) = �(−(‖∇	‖/�)2), (4)

�2 (∇�) = 1
1 + (‖∇�‖ /�)2 , (5)

where � is a scale parameter (i.e., constant) to be tuned for
a particular application. Perona andMalik [12] proposed that
the value of� can be �xed manually or using the “noise esti-
mator” described by Canny [43]. In our algorithm �ne details
are separated using (4), which favors high contrast sharp
transitions across multiexposure input series and the value of� = 1/7 was �xed manually based on experimentation.


e discrete formulation of Perona and Malik [12] aniso-
tropic di�usion (i.e., base layer (B) in our case) is as given by

�
+1� = �
� ����������� ∑
�∈��

� (∇��,�) ∇��,�, (6)

where �
� is a discrete version of input signal, � determine
the sample position in the discrete signal, and � determines
iterations.
e constant� is a scalar that determines the rate of
di�usion, �� represents the spatial neighborhoods of current
sample position �, and |��| is the number of neighbors.

To see the behavior of the Perona and Malik [12] �lter
at edges, we �rst analyze one-dimensional signal into base
layer and detail layer. As can be seen in Figure 4, at base layer
(i.e., the coarser level a�er di�usion), high-frequency textures
disappear. 
e high texture details lost at the base layer are
exactly reconstructed at the detail layer. However, detail layer
is the di�erence between the input signal and the base layer,
which is dominated by the large discontinuities characterized
by the rapid oscillations (high-frequency variations) in the
input signal. As a result, we are able to separate high texture
details from edge transitions that are to be preserved during
the fusion process. 
e continuous di�usive process for 1-D
network structure (see Figure 3(a)) is as follows:

�� (�, �)�� = div [� (‖∇�‖) ∇�] (7)
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Figure 4: Two layer decomposition of 1-dimensional signal based
on Anisotropic Di�usion a�er 5 iterations with � = 30, � = 1/3
and |��| = 2 (West & East). 
e 1-dimensional input signal (�) is
decomposed into two main components: a low frequency base layer
(B) and a high-frequency detail layer (D). Notice that the edges are
preserved in the di�used image (i.e., base layer) and the detail layer
yields �ne details only.

and discrete formulation is written as

�
+1� = �
� + ����������� [�L ⋅ ∇L� + �R ⋅ ∇R�]


�, (8)

where �
� is a discrete version of input signal, � determine the
sample position in the discrete signal, and � determines iter-
ation. We found one iterations (� = 1) to be su�cient for the
detail layer extraction across all of the input images we exper-
imented at low computational time. 
e detailed analysis
of e�ect of number of iteration on computational time and
information present (i.e., entropy) in the fused image is given
in Section 4. 
e constant � is a scalar that determines the
rate of di�usion, �� represents the spatial neighborhood of

current sample position �, the subscripts L and R depicting
le� and right, respectively, and |��| is the number of neighbors
(i.e., two in 1-D case), where �L, and �R are the conduction
coe�cients across le� and right spatial locations, respectively.

e symbols∇L and∇R indicate the di�erence of le� and right
neighbor, respectively:

∇L�� ≡ ��−1 − ��,
� = � (sample location in 1-D grid) (9)

∇R�� ≡ ��+1 − ��. (10)


e anisotropic di�usion of two-dimensional grid shown in
Figure 3(b) is given by the relation

Base layer (B) = �
+1�
= �
� + ����������� [�N ⋅ ∇N� + �S ⋅ ∇S�

+�E ⋅ ∇E� + �W ⋅ ∇W�]
�,
(11)

where �
� is a discrete version of input image �, � determine
the pixel position in the discrete image, and � determines
iterations. 
e constant � is a scalar that determines the
rate of di�usion, �� represents the spatial neighborhood of
current pixel � (North, South, East, and West), and |��| is
the number of neighbors (usually four), where �N, �S, �E,
and �W are the conduction coe�cients across North, South,
East, and West spatial locations. 
e symbols ∇N, ∇s, ∇E, and∇W indicate the di�erence of North, South, East, and West
neighbor, respectively:

∇N��,� ≡ ��−1,� − ��,�,
for � = �, � (pixel location in 2-D grid) , (12)

∇S��,� ≡ ��+1,� − ��,�, (13)

∇E��,� ≡ ��,�+1 − ��,�, (14)

∇W��,� ≡ ��,�−1 − ��,�, (15)

Detail layer (D) ≡ � − B. (16)


e base layer decomposition in (11) and detail layer de-
composition in (16) of JUIT image are illustrated in Figure 5.
From Figure 5, it can be visually seen that the base layer pro-
vides coarse details and the textures are almost eliminated. In
Figure 6, we have illustrated the intensity pro�les of base lay-
ers (blue color) and detail layers (red color) computed from
multiexposure images. It is noticed that coarser and �ner
details are extracted across the visible details adaptively when
the scene is captured with variable exposure times.

3.2. Weight Map Computation: Texture Filter Based on Local
Range. In the proposed algorithm, local range is used to gen-
erate weightmap for nonuniform scaling to control contribu-
tion of pixels from base layers across all the multiple expo-
sures. In Figure 7, we have illustrated that how local range
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Figure 5: Two layer decomposition of two-dimensional signal
(i.e., JUIT image) based on anisotropic di�usion (a) a�er �ve (5)
iterations with � = 30, � = 1/7, and |��| = 4 (region size of 3∗3
pixels). Intensity pro�les (b) along a scan lines of two-dimensional
input signal (red), base layer (blue), and detail layer (green). Notice
that the strong edges are preserved in the di�used image (i.e., base
layer) and the detail layer yields �ne details only. Details compressed
in the base layer are exactly reconstructed in detail layer.

is calculated in the range-�ltered image from 3-by-3 neigh-
borhood. 
is local range is likely to be very di�erent from
region to region in di�erent images captured at variable
exposure time.Well-exposed areawill yield higher local range
as compared to the overexposed and underexposed regions,
which is illustrated in Figures 8 and 9. Local range is de�ned
as follows:

!∗
��,�
= Lmax − Lmin, (17)

where Lmax, Lmin ∈ local spatial window (i.e., 3-by-3) in the�th base layer

!��,� = [ �∑
��
!∗��,��]

−1

!∗��,�, (18)

where Lmax and Lmin are the maximum and minimum values
of the neighboring pixels within a 3-by-3 square window,
respectively, and !��,� (Normalized local range) is the weigh
map at location (�, �) in �th base image (B�).

It is commonly accepted that the higher the luminance
variation region is the stronger the local range of that region
to shield a pixel is. However, we �nd that the di�erence
between themaximum and theminimum value of luminance
also in
uences the probability of shielding the appropriate
pixel. To compute such local range, our basic idea is illustrated
in Figure 7. 
en, the Gaussian pyramid of weight map is
used to remove the in
uence of very high intensities and
very low intensities present across the multiple exposures for
producing the high-resolution image, which is described in
Section 4. To illustrate the variation of local range in multiple
exposures, we give four representative images as shown in
Figures 9(a), 9(b), 9(c), and 9(d).
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Figure 6: Intensity plots (b) along a scan lines of base layers (blue)
and detail layers (red) obtained with the anisotropic di�usion a�er
�ve iterations with � = 30, � = 1/7, and |��| = 4 (region size of 3∗3
pixels) across all of the input exposures (a). Notice that coarser and
�ner details are extracted across the visible details adaptively when
the scene is captured with variable exposure times.
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(a) (b) (c) (d)

Figure 9: Illustration of local range analysis of base layers across the multiple exposures. 
e local ranges are varying with respect to the
di�erent exposure times. ((a), (b)) Base layers of underexposed images (top) and their corresponding texture features (bottom); (c) base
layer of normally exposed image (top) and their corresponding texture features (bottom); (d) base layer of overexposed image (top) and their
corresponding texture features (bottom). Note that well-exposed pixels have the brighter texture features (i.e., higher weights) across di�erent
exposure values. Input images: Jacques Jo�re HDR Chief Photographer.

3.3. Pyramid Generation and Construction of Fused Base
Layers (B�) across All Input Base Layers. Researchers have
attempted to synthesize andmanipulate the features at several
spatial resolutions [13, 44] that avoid the introduction of seam
and artifacts such as contrast reversal or black halos. In the
proposed algorithm, the bandpass components at di�erent
resolutions are manipulated based on texture features that
determine the pixel value in the reconstructed fused base
layer (B). We begin by constructing a Gaussian pyramid

GB0�,GB1�, . . . ,GB�� of � input base layers across the input

images, where GB0� is the full resolution base layer and GB
�
� is

the coarsest level of the �th base layer in the pyramid. Low-
pass �ltering (convolving) a base layer B� with an equivalent
weighting function and subsampled by removing every other
pixel and every other row yields a Gaussian pyramid [11]:

GB���,� =
2∑
�=−2

2∑
�=−2

% (&, ')GB�−1� (2� + &, 2� + ') . (19)

Here * (0 < * < -) refers to the number of levels in the
pyramid and � (1 < � < �) refers to the number of input
base layers and %(&, ') is an equivalent weighting function.
In our case, the Gaussian pyramid is generated with 6 = 0.4
[11], which yields more Gaussian-like equivalent weighting

functions. A Laplacian pyramid of input base layers LB0�,
LB1�, . . . , LB�� is created containing band-pass images of
decreasing size and spatial frequency:

LB��

= GB�� − EXPAND (GB�+1� ) , � = 1, . . . , �, * = 0, . . . , -,
(20)

LB�� = EXPAND (GB��) , (21)

where the expanded imageGB�+1� is the same size as theGB�−1� ,

and LB�� is the level of Laplacian pyramid of �th base image.
Each Laplacian level contains local spatial information at
increasing �ne details.


e patches extracted from the input base layers are used
for texture analysis (i.e., local range). We calculate a weight
around every pixel within a 3-by-3 window. 
e value of the
weighting function for each pixel depends on the maximum
and minimum intensity value of the neighbors within the
window. Next, the local range calculated from base layer (i.e.,
di�used image) in (11) is computed in top-down fashion,
similar to that described in [11]:

GR���,� = 2∑
�=−2

2∑
�=−2

% (&, ')GR�−1� (2� + &, 2� + ') , (22)

where * and � denote the level of Gaussian pyramid of local

range GR0�,GR1�, . . . ,GR�� of �th input range �ltered image

with GR0� as the full resolution image and GR�� is the coarsest
level in the pyramid.

Gaussian pyramid of texture feature (i.e., local range) acts
as weightmap that determines the contribution of pixels from
the base layers across all of themultiple exposures.
e Lapla-

cian pyramid of base layer LB�� multiplied with the corre-

sponding Gaussian pyramid of texture feature GR�� and sum-

ming over � yields modi�ed Laplacian pyramid L�:

L��� =
�∑
�=1

LB���,�GR
�
��,�. (23)

In the case of the image averaging, the output pixels are an
average of input pixel’s luminance values, which reduce noise
in the �nal image, but the contrast of details is compromised
and the images can look washed out. Note, however, we have
found that Pyramid fusion [23] performs very well on base
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layer fusion when modi�ed with weight maps giving more
pleasing results with optimal contrast enhancement.


e fused base layer that contains well-exposed pixels is

reconstructed from L� by expanding each level and summing

B� = L0 + L1 + L2 + ⋅ ⋅ ⋅ + L�. (24)

We found that the modi�cation of Laplacian pyramid in
top-down fashion eliminates underexposed and overexposed
regions in the fused base layer that leads to well-exposed
image without the introduction artifacts. See Figure 10 for an
illustration of the proposed idea.

3.4. Construction of Fused Detail Layer (D�) and Detail Layer
Enhancement. 
e detail layers D1,D2, . . . ,D� computed
from (1) contain the smaller changes in intensity. 
ere are
mainly three parameters that control the behavior of base
layer and detail layer computation in our exposure fusion
approach. Referring to (11), � and constant � determine
the iterations and the rate of di�usion, respectively. 
e
constant value � can be chosen manually or by using the
“noise estimator” proposed by Perona and Malik [12]. As a
consequence, we can vary these three parameters tomoderate
texture details in the fused image. When � increases, adjacent
pixels with large intensity di�erences are ignored (i.e., more
smoothing at edges), which leads to larger details in the resid-
ual layers across di�erent exposures. However, if � becomes
too small, fewer details are preserved in the residual layers
across all of the input exposures with smaller computational
time. In order to balance the computational time and detail
in the fused image, we have �xed and suggested � = 1,� = 1/7, and � = 30 in all experiments, which reveals
reasonably good results. More detailed analysis of e�ects of
these free parameters is given in Section 4.We have presented
two alternative options for constructing the residual image
(i.e., detail layer D�) and manipulating the details in the
fused image. We believe that both options can be utilized,
depending on the application.

3.4.1. User Driven. In order to compute residual layer having
rich texture detail, we use a weighting factor 81 determined
by the user (typically 1.2 in our approach, see Figure 1(b)) and
the residual layer is obtained as a linear combination of the
detail layers across the input multiexposure images:

D� = ∑��=1 81D�� . (25)


is straightforward option allows the user to control the
contribution of texture details directly from the input detail
layers across all of the input images.We found that this simple
technique is e�ective to boost weak details in the fused image
but yield overenhancement at the strong edges. Furthermore,
to manipulate detail layers across all of the input images
precisely, we present a second technique that enhances weak
details, while avoids artifacts near the edges.

3.4.2. Sigmoid Function Based Detail Layer Manipulation and
Fusion. 
e second alternative option to enhance �ne details

in the fused image is based on monotonic nonlinear activa-
tion function, where the resultant residual layer is computed
as follows:

D� = �
�

∑
�

��∑
�

82: (D(�,�)� )
� , � = 1, . . . , �, (26)

where82 is a �xedweight (82 = 2 is found to be suitable in our
approach inmost cases) and :(⋅) is the 1-dimensional sigmoid
function

: (�) = 11 + �−�
 , (27)

where � ∈ R is the independent variable and 6 ∈ R is a
weight parameter of the sigmoid function. Figure 11 shows a 1-
dimensional sigmoid with di�erent weight values.
eweight
parameter used in our approach was set to 27.

Let ; be a �xed threshold to further control the sharpness
of sigmoid function, which is manually chosen by the opera-
tor. 
e 1-dimensional sigmoid function with threshold ; is
given by

: (�) = 11 + �(−�
+�) . (28)

In our approach ; is responsible for global contrast
management. 
e detailed analysis of selection of these
parameters is given in Section 4. Minai and Williams [45]
have presented the sigmoid with threshold as a neuron acti-
vation function in arti�cial neural networks and recurrence
relations for calculating derivatives of any order. 
e �rst
derivative of sigmoid function :�(�) is computed as

:� (�) = 6: (�) (1 − : (�)) . (29)

4. Experimental Results and Analysis

4.1. Comparison with Other Exposure Fusion, Multifocus
Fusion, and Tone Mapping Methods. In this paper, we have
implemented our algorithm in MATLAB-7.5.0 and run on a
PC with 2.2GHz i5 processor and 2GB of RAM. As shown in
Figures 12(b) and 13(b), note that the fused image provides
natural contrast and has no noticeable artifacts. We tested
our proposed algorithm on a variety of bracketed sequences.

e proposed approach is computationally simple and results
are comparable to several tone mapping algorithms. Figure 2
shows the block diagram of the proposed texture feature
based detail enhancing exposure fusion technique.

Figures 12, 13, 14, and 15 show the comparison of
the proposed experimental results. In these experiments,
optimal block size for weight map calculation was 3-by-3.
Figures 12(a) and 13(a) show image pairs of the “igloo” and
“door” image sequence (size of 221×336×6 and 223×332×6,
resp.). We can see from Figure 12(b) that all the light in the
scene that appears to come from natural light source is opti-
mally reproduced with crisp shadows. In Figure 12, one auto-
exposure image captured with the digital camera and two



10 ISRN Signal Processing

Gaussian plane

base layer

Base layer

+

+

+

+

−

−

−

−

∑

∑

∑

∑

Laplacian plane

base layer

Gaussian plane

local range

Modi�ed
Laplacian

plane

Fused pyramid

∑

∑

∑

∑

∑

Reconstruction plane

+

+

+

+ +

+

+

+
∑

∑

∑

∑

Fused base layer

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
GB31

GB2
1

GB1
1

GB01

LB	1

LB31

LB2
1

LB1
1

LB01

GR	1

GR31

GR2
1

GR1
1

GR01

L	1

L31

L2
1

L1
1

L01

L	

L3

L2

L1

L0

B	

B3

B2

B1

L	2 L	


L32 L3


L2
2 L2



L1
2 L1



L02 L0


B�

GB	1

Figure 10: Base layer manipulation and fusion: illustrating the conceptual framework of texture feature (i.e., decision map) based pyramid
fusion approach of coarser detail across input images. Note that for the concept simplicity, here we have generated the Laplacian pyramid of
single base layer and the Gaussian pyramid of the corresponding texture features, where L02, L03, . . . , L0� are the modi�ed Laplacian pyramid
of base layers across all of the multiexposures.

0 2 3 4 5

0.8

0.6

0.4

0.2

1

0.9

0.7

0.5

0.3

0.1

0
1

Large weight Small weight 

−5 −4 −3 −2 −1

� = 2 � = 3

� = 3
� = 2

(a)

0

0.4

0.3

0.2

0.1

0.05

0.15

0.25

0.35

0.45

0.5

0 2 3 4 51

Large weight 

Small weight 

−5 −4 −3 −2 −1

� = 2

� = 3

� = 3
� = 2

(b)

Figure 11:
e e�ect of weight (i.e., 6) on sigmoid function and derivative of sigmoid function. (a)
e sharpness of the sigmoid in (28) varies
according to the value of weight.With larger value of 6, the sigmoid becomes a threshold function. (b)
e �rst derivative of sigmoid function
in (29) for 6 = 2 and 6 = 3.

recently proposed fusion results of “igloo” are demonstrated.
It can be noticed that the proposed technique provides better
texture details in highlights and shadows as compare to the
results of autoexposure (Figure 12(c)) and Mertens et al. [13]
(Figure 12(d)). It may also be observed that the brightly

illuminated region (i.e., sky area) is overexposed in the result
proposed by Shen et al. [46] (see Figure 12(e)). Figure 13(b)
shows more comparison example of our result for scene
depicting outdoor and indoor details. 
e proposed tech-
niques is visually compared with the results of autoexposure
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(a)

(b) (c) (d) (e)

Figure 12: (a) Images representing multiple exposures of an outdoor scene depicting highlights from natural sun light and shadows. (b) Our
technique fuses themultiple exposures to obtain high quality image. Note that the fused image yieldsmore texture details and natural contrast
without the introduction of artifacts. (c) Autoexposure, (d) Mertens et al. [13], and (e) Shen et al. [46]. Input images are courtesy of Shree
Nayar.

(Figure 13(c)), and recently proposed Mertens et al. [13]
(Figure 13(d)) and Zhang and Cham [47] (Figure 13(e)). By
contrast, it is seen that our method combines the best of mul-
tiple exposures into one realistic-looking image that is much
closer to what our eyes originally saw. However, both indoor
and outdoor details of input LDR images (Figure 13(a)) are
simultaneously produced in the fused image with optimal
contrast and without the introduction of artifacts. Although
Mertens et al. [13] have produced comparable results, it does
not preserve all details from input LDR images. As shown in
Figure 13(e), the results produced by Zhang and Cham [47]
depict washed out details in underexposed regions which are
not able to preserve texture details from input LDR shots.

To further compare our results visually withMertens et al.
[13] and Shen et al. [46], respectively, Figures 14(a), 14(b), and
14(c) depict a close-up view. 
e �rst row of Figure 1 depicts
the “house” LDR image sequence of size 752 × 500 × 4 which
is provided by Mertens et al. [13]. It can be observed that the
texture details (see the �ne textures on the chair and books
behind the chair) are accurately preserved in the proposed
fused image (see Figure 14(a)).

In this section, we compare our results for “Belgium
house” image sequence of size 1025 × 769 × 9 (see
Figure 15(a)) with the popular exposure fusion and tone-
mapped HDR images, which are depicted in Figures 15(b),
15(c), 15(d), 15(e), and 15(f). In particular, we do compare
our results with the perceptually driven works [16] and low

curvature image simpli�er (LCIS) hierarchical decomposi-
tion [48]. As shown in Figure 15(b), our technique yields �ne
texture details in the fused image with natural contrast that
is entirely free of halo artifacts. To illustrate the e�ectiveness
of proposed approach, we illustrate close-up comparison in
Figures 15(b)–15(f). Larson et al. [16] presented a dynamic
range compression method based on a human visual system
adaptation, and it was also found to su�er from halo artifacts
and does not o�er good color information (see Figure 15(e)).
Tumblin and Turk [48] preserve �ne details in the image,
while weak halo artifacts are present around certain edges
in strongly compressed areas (see Figure 15(f)). Experimental
results have demonstrated that proposed method worked
very well on a variety of multiple exposures and preserved
the original scene’s relative visual contrast impression.

Furthermore, to check the e�ectiveness of the proposed
algorithm for other applications, we have employed the
same technique for the fusion of multifocus image series
(Figures 16, 17, and 18) and images capturedwith 
ash andno-

ash (Figure 19). Figure 16(a) illustrates two partially focused
RGB images (focused on two di�erent targets). It is illustrated
in Figure 16(b) that the color information is preserved in the
fused image with better visualization of texture details. On
the other hand we have tested and compared our approach
for two sets of multifocused gray scale images of “table”
and “clock”, which are illustrated in Figures 17(a)–17(d)
and Figures 18(a)–18(d), respectively. As demonstrated in
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(a)

(b) (c) (d) (e)

Figure 13: (a) Images representingmultiple exposures of an indoor and outdoor scene depicting sunlit details and shadows. (b)Our technique
fuses the multiple exposures to obtain high quality image. Note that the fused image yields more texture details and natural contrast without
the introduction of artifacts. (c) Autoexposure, (d) Mertens et al. [13], and (e) Zhang and Cham [47]. Input images are courtesy of Shree
Nayar.

(a) (b) (c)

Figure 14: House: comparison results to other recent exposure fusion techniques. (a) Results of our new exposure fusionmethod, (b)Mertens
et al. [13], and (c) Shen et al. [46]. Note that our method yields enhanced texture and edge features. Input image sequence is courtesy of Tom
Mertens.

Figure 17(c) that our results produce pleasing image with rich
texture details, the results produced by P. Hodáková et al.
[49] in Figure 17(d) do not reveal �ne details present across
all input images. It can easily be noticed that our fused
image in Figure 18(c) extracts more information from the
original images. Moreover, Adu andWang’s technique [27] in
Figure 18(d) appears washed out, which is responsible for
losing perception of �ne texture details.

Finally, we have also tested our technique on two sets
of images captured with 
ash and no-
ash images

(see Figures 19(a) and 19(b)). Our approach provides inter-
esting solution for fusing the 
ash/no-
ash image pair.
Figure 19(c) illustrates our results, which combine details
from the 
ash/no-
ash image pair. As shown in Figure 19(c),
the proposed approach allows removal of highlights from

ash images and yields high quality 
ash image with optimal
contrast and detail enhancement. 
e experimental results
in Figure 19(c) depict largest amount of information and has
relatively better contrast than that of results of Mertens et al.
[13] in Figure 19(d).
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(a) Input series

(b) (c) (d) (e) (f)

Figure 15: Belgium house: (a) series of multiple exposures depicting both indoor and outdoor areas. 
e exposure value is varying from
(1/1000 of a second) to (1/4 of a second). Comparison results to other popular tone mapping techniques. (b) Results of our new exposure
fusion method, window size = 3-by-3, (c) Mertens et al. [13], (d) Shen et al. [46], (e) results of Larson et al. [16], (f) results of LCIS method
[48]. Note that our method yields combined features that can only be recorded using di�erent exposures. Input images are courtesy of Dani
Lischinski.

(a) (b)

Figure 16: Book image. (a) Two partially focused images (focused on di�erent targets) and (b) image generated by the proposed approach,
which illustrate that the fused image extracts more color and texture details from the original input images (input sequence is courtesy of
Adu and Wang [27]).

To perform visual inspection of exposure fusion results
of Mertens et al. [13] shown in Figures 12(d), 13(d), 14(b),
15(c), and 19(d) are produced with the help of Matlab code
provided by the authors. 
e original results of generalized
random walks based fusion [46] in Figures 12(e), 14(c),
and 15(d) are provided by the authors on request. All the
experimental results of Zhang and Cham [47] in Figure 13(e),
tone mapped HDR [16, 48] in Figures 15(e) and 15(f), and
multifocused fusion [27, 49] in Figures 17(d) and 18(d) are
taken from its papers. It is noticed that unlike the previous

work such as [46], our approach preserves more details with
higher contrast and does not require further postprocessing.

us, this approach can be utilized in computer graphics
applications.

4.2. Analysis of Free Parameters. To analyze the e�ect of
iteration on quality score [50], entropy, computational time
and mean square error (MSE), we have illustrated four plots
(see Figures 20(a), 20(b), 20(c), and 20(d), resp.) at a di�erent



14 ISRN Signal Processing

(a) (b)

(c) (d)

Figure 17: Table image. ((a), (b)) Two partially focused images (focused on di�erent targets), (c) image generated by the proposed approach,
which illustrates that the fused image extracts more information from the original images, and (d) Hodáková et al. [49].

(a) (b) (c) (d)

Figure 18: Clock Image. ((a), (b)) Two partially focused images (focused on di�erent targets), (c) image generated by the proposed approach,
which illustrates that the fused image extracts more information from the original images, and (d) Adu and Wang [27] (input sequence is
courtesy of Adu and Wang [27]).

(a) (b) (c) (d)

Figure 19: ((a), (b)) Input images photographed with and without 
ash; (c) enhanced fused image by proposed algorithm which maintains
the warm appearance and the sharp details a�er removing strong highlight, and (d) Mertens et al. [13]. Images taken from Agrawal et al. [24].
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Figure 20: Analysis of number of iterations used for base layer computation. Mean square error is de�ned as the relative di�erence from the
results generated with � = 1. Maximum quality score and entropy are only observed when � = 1. It is observed that MSE and computational
time increase as � increases. (a) E�ectiveness of � on quality score, (b) entropy, (c) computational time, and (d) error introduced.

(a) (b) (c) (d) (e)

Figure 21: House image. 
e free parameter � in (11) is used to control detail enhancement. We have found that � = 1 is su�cient for �ne
details extraction and gives better results for most cases. Higher value of � brings in artifacts near strong edges. (a) � = 1, (b) � = 2, (c) � = 3,
(d) � = 4, and (e) � = 5.
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(a) (b) (c) (d) (e)

Figure 22: Igloo image. 
e free parameter � in (11) is used to control detail enhancement. We have found that � = 1 is su�cient for �ne
details extraction and gives better results for most cases. Higher value of � brings inmore details while introducing artifacts near strong edges.
(a) � = 1, (b) � = 2, (c) � = 3, (d) � = 4, and (e) � = 5.

� = 0.002
(a)

� = 0.003
(b)

� = 0.004
(c)

� = 0.005
(d)

Figure 23: House image. 
e free parameter ; in equation is used to control sharpening. We have found that ; = .002 gives better results for
most cases. Higher value of ; brings in more details in highly illuminated areas. (a) ; = .002, (b) ; = .003, (c) ; = .004, and (d) ; = .005.

value of iteration (�) for input image sequences of “house,”
“igloo,” and “door.” To assess the e�ect of iteration on fusion
performance, the quality score [50] and entropywere adopted
in all experiments. To measure computational time, all the
experiments were executed on a PCwith 2.2GHz i5 processor
and 2GB of RAM. 
e MSE is estimated as the di�erence
between pixel values implied by di�erent iterations (i.e., � =2, 3, 4, 5, 6, 7, 8) and the reference image obtained with low
iteration value (i.e., � = 1). We �x � = 1/7, � = 30, 8 = 2,
and 6 = 27 in all experiments and they are set as default para-
meters.

First, to analyze the e�ect of iteration on quality score,
entropy, and computational time the threshold (;) used
in (29) for scale selection was set to 0.002. As shown in
Figures 20(a) and 20(b), the best fusion performance is given
at � = 1.
e quality score and entropy decrease as � increases.
As shown in Figure 20(c), the computational time increases
as � increases. 
e visual inspection of e�ect of � on image
sequences (i.e., “house” and “igloo”) is depicted in Figures 21
and 22, respectively. It can easily be noticed from the close up

view (see Figures 21(b), 21(c), 21(d), 22(b), 22(c), and 22(d))
that as � increases, the sharp edges get brighter and therefore
lead to artifacts at sharp edges. To analyze the error (i.e.,MSE)
introduction against � the one of the image produced with � =1, � = 1/7, � = 30, 8 = 2, ; = .002, and 6 = 27 is considered
as reference image. 
e error increases as the number
of iterations (�) increases. From Figure 20(d), it can also be
noticed that when � = 8, the total error introduced is still less
than 9%.

In the analysis of threshold (;), we �x � = 1, � = 1/7, � =30,8 = 2, and 6 = 27. Four results obtained by di�erent ;’s are
shown in Figures 23(a), 23(b), 23(c), and 23(d). For the result
in Figure 23(a), the value of ; is .002, and in Figures 9(b)–9(d)
the values of ; are .003, .004, and .005. Increasing the value
of ; for controlling the sharpness of sigmoid function reveals
more details in strongly illuminated areas (i.e., overexposed
regions) and the image gets darker. In order to balance the
details and contrast, we have found that ; = .002 generates
reasonably good results for all cases. Finally, from these
experiments, we have concluded that the best results were
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obtained with � = 1, � = 1/7, � = 30, 8 = 2, ; = .002,
and 6 = 27, which yield more details and good contrast.

5. Conclusions

In this paper, we have proposed texture features based expo-
sure fusion, which has applicability to preserve the details in
poorly and brightly illuminated regions. Our method uses
texture features to modify Laplacian pyramid of the base
layer across multiple exposures at di�erent spatial scales and
then constructs a well-exposed low dynamic range image
by expanding, then summing all the levels of the fused
Laplacian pyramid for the di�erent base layers. Nonlinear
di�usion �lters based on partial di�erential equations (PDE)
were proposed to preserve �ne details. Experimental results
demonstrated that our approach has applicability for other
applications, includingmultifocus image fusion and fusion of

ash/no-
ash image pairs, in which the �ne details are pre-
served accurately. In particular, the main contribution of our
work is proposal of a novel technique that fuses details in edge
preserving manner from images captured at variable expo-
sure settings without the introduction of artifacts. In future,
we will explore the applicability of single resolution tech-
niques to reduce the computational cost of the proposed
exposure fusion algorithm.
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