
Anisotropic Diffusion

in Image Processing

Joachim Weickert

B.G. Teubner Stuttgart





Anisotropic Diffusion
in Image Processing

Joachim Weickert

Department of Computer Science

University of Copenhagen

Copenhagen, Denmark

B.G. Teubner Stuttgart 1998



Dr. rer. nat. Joachim Weickert

Born in 1965 in Ludwigshafen/Germany. Studies in mathematics, physics and com-

puter science at the University of Kaiserslautern. 1987 B.Sc. in physics and indus-

trial mathematics. 1991 M.Sc. in industrial mathematics. 1996 Ph.D. in mathe-

matics. Postdoctoral researcher at the Image Sciences Institute at Utrecht Uni-

versity from 2/96 to 3/97. Since then visiting assistant research professor at the

Department of Computer Science, Copenhagen University.

The cover image shows a thresholded nonwoven fabric image which was processed

by applying a coherence-enhancing anisotropic diffusion filter (see Section 5.2 for

more details). The goal was to visualize the quality relevant adjacent fibre struc-

tures, so-called stripes. The displayed equations describe the basic structure of

nonlinear diffusion filtering in the continuous, semidiscrete, and fully discrete set-

ting. Their theoretical foundations are treated in Chapters 2–4.

c© Copyright 2008 by Joachim Weickert.

All rights reserved. No part of this book may be reproduced by any means, or

transmitted, or translated into a machine language without the written permission

of the author.

This book had been published by B. G. Teubner (Stuttgart) in 1998 and went out

of print in 2001. The copyright has been returned to the author in 2008. In the

current version a few typos and other errors have been corrected.



To my parents Gerda and Norbert





Preface

Partial differential equations (PDEs) have led to an entire new field in image

processing and computer vision. Hundreds of publications have appeared in the last

decade, and PDE-based methods have played a central role at several conferences

and workshops.

The success of these techniques is not really surprising, since PDEs have proved

their usefulness in areas such as physics and engineering sciences for a very long

time. In image processing and computer vision, they offer several advantages:

• Deep mathematical results with respect to well-posedness are available, such

that stable algorithms can be found. PDE-based methods are one of the

mathematically best-founded techniques in image processing.

• They allow a reinterpretation of several classical methods under a novel uni-

fying framework. This includes many well-known techniques such as Gaussian

convolution, median filtering, dilation or erosion.

• This understanding has also led to the discovery of new methods. They

can offer more invariances than classical techniques, or describe novel ways

of shape simplification, structure preserving filtering, and enhancement of

coherent line-like structures.

• The PDE formulation is genuinely continuous. Thus, their approximations

aim to be independent of the underlying grid and may reveal good rotational

invariance.

PDE-based image processing techniques are mainly used for smoothing and

restoration purposes. Many evolution equations for restoring images can be de-

rived as gradient descent methods for minimizing a suitable energy functional, and

the restored image is given by the steady-state of this process. Typical PDE tech-

niques for image smoothing regard the original image as initial state of a parabolic

(diffusion-like) process, and extract filtered versions from its temporal evolution.

The whole evolution can be regarded as a so-called scale-space, an embedding of

the original image into a family of subsequently simpler, more global representa-

tions of it. Since this introduces a hierarchy into the image structures, one can use

a scale-space representation for extracting semantically important information.

One of the two goals of this book is to give an overview of the state-of-the-art of

PDE-based methods for image enhancement and smoothing. Emphasis is put on a
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unified description of the underlying ideas, theoretical results, numerical approxi-

mations, generalizations and applications, but also historical remarks and pointers

to open questions can be found. Although being concise, this part covers a broad

spectrum: it includes for instance an early Japanese scale-space axiomatic, the

Mumford–Shah functional for image segmentation, continuous-scale morphology,

active contour models and shock filters. Many references are given which point the

reader to useful original literature for a task at hand.

The second goal of this book is to present an in-depth treatment of an interest-

ing class of parabolic equations which may bridge the gap between scale-space and

restoration ideas: nonlinear diffusion filters. Methods of this type have been pro-

posed for the first time by Perona and Malik in 1987 [326]. In order to smooth an

image and to simultaneously enhance important features such as edges, they apply

a diffusion process whose diffusivity is steered by derivatives of the evolving image.

These filters are difficult to analyse mathematically, as they may act locally like

a backward diffusion process. This gives rise to well-posedness questions. On the

other hand, nonlinear diffusion filters are frequently applied with very impressive

results; so there appears the need for a theoretical foundation.

We shall develop results in this direction by investigating a general class of

nonlinear diffusion processes. This class comprises linear diffusion filters as well as

spatial regularizations of the Perona–Malik process, but it also allows processes

which replace the scalar diffusivity by a diffusion tensor. Thus, the diffusive flux

does not have to be parallel to the grey value gradient: the filters may become

anisotropic. Anisotropic diffusion filters can outperform isotropic ones with respect

to certain applications such as denoising of highly degraded edges or enhancing

coherent flow-like images by closing interrupted one-dimensional structures. In or-

der to establish well-posedness and scale-space properties for this class, we shall

investigate existence, uniqueness, stability, maximum–minimum principles, Lya-

punov functionals, and invariances. The proofs present mathematical results from

the nonlinear analysis of partial differential equations.

Since digital images are always sampled on a pixel grid, it is necessary to know

if the results for the continuous framework carry over to the practically relevant

discrete setting. These questions are an important topic of the present book as

well. A general characterization of semidiscrete and fully discrete filters, which

reveal similar properties as their continuous diffusion counterparts, is presented. It

leads to a semidiscrete and fully discrete scale-space theory for nonlinear diffusion

processes. Mathematically, this comes down to the study of nonlinear systems of

ordinary differential equations and the theory of nonnegative matrices.

Organization of the book. Image processing and computer vision are inter-

disciplinary areas, where researchers, practitioners and students may have a very

different scientific background and differing intentions. As a consequence, I have

tried to keep this book as self-contained as possible, and to include various aspects
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such that it should contain interesting material for many readers. The prerequisites

are kept to a minimum and can be found in standard textbooks on image process-

ing [163], matrix analysis [407], functional analysis [9, 58, 7], ordinary differential

equations [56, 412], partial differential equations [185] and their numerical aspects

[293, 286]. The book is organized as follows:

Chapter 1 surveys the fundamental ideas behind PDE-based smoothing and

restoration methods. This general overview sketches their theoretical properties,

numerical methods, applications and generalizations. The discussed methods in-

clude linear and nonlinear diffusion filtering, coupled diffusion–reaction methods,

PDE analogues of classical morphological processes, Euclidean and affine invariant

curve evolutions, and total variation methods.

The subsequent three chapters explore a theoretical framework for anisotropic

diffusion filtering. Chapter 2 presents a general model for the continuous setting

where the diffusion tensor depends on the structure tensor (interest operator,

second-moment matrix), a generalization of the Gaussian-smoothed gradient al-

lowing a more sophisticated description of local image structure. Existence and

uniqueness are discussed, and stability and an extremum principle are proved.

Scale-space properties are investigated with respect to invariances and information-

reducing qualities resulting from associated Lyapunov functionals.

Chapter 3 establishes conditions under which comparable well-posedness and

scale-space results can be proved for the semidiscrete framework. This case takes

into account the spatial discretization which is characteristic for digital images,

but it keeps the scale-space idea of using a continuous scale parameter. It leads

to nonlinear systems of ordinary differential equations. We shall investigate under

which conditions it is possible to get consistent approximations of the continuous

anisotropic filter class which satisfy the abovementioned requirements.

In practice, scale-spaces can only be calculated for a finite number of scales,

though. This corresponds to the fully discrete case which is treated in Chapter

4. The investigated discrete filter class comes down to solving linear systems of

equations which may arise from semi-implicit time discretizations of the semidis-

crete filters. We shall see that many numerical schemes share typical features

with their semidiscrete counterparts, for instance well-posedness results, extremum

principles, Lyapunov functionals, and convergence to a constant steady-state. This

chapter also shows how one can design efficient numerical methods which are in

accordance with the fully discrete scale-space framework and which are based on

an additive operator splitting (AOS).

Chapter 5 is devoted to practical topics such as filter design, examples and ap-

plications of anisotropic diffusion filtering. Specific models are proposed which are

tailored towards smoothing with edge enhancement and multiscale enhancement

of coherent structures. Their qualities are illustrated using images arising from

computer aided quality control and medical applications, but also fingerprint im-
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ages and impressionistic paintings shall be processed. The results are juxtaposed

to related methods from Chapter 1.

Finally, Chapter 6 concludes the book by giving a summary and discussing

possible future perspectives for nonlinear diffusion filtering.
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Chapter 1

Image smoothing and restoration

by PDEs

PDE-based methods appear in a large variety of image processing and computer

vision areas ranging from shape-from-shading and histogramme modification to

optic flow and stereo vision.

This chapter reviews their main application, namely the smoothing and restora-

tion of images. It is written in an informal style and refers to a large amount of

original literature, where proofs and full mathematical details can be found.

The goal is to make the reader sensitive to the similarities, differences, advan-

tages and shortcomings of these techniques, and to point out the main results and

open problems in this rapidly evolving area.

For each class of methods the basic ideas are explained and their theoretical

background, numerical aspects, generalizations, and applications are discussed.

Many of these ideas are borrowed from physical phenomena such as wave prop-

agation or transport of heat and mass. Nevertheless, also gas dynamics, crack

propagation, grassfire flow, the study of salinity profiles in oceanography, or mech-

anisms of the retina and the brain are closely related to some of these approaches.

Although a detailed discussion of these connections would be far beyond the scope

of this work, they are mentioned wherever they appear, in order to allow the

interested reader to pursue these ideas. Also many historical notes are added.

The outline of this chapter is as follows: We start with reviewing the physi-

cal ideas behind diffusion processes. This helps us to better understand the next

sections which are concerned with the properties of linear and nonlinear diffusion

filters in image processing. The subsequent study of image enhancement methods

of diffusion–reaction type relates diffusion filters to variational image restoration

techniques. After that we investigate morphological filters, a topic which looks at

first glance fairly different to the diffusion approach. Nevertheless, it reveals some

interesting relations when it is interpreted within a PDE framework. This becomes

1



2 CHAPTER 1. PARTIAL DIFFERENTIAL EQUATIONS

especially evident when considering curvature-based morphological PDEs. Finally

we shall discuss total variation image restoration techniques which permit discon-

tinuous solutions. The last section summarizes the advantages and shortcomings

of the main methods and gives an outline of the questions we are concerned with

in the subsequent chapters.

1.1 Physical background of diffusion processes

Most people have an intuitive impression of diffusion as a physical process that

equilibrates concentration differences without creating or destroying mass. This

physical observation can be easily cast in a mathematical formulation.

The equilibration property is expressed by Fick’s law:

j = −D · ∇u. (1.1)

This equation states that a concentration gradient ∇u causes a flux j which aims

to compensate for this gradient. The relation between ∇u and j is described by

the diffusion tensor D, a positive definite symmetric matrix. The case where j and

∇u are parallel is called isotropic. Then we may replace the diffusion tensor by a

positive scalar-valued diffusivity g. In the general anisotropic case, j and ∇u are

not parallel.

The observation that diffusion does only transport mass without destroying it

or creating new mass is expressed by the continuity equation

∂tu = −div j (1.2)

where t denotes the time.

If we plug in Fick’s law into the continuity equation we end up with the diffusion

equation

∂tu = div (D · ∇u). (1.3)

This equation appears in many physical transport processes. In the context of

heat transfer it is called heat equation. In image processing we may identify the

concentration with the grey value at a certain location. If the diffusion tensor is

constant over the whole image domain, one speaks of homogeneous diffusion, and

a space-dependent filtering is called inhomogeneous. Often the diffusion tensor is a

function of the differential structure of the evolving image itself. Such a feedback

leads to nonlinear diffusion filters. Diffusion which does not depend on the evolving

image is called linear.

Sometimes the computer vision literature deviates from the preceding nota-

tions: It can happen that homogeneous filtering is named isotropic, and inhomo-

geneous blurring is called anisotropic, even if it uses a scalar-valued diffusivity

instead of a diffusion tensor.
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1.2 Linear diffusion filtering

The simplest and best investigated PDE method for smoothing images is to apply

a linear diffusion process. We shall focus on the relation between linear diffusion

filtering and the convolution with a Gaussian, analyse its smoothing properties for

the image as well as its derivatives, and review the fundamental properties of the

Gaussian scale-space induced by linear diffusion filtering. Afterwards a survey on

discrete aspects is given and applications and limitations of the linear diffusion

paradigm are discussed. The section is concluded by sketching two linear general-

izations which can incorporate a-priori knowledge: affine Gaussian scale-space and

directed diffusion processes.

1.2.1 Relations to Gaussian smoothing

Gaussian smoothing

Let a grey-scale image f be represented by a real-valued mapping f ∈ L1(IR2). A

widely-used way to smooth f is by calculating the convolution

(Kσ∗f)(x) :=
∫

IR2

Kσ(x−y) f(y) dy (1.4)

where Kσ denotes the two-dimensional Gaussian of width (standard deviation)

σ>0 :

Kσ(x) :=
1

2πσ2
· exp

(

−|x|2
2σ2

)

. (1.5)

There are several reasons for the excellent smoothing properties of this method:

First we observe that since Kσ ∈ C∞(IR2) we get Kσ∗f ∈ C∞(IR2), even if f is

only absolutely integrable.

Next, let us investigate the behaviour in the frequency domain. When defining

the Fourier transformation F by

(Ff)(ω) :=
∫

IR2

f(x) exp(−i〈ω, x〉) dx (1.6)

we obtain by the convolution theorem that

(F(Kσ∗f)) (ω) = (FKσ)(ω) · (Ff)(ω). (1.7)

Since the Fourier transform of a Gaussian is again Gaussian-shaped,

(FKσ)(ω) = exp

(

− |ω|2
2/σ2

)

, (1.8)
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we observe that (1.4) is a low-pass filter that attenuates high frequencies in a

monotone way.

Interestingly, the smoothing behaviour can also be understood in the context

of a PDE interpretation.

Equivalence to linear diffusion filtering

It is a classical result (cf. e.g. [331, pp. 267–271] and [185, pp. 43–56]) that for any

bounded f ∈C(IR2) the linear diffusion process

∂tu = ∆u, (1.9)

u(x, 0) = f(x) (1.10)

possesses the solution

u(x, t) =

{

f(x) (t = 0)

(K√
2t ∗ f)(x) (t > 0).

(1.11)

This solution is unique, provided we restrict ourselves to functions satisfying

|u(x, t)| ≤ M · exp (a|x|2) (M, a > 0). (1.12)

It depends continuously on the initial image f with respect to ‖ . ‖L∞(IR2), and it

fulfils the maximum–minimum principle

inf
IR2
f ≤ u(x, t) ≤ sup

IR2

f on IR2 × [0,∞). (1.13)

From (1.11) we observe that the time t is related to the spatial width σ =
√

2t of

the Gaussian. Hence, smoothing structures of order σ requires to stop the diffusion

process at time

T = 1
2
σ2. (1.14)

Figure 5.2 (b) and 5.3 (c) in Chapter 5 illustrate the effect of linear diffusion

filtering.

Gaussian derivatives

In order to understand the structure of an image we have to analyse grey value

fluctuations within a neighbourhood of each image point, that is to say, we need

information about its derivatives. However, differentiation is ill-posed1, as small

perturbations in the original image can lead to arbitrarily large fluctuations in

the derivatives. Hence, the need for regularization methods arises. A thorough

1A problem is called well-posed, if it has a unique solution which depends continuously on

the input data and parameters. If one of these conditions is violated, it is called ill-posed.
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treatment of this mathematical theory can be found in the books of Tikhonov and

Arsenin [402], Louis [266] and Engl et al. [128].

One possibility to regularize is to convolve the image with a Gaussian prior to

differentiation [404]. By the equality

∂n
x1
∂m

x2
(Kσ∗f) = Kσ ∗ (∂n

x1
∂m

x2
f) = (∂n

x1
∂m

x2
Kσ) ∗ f (1.15)

for sufficiently smooth f , we observe that all derivatives undergo the same Gaussian

smoothing process as the image itself and this process is equivalent to convolving

the image with derivatives of a Gaussian.

Replacing derivatives by these Gaussian derivatives has a strong regularizing

effect. This property has been used to stabilize ill-posed problems like deblurring

images by solving the heat equation backwards in time2 [141, 177]. Moreover, Gaus-

sian derivatives can be combined to so-called differential invariants, expressions

that are invariant under transformations such as rotations, for instance |∇Kσ∗u|
or ∆Kσ∗u.

Differential invariants are useful for the detection of features such as edges,

ridges, junctions, and blobs; see [256] for an overview. To illustrate this, we focus

on two applications for detecting edges.

A frequently used method is the Canny edge detector [69]. It is based on calcu-

lating the first derivatives of the Gaussian-smoothed image. After applying sophis-

ticated thinning and linking mechanisms (non-maxima suppression and hysteresis

thresholding), edges are identified as locations where the gradient magnitude has a

maximum. This method is often acknowledged to be the best linear edge detector,

and it has become a standard in edge detection.

Another important edge detector is the Marr–Hildreth operator [278], which

uses the Laplacian-of-Gaussian (LoG) ∆Kσ as convolution kernel. Edges of f are

identified as zero-crossings of ∆Kσ ∗f . This needs no further postprocessing and

always gives closed contours. There are indications that LoGs and especially their

approximation by differences-of-Gaussians (DoGs) play an important role in the

visual system of mammals, see [278] and the references therein. Young developed

this theory further by presenting evidence that the receptive fields in primate eyes

are shaped like the sum of a Gaussian and its Laplacian [449], and Koenderink

and van Doorn suggested the set of Gaussian derivatives as a general model for

the visual system [242].

If one investigates the temporal evolution of the zero-crossings of an image fil-

tered by linear diffusion, one observes an interesting phenomenon: When increasing

the smoothing scale σ, no new zero-crossings are created which cannot be traced

back to finer scales [439]. This evolution property is called causality [240]. It is

2Of course, solutions of the regularization can only approximate the solution of the original

problem (if it exists). In practice, increasing the order of applied Gaussian derivatives or reducing

the kernel size will finally deteriorate the results of deblurring.
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closely connected to the maximum–minimum principle of certain parabolic opera-

tors [189]. Attempts to reconstruct the original image from the temporal evolution

of the zero-crossings of the Laplacian have been carried out by Hummel and Mo-

niot [190]. They concluded, however, that this is practically unstable unless very

much additional information is provided.

In the western world the evolution property of the zero-crossings was the key

investigation which has inspired Witkin to the so-called scale-space concept [439].

This shall be discussed next.

1.2.2 Scale-space properties

The general scale-space concept

It is a well-known fact that images usually contain structures at a large variety of

scales. In those cases where it is not clear in advance which is the right scale for the

depicted information it is desirable to have an image representation at multiple

scales. Moreover, by comparing the structures at different scales, one obtains a

hierarchy of image structures which eases a subsequent image interpretation.

A scale-space is an image representation at a continuum of scales, embedding

the image f into a family {Ttf |t ≥ 0} of gradually simplified versions of it, provided

that it fulfils certain requirements3. Most of these properties can be classified as

architectural, smoothing (information-reducing) or invariance requirements [12].

An important architectural assumption is recursivity, i.e. for t = 0, the scale-

space representation gives the original image f , and the filtering may be split into

a sequence of filter banks:

T0f = f, (1.16)

Tt+sf = Tt(Tsf) ∀ s, t ≥ 0. (1.17)

This property is very often referred to as the semigroup property. Other architec-

tural principles comprise for instance regularity properties of Tt and local behaviour

as t tends to 0.

Smoothing properties and information reduction arise from the wish that the

transformation should not create artifacts when passing from fine to coarse rep-

resentation. Thus, at a coarse scale, we should not have additional structures

which are caused by the filtering method itself and not by underlying structures

at finer scales. This simplification property is specified by numerous authors in

different ways, using concepts such as no creation of new level curves (causality)

[240, 450, 189, 255], nonenhancement of local extrema [30, 257], decreasing number

3Recently it has also been proposed to extend the scale-space concept to scale–imprecision

space by taking into account the imprecision of the measurement device [171].
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of local extrema [255], maximum loss of figure impression [196], Tikhonov regular-

ization [302, 303], maximum–minimum principle [189, 328], positivity [324, 138],

preservation of positivity [191, 193, 320], comparison principle [12], and Lyapunov

functionals [415, 429]. Especially in the linear setting, many of these properties are

equivalent or closely related; see [426] for more details.

We may regard an image as a representative of an equivalence class containing

all images that depict the same object. Two images of this class differ e.g. by grey-

level shifts, translations and rotations or even more complicated transformations

such as affine mappings. This makes the requirement plausible that the scale-space

analysis should be invariant to as many of these transformations as possible, in

order to analyse only the depicted object [196, 16].

The pioneering work of Alvarez, Guichard, Lions and Morel [12] shows that

every scale-space fulfilling some fairly natural architectural, information-reducing

and invariance axioms is governed by a PDE with the original image as initial

condition. Thus, PDEs are the suitable framework for scale-spaces.

Often these requirements are supplemented with an additional assumption

which is equivalent to the superposition principle, namely linearity:

Tt(af + bg) = a Ttf + b Ttg ∀ t ≥ 0, ∀ a, b ∈ IR. (1.18)

As we shall see below, imposing linearity restricts the scale-space idea to essentially

one representative.

Gaussian scale-space

The historically first and best investigated scale-space is the Gaussian scale-space,

which is obtained via convolution with Gaussians of increasing variance, or – equiv-

alently – by linear diffusion filtering according to (1.9), (1.10).

Usually a 1983 paper by Witkin [439] or a 1980 report by Stansfield [392]

are regarded as the first references to the linear scale-space idea. Recent work

by Weickert, Ishikawa and Imiya [426, 427], however, shows that scale-space is

more than 20 years older: An axiomatic derivation of 1-D Gaussian scale-space

has already been presented by Taizo Iijima in a technical paper from 1959 [191]

followed by a journal version in 1962 [192]. Both papers are written in Japanese.

In [192] Iijima considers an observation transformation Φ which depends on

a scale parameter σ and which transforms the original image f(x) into a blurred

version4 Φ[f(x′), x, σ]. This class of blurring transformations is called boke (defo-

cusing). He assumes that it has the structure

Φ[f(x′), x, σ] =

∞∫

−∞
φ{f(x′), x, x′, σ} dx′, (1.19)

4The variable x′ serves as a dummy variable.
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and that it should satisfy five conditions:

(I) Linearity (with respect to multiplications):

If the intensity of a pattern becomes A times its original intensity, then the

same should happen to the observed pattern:

Φ[Af(x′), x, σ] = AΦ[f(x′), x, σ]. (1.20)

(II) Translation invariance:

Filtering a translated image is the same as translating the filtered image:

Φ[f(x′−a), x, σ] = Φ[f(x′), x−a, σ]. (1.21)

(III) Scale invariance:

If a pattern is spatially enlarged by some factor λ, then there exists a σ′ =

σ′(σ, λ) such that

Φ[f(x′/λ), x, σ] = Φ[f(x′), x/λ, σ′]. (1.22)

(IV) (Generalized) semigroup property:

If f is observed under a parameter σ1 and this observation is observed un-

der a parameter σ2, then this is equivalent to observing f under a suitable

parameter σ3 = σ3(σ1, σ2):

Φ
[

Φ[f(x′′), x′, σ1], x, σ2

]

= Φ[f(x′′), x, σ3]. (1.23)

(V) Preservation of positivity:

If the original image is positive, then the observed image is positive as well:

Φ[f(x′), x, σ] > 0 ∀ f(x′) > 0, ∀σ > 0. (1.24)

Under these requirements Iijima derives in a very systematic way that

Φ[f(x′), x, σ] =
1

2
√
πσ

∞∫

−∞
f(x′) exp

(

−(x− x′)2

4σ2

)

dx′. (1.25)

Thus, Φ[f(x′), x, σ] is just the convolution between f and a Gaussian with standard

deviation σ
√

2.

This has been the starting point of an entire world of linear scale-space research

in Japan, which is basically unknown in the western world. Japanese scale-space

theory was well-embedded in a general framework for pattern recognition, feature

extraction and object classification [195, 197, 200, 320], and many results have
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been established earlier than in the western world. Apart from their historical

merits, these Japanese results reveal many interesting qualities which should induce

everyone who is interested in scale-space theory to have a closer look at them. More

details can be found in [426, 427] as well as in some English scale-space papers

by Iijima such as [195, 197]. In particular, the latter ones show that there is no

justification to deny Iijima’s pioneering role in linear scale-space theory because of

language reasons.

Table 1.1: Overview of continuous Gaussian scale-space axiomatics (I1 = Iijima

[191, 192], I2 = Iijima [193, 194], I3 = Iijima [196], O = Otsu [320], K = Koenderink

[240], Y = Yuille/Poggio [450], B = Babaud et al. [30], L1 = Lindeberg [255], F1 =

Florack et al. [140], A = Alvarez et al. [12], P = Pauwels et al. [324], N = Nielsen

et al. [303], L2 = Lindeberg [257], F2 = Florack [138]).

I1 I2 I3 O K Y B L1 F1 A P N L2 F2

convolution kernel • • • • • • • • • • •
semigroup property • • • • • • • • •
locality •
regularity • • • • • • • •
infinetes. generator •
max. loss principle •
causality • • • • •
nonnegativity • • • • • •
Tikhonov regulariz. •
aver. grey level invar. • • • • • •
flat kernel for t → ∞ • •
isometry invariance • • • • • • • • • • •
homogen. & isotropy •
separability • •
scale invariance • • • • • • • •
valid for dimension 1 2 2 2 1,2 1,2 1 1 > 1 N 1,2 N N N

Table 1.1 presents an overview of the current Japanese and western Gaussian

scale-space axiomatics (see [426, 427] for detailed explanations). All of these ax-

iomatics use explicitly or implicitly5 a linearity assumption. We observe that –

despite the fact that many axiomatics reveal similar first principles – not two of

them are identical. Each of the 14 axiomatics confirms and enhances the evidence

that the others give: that Gaussian scale-space is unique within a linear framework.

A detailed treatment of Gaussian scale-space theory can be found in two

Japanese monographs by Iijima [197, 198], as well as in English books by Lin-

deberg [256], Florack [139], and ter Haar Romeny [176]. A collection edited by

5Often it is assumed that the filter is a convolution integral. This is equivalent to linearity

and translation invariance.
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Sporring, Nielsen, Florack and Johansen [389] gives an excellent overview of the

various aspects of this theory, and additional material is presented in [211]. Many

relations between Gaussian scale-space and regularization theory have been elab-

orated by Nielsen [302], and readers who wish to analyse linear and nonlinear

scale-space concepts in terms of differential and integral geometry can find a lot

of material in the thesis of Salden [351].

1.2.3 Numerical aspects

The preceding theory is entirely continuous. However, in practical problems, the

image is sampled at the nodes (pixels) of a fixed equidistant grid. Thus, the diffu-

sion filter has to be discretized.

By virtue of the equivalence of solving the linear diffusion equation and con-

volving with a Gaussian, we can either approximate the convolution process or the

diffusion equation.

When restricting the image to a finite domain and applying the Fast Fourier

Transformation (FFT), convolution in the spatial domain can be reduced to mul-

tiplication in the frequency domain, cf. (1.7). This proceeding requires a fixed

computational effort of order N logN , which depends only on the pixel number

N , but not on the kernel size σ. For large kernels this is faster than most spatial

techniques. Especially for small kernels, however, aliasing effects in the Fourier

domain may create oscillations and over- and undershoots [178].

One efficient possibility to approximate Gaussian convolution in the spatial do-

main consists of applying recursive filters [109, 448]. More frequently the Gaussian

kernel is just sampled and truncated at some multiple of its standard deviation

σ. Factorizing a higher-dimensional Gaussian into one-dimensional Gaussians re-

duces the computational effort to O(Nσ). Convolution with a truncated Gaussian,

however, reveals the drawback that it does not preserve the semigroup property of

the continuous Gaussian scale-space [255].

Lindeberg [255] has established a linear scale-space theory for the semidiscrete6

case. His results are in accordance with those of Norman [312], who proposed in

1960 that the discrete analogue of the Gaussian kernel should be given in terms of

modified Bessel functions of integer order. Since this scale-space family arises nat-

urally from a semidiscretized version of the diffusion equation, it has been argued

that approximating the diffusion equation should be preferred to discretizing the

convolution integral [255].

Recently, interesting semidiscrete and fully discrete linear scale-space formula-

tions have been established utilizing stochastic principles: Åström and Heyden [27]

study a framework based on stationary random fields, while the theory by Salden

et al. [353] exploits the relations between diffusion and Markov processes.

6By semidiscrete we mean discrete in space and continuous in time throughout this work.
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Among the numerous numerical possibilities to approximate the linear diffusion

equation, finite difference (FD) schemes dominate the field. Apart from some im-

plicit approaches [166, 67, 68] allowing realizations as a recursive filter [14, 10, 451],

explicit schemes are mainly used. A very efficient approximation of the Gaus-

sian scale-space results from applying multigrid ideas. The Gaussian pyramid [64]

has the computational complexity O(N) and gives a multilevel representation at

finitely many scales of different resolution. By subsequently smoothing the image

with an explicit scheme for the diffusion equation and restricting the result to a

coarser grid, one obtains a simplified image representation at the next coarser grid.

Due to their simplicity and efficiency, pyramid decompositions have become very

popular and have been integrated into commercially available hardware [70, 214].

Pyramids are not invariant under translations, however, and sometimes it is ar-

gued that they are undersampled and that the pyramid levels should be closer7.

These are the reasons why some people regard pyramids rather as predecessors of

the scale-space idea than as a numerical approximation8.

1.2.4 Applications

Due to its equivalence to convolution with a Gaussian, linear diffusion filtering has

been applied in numerous fields of image processing and computer vision. It can

be found in almost every standard textbook in these fields.

Less frequent are applications which exploit the evolution of an image under

Gaussian scale-space. This deep structure analysis [240] provides useful information

for extracting semantic information from an image, for instance

• for finding the most relevant scales (scale selection, focus-of-attention). This

may be done by searching for extrema of (nonlinear) combinations of normal-

ized Gaussian derivatives [256] or by analysing information theoretic mea-

sures such as the entropy [208, 388] or generalized entropies [390] over scales.

• for multiscale segmentation of images [172, 254, 256, 313, 408]. The idea is

to identify segments at coarse scales and to link backwards to the original

image in order to improve the localization.

In recent years also applications of Gaussian scale-space to stereo, optic flow

and image sequences have become an active research field [139, 215, 241, 258, 259,

302, 306, 441]. Several scale-space applications are summarized in a survey paper

by ter Haar Romeny [175].

7Of course, multiresolution techniques such as pyramids or discrete wavelet transforms [92,

106] are just designed to have few or no redundancies, while scale-space analysis intends to

extract semantical information by tracing signals through a continuum of scales.
8Historically, this is incorrect: Iijima’s scale-space work [191] is much older than multigrid

ideas in image processing.



12 CHAPTER 1. PARTIAL DIFFERENTIAL EQUATIONS

Interesting results arise when one studies linear scale-space on a sphere [236,

353]: while the diffusion equation remains the correct concept, Gaussian kernels are

of no use anymore: appropriate kernels have to be expressed in terms of Legendre

functions [236]. This and other results [12, 255] indicate that the PDE formulation

of linear scale-space in terms of a diffusion equation is more natural and has a

larger generalization potential than convolution with Gaussians.

1.2.5 Limitations

In spite of several properties that make linear diffusion filtering unique and easy

to handle, it reveals some drawbacks as well:

(a) An obvious disadvantage of Gaussian smoothing is the fact that it does not

only smooth noise, but also blurs important features such as edges and, thus,

makes them harder to identify. Since Gaussian smoothing is designed to be

completely uncommitted, it cannot take into account any a-priori informa-

tion on structures which are worth being preserved (or even enhanced).

(b) Linear diffusion filtering dislocates edges when moving from finer to coarser

scales, see e.g. Witkin [439]. So structures which are identified at a coarse

scale do not give the right location and have to be traced back to the original

image [439, 38, 165]. In practice, relating dislocated information obtained at

different scales is difficult and bifurcations may give rise to instabilities. These

coarse-to-fine tracking difficulties are generally denoted as the correspondence

problem.

(c) Some smoothing properties of Gaussian scale-space do not carry over from

the 1-D case to higher dimensions: A closed zero-crossing contour can split

into two as the scale increases [450], and it is generally not true that the

number of local extrema is nonincreasing, see [254, 255] for illustrative coun-

terexamples. A deep mathematical analysis of such phenomena has been

carried out by Damon [105] and Rieger [342]. It turned out that the pairwise

creation of an extremum and a saddle point is not an exception, but happens

generically.

Regarding (b) and (c), much efforts have been spent in order to understand

the deep structure in Gaussian scale-space, for instance by analysing its toppoints

[210]. There is some evidence that these points, where the gradient vanishes and

the Hessian does not have full rank, carry essential image information [212]. Part

III of the book edited by Sporring et al. [389] and the references therein give an

overview of the state-of-the-art in deep structure analysis.

Due to the uniqueness of Gaussian scale-space within a linear framework we

know that any modification in order to overcome the problems (a)–(c) will either
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renounce linearity or some scale-space properties. We shall see that appropriate

methods to avoid the shortcomings (a) and (b) are nonlinear diffusion processes,

while (c) requires morphological equations [206, 207, 218].

1.2.6 Generalizations

Before we turn our attention to nonlinear processes, let us first investigate two

linear modifications which have been introduced in order to address the problems

(a) and (b) from the previous section.

Affine Gaussian scale-space

A straightforward generalization of Gaussian scale-space results from renouncing

invariance under rotations. This leads to the affine Gaussian scale-space

u(x, t) :=
∫

IR2

1

4π
√

det(Dt)
exp

(

−(x−y)⊤D−1
t (x−y)

4

)

f(y) dy (1.26)

where Dt := tD, t > 0, and D ∈ IR2×2 is symmetric positive definite9. For a fixed

matrix D, calculating the convolution integral (1.26) is equivalent to solving a

linear anisotropic diffusion problem with D as diffusion tensor:

∂tu = div (D ∇u), (1.27)

u(x, 0) = f(x). (1.28)

In [427] it is shown that affine Gaussian scale-space has been axiomatically derived

by Iijima in 1962 [193, 194]. He named u(x, t) the generalized figure of f , and (1.27)

the basic equation of figure [196]. In 1971 this concept was realized in hardware in

the optical character reader ASPET/71 [199, 200]. The scale-space part has been

regarded as the reason for its reliability and robustness.

In 1992 Nitzberg and Shiota [310] proposed to adapt the Gaussian kernel shape

to the structure of the original image. By chosing D in (1.26) as a function of the

structure tensor (cf. Section 2.2) of f , they combined nonlinear shape adaptation

with linear smoothing. Later on similar ideas have been developed in [259, 443].

It should be noted that shape-adapted Gaussian smoothing with a spatially

varying D is no longer equivalent to a diffusion process of type (1.27). In practice

this can be experienced by the fact that shape-adaptation of Gaussian smoothing

does not preserve the average grey level, while the divergence formulation ensures

that this is still possible for nonuniform diffusion filtering; see Section 1.1. Also in

this case the diffusion equation seems to be more general. If one wants to relate

9Isotropic Gaussian scale-space can be recovered using the unit matrix for D.
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shape-adapted Gaussian smoothing to a PDE, one has to carry out sophisticated

scaling limits [310].

Noniterative shape-adapted Gaussian smoothing differs from nonlinear aniso-

tropic diffusion filtering by the fact that the latter one introduces a feedback into

the process: it adapts the diffusion tensor in (1.27) to the differential structure of

the filtered image instead of the original image. Such concepts will be investigated

in Section 1.3.3 and in the remaining chapters of this book.

Directed diffusion

Another method for incorporating a-priori knowledge into a linear diffusion process

is suggested by Illner and Neunzert [202]. Provided we are given some background

information in form of a smooth image b, they show that under some technical

requirements and suitable boundary conditions the classical solution u of

∂tu = b∆u− u∆b, (1.29)

u(x, 0) = f(x) (1.30)

converges to b along a path where the relative entropy with respect to b increases in

a monotone way. Numerical experiments have been carried out by Giuliani [159],

and an analysis in terms of nonsmooth b and weak solutions is due to Illner and

Tie [203].

Such a directed diffusion process requires to specify an entire image as back-

ground information in advance; in many applications it would be desirable to

include a priori knowledge in a less specific way, e.g. by prescribing that features

within a certain contrast and scale range are considered to be semantically impor-

tant and processed differently. Such demands can be satisfied by nonlinear diffusion

filters.

1.3 Nonlinear diffusion filtering

Adaptive smoothing methods are based on the idea of applying a process which

itself depends on local properties of the image. Although this concept is well-

known in the image processing community (see [349] and the references therein

for an overview), a corresponding PDE formulation was first given by Perona and

Malik [326] in 1987. We shall discuss this model in detail, especially its ill-posedness

aspects. This gives rise to study regularizations. These techniques can be extended

to anisotropic processes which make use of an adapted diffusion tensor instead of

a scalar diffusivity.
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1.3.1 The Perona–Malik model

Basic idea

Perona and Malik propose a nonlinear diffusion method for avoiding the blurring

and localization problems of linear diffusion filtering [326, 328]. They apply an

inhomogeneous process that reduces the diffusivity at those locations which have

a larger likelihood to be edges. This likelihood is measured by |∇u|2. The Perona–

Malik filter is based on the equation

∂tu = div (g(|∇u|2) ∇u). (1.31)

and it uses diffusivities such as

g(s2) =
1

1 + s2/λ2
(λ > 0). (1.32)

Although Perona and Malik name their filter anisotropic, it should be noted that

– in our terminology – it would be regarded as an isotropic model, since it utilizes

a scalar-valued diffusivity and not a diffusion tensor.

Interestingly, there exists a relation between (1.31) and the neural dynamics of

brightness perception: In 1984 Cohen and Grossberg [94] proposed a model of the

primary visual cortex with similar inhibition effects as in the Perona–Malik model.

The experiments of Perona and Malik were visually very impressive: edges

remained stable over a very long time. It was demonstrated [328] that edge de-

tection based on this process clearly outperforms the linear Canny edge detector,

even without applying non-maxima suppression and hysteresis thresholding. This

is due to the fact that diffusion and edge detection interact in one single process

instead of being treated as two independent processes which are to be applied

subsequently. Moreover, there is another reason for the impressive behaviour at

edges, which we shall discuss next.

Edge enhancement

To study the behaviour of the Perona–Malik filter at edges, let us for a moment

restrict ourselves to the one-dimensional case. This simplifies the notation and

illustrates the main behaviour since near a straight edge a two-dimensional image

approximates a function of one variable.

For the diffusivity (1.32) it follows that the flux function Φ(s) := sg(s2) satisfies

Φ′(s) ≥ 0 for |s| ≤ λ, and Φ′(s) < 0 for |s| > λ, see Figure 1.1. Since (1.31) can

be rewritten as

∂tu = Φ′(ux)uxx, (1.33)

we observe that – in spite of its nonnegative diffusivity – the Perona–Malik model

is of forward parabolic type for |ux|≤λ, and of backward parabolic type for |ux|>λ.
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0

1

0 lambda

diffusivity
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flux function

Figure 1.1: (a) Left: Diffusivity g(s2)= 1
1+s2/λ2 . (b) Right: Flux function

Φ(s)= s
1+s2/λ2 .

Hence, λ plays the role of a contrast parameter separating forward (low contrast)

from backward (high contrast) diffusion areas.

It is not hard to verify that the Perona–Malik filter increases the slope at

inflection points of edges within a backward area: If there exists a sufficiently

smooth solution u it satisfies

∂t(u
2
x) = 2ux∂x(ut) = 2Φ′′(ux)uxu

2
xx + 2Φ′(ux)uxuxxx. (1.34)

A location x0 where u2
x is maximal at some time t is characterized by uxuxx =0

and uxuxxx≤0. Therefore,

(∂t(u
2
x)) (x0, t) ≥ 0 for |ux(x0, t)| > λ (1.35)

with strict inequality for uxuxxx<0.

In the two-dimensional case, (1.33) is replaced by [12]

∂tu = Φ′(∇u)uηη + g(|∇u|2)uξξ (1.36)

where the gauge coordinates ξ and η denote the directions perpendicular and paral-

lel to ∇u, respectively. Hence, we have forward diffusion along isophotes (i.e. lines

of constant grey value) combined with forward–backward diffusion along flowlines

(lines of maximal grey value variation).

We observe that the forward–backward diffusion behaviour is not only restricted

to the special diffusivity (1.32), it appears for all diffusivities g(s2) whose rapid

decay causes non-monotone flux functions Φ(s) = sg(s2). Overviews of several

common diffusivities for the Perona–Malik model can be found in [43, 343], and

a family of diffusivities with different decay rates is investigated in [36]. Rapidly

decreasing diffusivities are explicitly intended in the Perona–Malik method as they
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give the desirable result of blurring small fluctuations and sharpening edges. There-

fore, they are the main reason for the visually impressive results of this restoration

technique.

It is evident that the “optimal” value for the contrast parameter λ has to depend

on the problem. Several proposals have been made to facilitate such a choice in

practice, for instance adapting it to a specified quantile in the cumulative gradient

histogramme [328], using statistical properties of a training set of regions which

are considered as flat [444], or estimating it by means of the local image geometry

[270].

Ill-posedness

Unfortunately, forward–backward equations of Perona–Malik type cause some the-

oretical problems. Although there is no general theory for nonlinear parabolic

processes, there exist certain frameworks which allow to establish well-posedness

results for a large class of equations. Let us recall three examples:

• Let S(N) denote the set of symmetric N ×N matrices and Hess(u) the

Hessian of u. Classical differential inequality techniques [411] based on the

Nagumo–Westphal lemma require that the underlying nonlinear evolution

equation

∂tu = F (t, x, u,∇u,Hess(u)) (1.37)

satisfies the monotony property

F (t, x, r, p, Y ) ≥ F (t, x, r, p,X) (1.38)

for all X, Y ∈S(2) where Y −X is positive semidefinite.

• The same requirement is needed for applying the theory of viscosity solutions.

A detailed introduction into this framework can be found in a paper by

Crandall, Ishii and Lions [103].

• Let H be a Hilbert space with scalar product (., .) and A : H → H . In order

to apply the concept of maximal monotone operators [57] to the problem

du

dt
+ Au = 0, (1.39)

u(0) = f (1.40)

one has to ensure that A is monotone, i.e.

(Au−Av, u−v) ≥ 0 ∀u, v ∈ H. (1.41)
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We observe that the nonmonotone flux function of the Perona–Malik process im-

plies that neither (1.38) is satisfied nor A defined by Au := −div (g(|∇u|2)∇u)
is monotone. Therefore, none of these frameworks is applicable to ensure well-

posedness results.

One reason why people became pessimistic about the well-posedness of the

Perona–Malik equation was a result by Höllig [187]. He constructed a forward–

backward diffusion process which can have infinitely many solutions. Although this

process was different from the Perona–Malik process, one was warned what can

happen. In 1994 the general conjecture was that the Perona–Malik filter might have

weak solutions, but one should neither expect uniqueness nor stability [329]. In the

meantime several theoretical results are available which provide some insights into

the actual degree of ill-posedness of the Perona–Malik filter.

Kawohl and Kutev [222] proved that the Perona–Malik process does not have

global (weak) C1 solutions for intial data that involve backward diffusion. The exis-

tence of local C1 solutions remained unproven. If they exist, however, Kawohl and

Kutev showed that these solutions are unique and satisfy a maximum-minimum

principle. Moreover, under special assumptions on the initial data, it was possible

to establish a comparison principle.

Kichenassamy [224, 225] proposed a notion of generalized solutions, which are

piecewise linear and contain jumps, and he showed that an analysis of their moving

and merging gives similar effects to those one can observe in practice.

Results of You et al. [446] give evidence that the Perona–Malik process is

unstable with respect to perturbations of the initial image. They showed that the

energy functional leading to the Perona–Malik process as steepest descent method

has an infinite number of global minima which are dense in the image space. Each

of these minima corresponds to a piecewise constant image, and slightly different

initial images may end up in different minima for t→ ∞.

Interestingly, forward–backward diffusion equations of Perona–Malik type are

not as unnatural as they look at first glance: besides their importance in computer

vision they have been proposed as a mathematical model for heat and mass transfer

in a stably stratified turbulent shear flow. Such a model is used to explain the

evolution of stepwise constant temperature or salinity profiles in the ocean. Related

equations also play a role in population dynamics and viscoelasiticity, see [35] and

the references therein.

Numerically, the mainly observable instability is the so-called staircasing effect,

where a sigmoid edge evolves into piecewise linear segments which are separated

by jumps. It has already been observed by Posmentier in 1977 [333]. He used an

equation of Perona–Malik type for numerical simulations of the salinity profiles

in oceans. Starting from a smoothly increasing initial distribution he reported the

creation of perturbations which led to a stepwise constant profile after some time.
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In image processing, numerical studies of the staircasing effect have been carried

out by Nitzberg and Shiota [310], Fröhlich and Weickert [148], and Benhamouda

[36]. All results point in the same direction: the number of created plateaus de-

pends strongly on the regularizing effect of the discretization. Finer discretizations

are less regularizing and lead to more “stairs”. Weickert and Benhamouda [425]

showed that the regularizing effect of a standard finite difference discretization is

sufficient to turn the Perona–Malik filter into a well-posed initial value problem

for a nonlinear system of ordinary differential equations. Its global solution satis-

fies a maximum–minimum principle and converges to a constant steady-state. The

theoretical framework for this analysis will be presented in Chapter 3.

There exists also a discrete explanation why staircasing is essentially the only

observable instability: In 1-D, standard FD discretizations are monotonicity pre-

serving, which guarantees that no additional oscillations occur during the evolu-

tion. This has been shown by Dzu Magaziewa [123] in the semidiscrete case and

by Benhamouda [36, 425] in the fully discrete case with an explicit time discretiza-

tion. Further contributions to the explanation and avoidance of staircasing can be

found in [4, 36, 98, 225, 438].

Scale-space interpretation

Perona and Malik renounced the assumption of Koenderink’s linear scale-space

axiomatic [240] that the smoothing should treat all spatial points and scale levels

equally. Instead of this, they required that region boundaries should be sharp and

should coincide with the semantically meaningful boundaries at each resolution

level (immediate localization), and that intra-region smoothing should be preferred

to inter-region smoothing (piecewise smoothing). These properties are of significant

practical interest, as they guarantee that structures can be detected easily and

correspondence problems can be neglected. Experiments demonstrated that the

Perona–Malik filter satisfies these requirements fairly well [328].

In order to establish a smoothing scale-space property for this nonlinear dif-

fusion process, a natural way would be to prove a maximum–minimum principle,

provided one knows that there exists a sufficiently smooth solution. Since the ex-

istence question used to be the bottleneck in the past, the first proof is due to

Kawohl and Kutev who established an extremum principle for their local weak C1

solution to the Perona–Malik filter [222]. Of course, this is only partly satisfying,

since in scale-space theory one is interested in having an extremum principle for

the entire time interval [0,∞).

Nevertheless, also other attempts to apply scale-space frameworks to the Perona–

Malik process have not been more successful yet:

• Salden [350], Florack [143] and Eberly [124] proposed to carry over the linear

scale-space theory to the nonlinear case by considering nonlinear diffusion
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processes which result from special rescalings of the linear one. Unfortunately,

the Perona–Malik filter turned out not to belong to this class [143].

• Alvarez, Guichard, Lions and Morel [12] have developed a nonlinear scale-

space axiomatic which comprises the linear scale-space theory as well as

nonlinear morphological processes (which we will discuss in 1.5 and 1.6).

Their smoothing axiom is a monotony assumption (comparison principle)

requiring that the scale-space is order-preserving:

f ≤ g =⇒ Ttf ≤ Ttg ∀ t ≥ 0. (1.42)

This property is closely related to a maximum–minimum principle and to

L∞-stability of the solution [12, 261]. However, the Perona–Malik model

does not fit into this framework, because its local weak solution satisfies a

comparison principle only for some finite time, but not for all t > 0; see [222].

1.3.2 Regularized nonlinear models

It has already been mentioned that numerical schemes may provide implicit reg-

ularizations which stabilize the Perona–Malik process [425]. Hence, it has been

suggested to introduce the regularization directly into the continuous equation in

order to become more independent of the numerical implementation [81, 310].

Since the dynamics of the solution may critically depend on the sort of regu-

larization, one should adjust the regularization to the desired goal of the forward–

backward heat equation [35]. One can apply spatial or temporal regularization

(and of course, a combination of both). Below we shall discuss three examples

which illustrate the variety of possibilities and their tailoring towards a specific

task.

(a) The first spatial regularization attempt is probably due to Posmentier who

observed numerically the stabilizing effect of averaging the gradient within

the diffusivity [333].

A mathematically sound formulation of this idea is given by Catté, Lions,

Morel and Coll [81]. By replacing the diffusivity g(|∇u|2) of the Perona–

Malik model by a Gaussian-smoothed version g(|∇uσ|2) with uσ := Kσ ∗u
they end up with

∂tu = div (g(|∇uσ|2) ∇u). (1.43)

In [81] existence, uniqueness and regularity of a solution for σ> 0have been

established.

This process has been analysed and modified in many ways: Whitaker and

Pizer [438] have suggested that the regularization parameter σ should be



1.3 NONLINEAR DIFFUSION FILTERING 21

a decreasing function in t, and Li and Chen [252] have proposed to subse-

quently decrease the contrast parameter λ. A detailed study of the influence

of the parameters in a regularized Perona–Malik model has been carried out

by Benhamouda [36]. Kačur and Mikula [217] have investigated a modifica-

tion which allows to diffuse differently in different grey value ranges. Spatial

regularizations of the Perona–Malik process leading to anisotropic diffusion

equations have been proposed by Weickert [413, 415] and will be described

in 1.3.3. Torkamani–Azar and Tait [403] suggest to replace the Gaussian

convolution by the exponential filter of Shen and Castan10 [381].

In Chapter 2 we shall see that spatial regularizations lead to well-posed scale-

spaces with a large class of Lyapunov functionals which guarantee that the

solution converges to a constant steady-state.

From a practical point of view, spatial regularizations offer the advantage

that they make the filter insensitive to noise at scales smaller than σ. There-

fore, when regarding (1.43) as an image restoration equation, it exhibits

besides the contrast parameter λ an additional noise scale σ. This avoids a

shortcoming of the genuine Perona–Malik process which misinterprets strong

oscillations due to noise as edges which should be preserved or even enhanced.

Examples for spatially regularized nonlinear diffusion filtering can be found

in Figure 5.2 (c) and 5.4 (a),(b).

(b) P.-L. Lions proved in a private communication to Mumford that the one-

dimensional process

∂tu = ∂x (g(v) ∂xu), (1.44)

∂tv = 1
τ

(|∂xu|2−v) (1.45)

leads to a well-posed filter (cf. [329]). We observe that v is intended as a

time-delay regularization of |∂xu|2 where the parameter τ > 0 determines

the delay. These equations arise as a special case of the spatio-temporal

regularizations of Nitzberg and Shiota [310] when neglecting any spatial reg-

ularization. Mumford conjectures that this model gives piecewise constant

steady-states. In this case, the steady-state solution would solve a segmen-

tation problem.

(c) In the context of shear flows, Barenblatt et al. [35] regularized the one-

dimensional forward–backward heat equation by considering the third-order

equation

∂tu = ∂x(Φ(ux)) + τ∂xt(Ψ(ux)) (1.46)

10This renounces invariance under rotation.
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where Ψ is strictly increasing and uniformly bounded in IR, and |Φ′(s)| =

O(Ψ′(s)) as s → ±∞. This regularization was physically motivated by in-

troducing a relaxation time τ into the diffusivity.

For the corresponding initial boundary value problem with homogeneous

Neumann boundary conditions they proved the existence of a unique gen-

eralized solution. They also showed that smooth solutions may become dis-

continuous within finite time, before they finally converge to a piecewise

constant steady-state.

These examples demonstrate that regularization is much more than stabilizing

an ill-posed process: Regularization is modeling. Appropriately chosen regulariza-

tions create the desired filter features. We observe that spatial regularizations are

closer to scale-space ideas while temporal regularization are more related to image

restoration and segmentation, since they may lead to nontrivial steady-states.

1.3.3 Anisotropic nonlinear models

All nonlinear diffusion filters that we have investigated so far utilize a scalar-valued

diffusivity g which is adapted to the underlying image structure. Therefore, they

are isotropic and the flux j = −g∇u is always parallel to ∇u. Nevertheless, in

certain applications it would be desirable to bias the flux towards the orientation

of interesting features. These requirements cannot be satisfied by a scalar diffu-

sivity anymore, a diffusion tensor leading to anisotropic diffusion filters has to be

introduced.

First anisotropic ideas in image processing date back to Graham [167] in 1962,

followed by Newman and Dirilten [300], Lev, Zucker and Rosenfeld [250], and

Nagao and Matsuyama [297]. They used convolution masks that depended on

the underlying image structure. Related statistical approaches were proposed by

Knutsson, Wilson and Granlund [237]. These ideas have been further developed

by Nitzberg and Shiota [310], Lindeberg and G̊arding [259], and Yang et al. [443].

Their suggestion to use shape-adapted Gaussian masks has been discussed in Sec-

tion 1.2.6.

Anisotropic diffusion filters usually apply spatial regularization strategies11. A

general theoretical framework for spatially regularized anisotropic diffusion filters

will be presented in the remaining chapters of this book.

Below we study two representatives of anisotropic diffusion processes. The first

one offers advantages at noisy edges, whereas the second one is well-adapted to the

processing of one-dimensional features. They are called edge-enhancing anisotropic

diffusion and coherence-enhancing anisotropic diffusion, respectively.

11An exception is the time-delay regularization of Cottet and El-Ayyadi [100, 101].
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(a) Anisotropic regularization of the Perona–Malik process

In the interior of a segment the nonlinear isotropic diffusion equation (1.43)

behaves almost like the linear diffusion filter (1.9), but at edges diffusion

is inhibited. Therefore, noise at edges cannot be eliminated successfully by

this process. To overcome this problem, a desirable method should prefer

diffusion along edges to diffusion perpendicular to them.

Anisotropic models do not only take into account the modulus of the edge

detector ∇uσ, but also its direction. To this end, we construct the orthonor-

mal system of eigenvectors v1, v2 of the diffusion tensor D such that they

reflect the estimated edge structure:

v1 ‖ ∇uσ, v2 ⊥ ∇uσ. (1.47)

In order to prefer smoothing along the edge to smoothing across it, Weickert

[415] proposed to choose the corresponding eigenvalues λ1 and λ2 as

λ1(∇uσ) := g(|∇uσ|2), (1.48)

λ2(∇uσ) := 1. (1.49)

Section 5.1 presents several examples where this process is applied to test

images.

In general, ∇u does not coincide with one of the eigenvectors of D as long

as σ>0. Hence, this model behaves really anisotropic. If we let the regular-

ization parameter σ tend to 0, we end up with the isotropic Perona–Malik

process.

Another anisotropic model which can be regarded as a regularization of an

isotropic nonlinear diffusion filter has been described in [413].

(b) Anisotropic models for smoothing one-dimensional objects

A second motivation for introducing anisotropy into diffusion processes arises

from the wish to process one-dimensional features such as line-like structures.

To this end, Cottet and Germain [102] constructed a diffusion tensor with

eigenvectors as in (1.47) and corresponding eigenvalues

λ1(∇uσ) := 0, (1.50)

λ2(∇uσ) :=
η|∇uσ|2

1 + (|∇uσ|/σ)2
(η > 0). (1.51)

This is a process diffusing solely perpendicular to ∇uσ. For σ → 0, we

observe that ∇u becomes an eigenvector of D with corresponding eigenvalue

0. Therefore, the process stops completely. In this sense, it is not intended as

an anisotropic regularization of the Perona–Malik equation. Well-posedness
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results for the Cottet–Germain filter comprise an existence proof for weak

solutions.

Since the Cottet–Germain model diffuses only in one direction, it is clear

that its result depends very much on the smoothing direction. For enhancing

parallel line-like structures, one can improve this model when replacing ∇u⊥σ
by a more robust descriptor of local orientation, the structure tensor (cf.

Section 2.2). This leads to coherence-enhancing anisotropic diffusion [418],

which shall be discussed in Section 5.2, where also many examples can be

found.

1.3.4 Generalizations

Higher dimensions. It is easily seen that many of the previous results can

be generalized to higher dimensions. This may be useful when considering e.g.

medical image sequences from computerized tomography (CT) or magnetic reso-

nance imaging (MRI), or when applying diffusion filters to the postprocessing of

fluctuating higher-dimensional numerical data. The first three-dimensional non-

linear diffusion filters have been investigated by Gerig et al. [155] in the isotropic

case and by Rambaux and Garçon [339] in the anisotropic case. A generalization

of coherence-enhancing anisotropic diffusion to higher dimensions is proposed in

[428], and Sánchez–Ortiz et al. [355] describe nonlinear diffusion filtering of 3-D

image sequences by treating them as 4-D data sets.

More sophisticated structure descriptors. The edge detector ∇uσ en-

ables us to adapt the diffusion to magnitude and direction of edges, but it can

neither distinguish between edges and corners nor does it give a reliable measure

of local orientation. As a remedy, one can steer the smoothing process by more

advanced structure descriptors such as higher-order derivatives [127] or tensor-

valued expressions of first-order derivatives [414, 418]. The theoretical analysis in

the present work shall comprise the second possibility. It has also been proposed

to replace ∇uσ by a Bayesian classification result in feature space [26].

Vector-valued models. Vector-valued images can arise either from devices

measuring multiple physical properties or from a feature analysis of one single

image. Examples for the first category are colour images, multi-spectral Landsat

exposures and multi-spin echo MR images, whereas representatives of the second

class are given by statistical moments or the jet space induced by the image itself

and its partial derivatives up to a given order. Feature vectors play an important

role for tasks like texture segmentation.
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The simplest idea how to apply diffusion filtering to multichannel images would

be to diffuse all channels separately and independently from each other. This leads

to the undesirable effect that edges may be formed at different locations for each

channel. In order to avoid this, one should use a common diffusivity which combines

information from all channels. Such isotropic vector-valued diffusion models were

studied by Gerig et al. [155, 156] and Whitaker [433, 434] in the context of medical

imagery. Extensions to anisotropic vector-valued models with a common tensor-

valued structure descriptor for all channels have been investigated by Weickert

[422].

1.3.5 Numerical aspects

For nonlinear diffusion filtering numerous numerical methods have been applied:

Finite element techniques are described in [367, 391, 34, 216]. Bänsch and

Mikula reported a significant speed-up by supplementing them with an adaptive

mesh coarsening [34]. Neural network approximations to nonlinear diffusion filters

are investigated by Cottet [100, 99] and Fischl and Schwartz [137]. Perona and

Malik [327] propose hardware realizations by means of analogue VLSI networks

with nonlinear resistors. A very detailed VLSI proposal has been developed by

Gijbels et al. [158].

In [148] three schemes for a spatially regularized 1-D Perona–Malik filter are

compared: a wavelet method of Petrov–Galerkin type, a pseudospectral method

and a finite-difference scheme. It turned out that all results became fairly similar,

when the regularization parameter σ was sufficiently large. Since the computational

effort is of a comparable order of magnitude, it seems to be a matter of taste which

scheme is preferred.

Most implementations of nonlinear diffusion filters are based on finite differ-

ence methods, since they are easy to handle and the pixel structure of digital

images already provides a natural discretization on a fixed rectangular grid. Ex-

plicit schemes are the most simple to code and, therefore, they are used almost

exclusively. Due to their local behaviour, they are well-suited for parallel architec-

tures. Nevertheless, they suffer from the fact that fairly small time step sizes are

needed in order to ensure stability. Semi-implicit schemes – which approximate the

diffusivity or the diffusion tensor in an explicit way and the rest implicitly – are

considered in [81]. They possess much better stability properties. A fast multigrid

technique using a pyramid algorithm for the Perona–Malik filter has been studied

by Acton et al. [5, 4]; see also [349] for related ideas.

While the preceding techniques are focusing on approximating a continuous

equation, it is often desirable to have a genuinely discrete theory which guarantees

that an algorithm exactly reveals the same qualitative properties as its continuous

counterpart. Such a framework is presented in [420, 421], both for the semidiscrete
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Table 1.2: Requirements for continuous, semidiscrete and fully dis-

crete nonlinear diffusion scale-space.

requirement continuous semidiscrete discrete

ut = div (D∇u) du
dt

= A(u)u u0 = f

u(t = 0) = f u(0) = f uk+1 = Q(uk)uk

〈D∇u, n〉 = 0

smoothness D ∈ C∞ A Lipschitz- Q continuous

continuous

symmetry D symmetric A symmetric Q symmetric

conservation div form; column sums column sums

reflective b.c. are 0 are 1

nonnega- positive nonnegative nonnegative

tivity semidefinite off-diagonals elements

connectivity uniformly pos. irreducible irreducible;

definite pos. diagonal

and for the fully discrete case. A detailed treatment of this theory can be found

in Chapter 3 and 4, respectively. Table 1.2 gives an overview of the requirements

which are needed in order to prove well-posedness, average grey value invariance,

causality in terms of an extremum principle and Lyapunov functionals, and con-

vergence to a constant steady-state [423].

We observe that the requirements belong to five categories: smoothness, sym-

metry, conservation, nonnegativity and connectivity requirements. These criteria

are easy to check for many discretizations. In particular, it turns out that suitable

explicit and semi-implicit finite difference discretizations of many discussed models

create discrete scale-spaces. The discrete nonlinear scale-space concept has also led

to the development of fast novel schemes, which are based on an additive operator

splitting (AOS) [424, 430]. Under typical accuracy requirements, they are about

10 times more efficient than the widely used explicit schemes, and a speed-up by

another order of magnitude can be achieved by a parallel implementation [431]. A

general framework for AOS schemes will be presented in Section 4.4.2.

1.3.6 Applications

Nonlinear diffusion filters have been applied for postprocessing fluctuating data

[269, 415], for visualizing quality-relevant features in computer aided quality con-

trol [299, 413, 418], and for enhancing textures such as fingerprints [418]. They have

proved to be useful for improving subsampling [144] and line detection [156, 418],

for blind image restoration [445], for scale-space based segmentation algorithms
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[307, 308], for segmentation of textures [433, 437] and remotely sensed data [6, 5],

and for target tracking in infrared images [65]. Most applications, however, are

concerned with the filtering of medical images [26, 28, 29, 155, 244, 248, 264, 270,

308, 321, 355, 386, 393, 431, 434, 437, 444]. Some of these applications will be

investigated in more detail in Chapter 5.

Besides such specific problem solutions, nonlinear diffusion filters can be found

in commercial software packages such as the medical visualization tool Analyze.12

1.4 Methods of diffusion–reaction type

This section investigates variational frameworks, in which diffusion–reaction equa-

tions or coupled systems of them are interpreted as steepest descent minimizers of

suitable energy functionals. This idea connects diffusion methods to edge detection

and segmentation ideas.

Besides the variational interpretation there exist other interesting theoretical

frameworks for diffusion filters such as the Markov random field and mean field

annealing context [152, 153, 247, 251, 328, 387], robust statistics [41], and deter-

ministic interactive particle models [279]. Their discussion, however, would lead us

beyond the scope of this book.

1.4.1 Single diffusion–reaction equations

Nordström [311] has suggested to obtain a reconstruction u of a degraded image

f by minimizing the energy functional

Ef (u, w) :=
∫

Ω

(

β ·(u−f)2 + w·|∇u|2 + λ2 ·(w−lnw)
)

dx. (1.52)

The parameters β and λ are positive weights and w : Ω → [0, 1] gives a fuzzy edge

representation: in the interior of a region, w approaches 1 while at edges, w is close

to 0 (as we shall see below).

The first summand of E punishes deviations of u from f (deviation cost), the

second term detects unsmoothness of u within each region (stabilizing cost), and

the last one measures the extend of edges (edge cost). Cost terms of these three

types are typical for variational image restoration methods.

The corresponding Euler equations to this energy functional are given by

0 = β ·(u−f) − div (w∇u), (1.53)

0 = λ2 ·(1− 1
w
) + |∇u|2, (1.54)

12Analyze is a registered trademark of Mayo Medical Ventures, 200 First Street SW, Rochester,

MN 55905, U.S.A.
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equipped with a homogeneous Neumann boundary condition for u.

Solving (1.54) for w gives

w =
1

1 + |∇u|2/λ2
. (1.55)

We recognize that w is identical with the Perona–Malik diffusivity g(|∇u|2) in-

troduced in (1.32). Therefore, (1.53) can be regarded as the steady-state equation

of

∂tu = div (g(|∇u|2) ∇u) + β(f−u). (1.56)

This equation can also be obtained directly as the descent method of the functional

Ff(u) :=
∫

Ω

(

β ·(u−f)2 + λ2 ·ln
(

1+ |∇u|2
λ2

))

dx. (1.57)

The diffusion–reaction equation (1.56) consists of the Perona–Malik process

with an additional bias term β ·(f−u). One of Nordström’s motivations for intro-

ducing this term was to free the user from the difficulty of specifying an appropriate

stopping time for the Perona–Malik process.

However, it is evident that the Nordström model just shifts the problem of

specifying a stopping time T to the problem of determining β. So it seems to

be a matter of taste which formulation is preferred. People interested in image

restoration usually prefer the reaction term, while for scale-space researchers it is

more natural to have a constant steady-state as the simplest image representation.

Nordström’s method may suffer from the same ill-posedness problems as the

underlying Perona–Malik equation, and it is not hard to verify that the energy

functional (1.57) is nonconvex. Therefore, it can possess numerous local minima,

and the process (1.56) with f as initial condition does not necessarily converge to

a global minimum. Similar difficulties may also arise in other diffusion–reaction

models, where convergence results have not yet been established [152, 186].

A popular possibility to avoid these ill-posedness and convergence problems is

to renounce edge-enhancing diffusivities in order to end up with (nonquadratic)

convex functionals [43, 88, 110, 367, 391]. In this case the frameworks of convex

optimization and monotone operators are applicable, ensuring well-posedness and

stability of a standard finite-element approximation [367].

Diffusion–reaction approaches have been applied to edge detection [367, 391],

to the restoration of inverse scattering images [263], to SPECT [88] and vascular

reconstruction in medical imaging [102, 325], and to optic flow [368, 111] and

stereo problems [343]. They can be extended to vector-valued images [369] and

to corner-preserving smoothing of curves [136, 323]. Diffusion–reaction methods

with constant diffusivities have also been used for local contrast normalization in

images [330].
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1.4.2 Coupled systems of diffusion–reaction equations

Mumford and Shah [295, 296] have proposed to obtain a segmented image u from

f by minimizing the functional

Ef(u,K) = β
∫

Ω

(u−f)2 dx +
∫

Ω\K

|∇u|2 dx + α|K| (1.58)

with nonnegative parameters α and β. The discontinuity set K consists of the

edges, and its one-dimensional Hausdorff measure |K| gives the total edge length.

Like the Nordström functional (1.52), this expression consists of three cost terms:

the first one is the deviation cost, the second one gives the stabilizing cost, and

the third one represents the edge cost.

The Mumford–Shah functional can be regarded as a continuous version of the

Markov random field method of Geman and Geman [154] and the weak membrane

model of Blake and Zisserman [42]. Related approaches are also used to model

materials with two phases and a free interface.

The fact that (1.58) leads to a free discontinuity problem causes many challeng-

ing theoretical questions [249]. The book of Morel and Solimini [292] covers a very

detailed analysis of this functional. Although the existence of a global minimizer

with a closed edge set K has been established [108, 17], uniqueness is in general

not true [292, pp. 197–198]. Regularity results for K in terms of (at least) C1-arcs

have recently been obtained [18, 19, 20, 48, 49, 107].

The concept of energy functionals for segmenting images offers the practical

advantage that it provides a framework for comparing the quality of two seg-

mentations. On the other hand, (1.58) exhibits also some shortcomings, e.g. the

problem that sigmoid-like edges produce multiple segmentation boundaries (over-

segmentation, staircasing effect) [377]. Another drawback results from the fact that

the Mumford–Shah functional allows only singularities which are typical for mini-

mal surfaces: Corners or T-junctions are not possible and segments meet at triple

points with 120o angle [296]. In order to avoid such problems, modifications of the

Mumford–Shah functional have been proposed by Shah [379]. An affine invariant

generalization of (1.58) is investigated in [32, 31] and applied to affine invariant

texture segmentation [31, 33], and a Mumford–Shah functional for curves can be

found in [323].

Since many algorithms in image processing can be restated as versions of the

Mumford–Shah functional [292] and since it is a prototype of a free discontinuity

problem it is instructive to study this variational problem in more detail.

Numerical complications arise from the fact that the Mumford–Shah functional

has numerous local minima. Global minimizers such as the simulated annealing

method used by Geman and Geman [154] are extremely slow. Hence, one searches

for fast (suboptimal) deterministic strategies, e.g. pyramidal region-growing algo-

rithms [3, 239].
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Another important class of numerical methods is based on the idea to approx-

imate the discontinuity set K by a smooth function w, which is close to 0 near

edges of u and which approximates 1 elsewhere.

We may for instance study the functional

Ff (u, w) :=
∫

Ω

(

β ·(u−f)2 + w2 ·|∇u|2 + α·
(

c|∇w|2+ (1−w)2

4c

))

dx (1.59)

with a positive parameter c specifying the “edge width”. Ambrosio and Tortorelli

proved that this functional converges to the Mumford–Shah functional for c → 0

(in the sense of Γ-convergence, see [22] for more details).

Minimizing Ff corresponds to the gradient descent equations

∂tu = div (w2∇u) + β ·(f−u), (1.60)

∂tw = c∆w − w
α
|∇u|2 + (1−w)

4c
(1.61)

with homogeneous Neumann boundary conditions. Equations of this type are in-

vestigated by Richardson and Mitter [341]. Since (1.60) resembles the Nordström

process (1.56), similar problems can arise: The functional Ff is not jointly convex

in u and v, so it may have many local minima and a gradient descent algorithm

may get trapped in a poor local minimum. Well-posedness results for this system

have not been obtained up to now, but a maximum–minimum principle and a local

stability proof have been established.

Another diffusion–reaction system is studied by Shah [375, 376]. He replaces

the functional (1.58) by two coupled convex energy functionals and applies gradi-

ent descent. This results in finding an equilibrium state between two competing

processes. Experiments indicate that it converges to a stable solution. Proesmans

et al. [337, 336] observed that this solution looks fairly blurred since the equations

contain diffusion terms such as ∆u. They obtained pronounced edges by replacing

such a term by its Perona–Malik counterpart div (g(|∇u|2)∇u). Related equations

are also studied in [398]. Of course, this approach gives rise to the same theoretical

questions as (1.60), (1.61).

The system of Richardson and Mitter is used for edge detection [341]. Shah in-

vestigates diffusion–reaction systems for matching stereo images [378], while Proes-

mans et al. apply coupled diffusion-reaction equations to image sequence analysis,

vector-valued images and stereo vision [336, 338]. Their finite difference algorithms

run on a parallel transputer network.

It should also be mentioned that there exist reaction–diffusion systems which

have been applied to image restoration [334, 335, 382], texture generation [406, 440]

and halftoning [382], and which are not connected to Perona–Malik or Mumford–

Shah ideas. They are based on Turing’s pattern formation model [405].
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1.5 Classic morphological processes

Morphology is an approach to image analysis based on shapes. Its mathematical

formalization goes back to the group around Matheron and Serra, both working

at ENS des Mines de Paris in Fontainebleau. The theory had first been developed

for binary images, afterwards it was extended to grey-scale images by regarding

level sets as shapes. Its applications cover biology, medical diagnostics, histology,

quality control, radar and remote sensing, science of material, mineralogy, and

many others.

Morphology is usually described in terms of algebraic set theory, see e.g. [280,

371, 181, 184] for an overview. Nevertheless, PDE formulations for classic morpho-

logical processes have been discovered recently by Brockett and Maragos [60], van

den Boomgaard [50], Arehart et al. [25] and Alvarez et al. [12].

This section surveys the basic ideas and elementary operations of binary and

grey-scale morphology, presents its PDE representations for images and curves,

and summarizes the results concerning well-posedness and scale-space properties.

Afterwards numerical aspects of the PDE formulation of these processes are dis-

cussed, and generalizations are sketched which comprise the morphological equiv-

alent of Gaussian scale-space.

1.5.1 Binary and grey-scale morphology

Binary morphology considers shapes (silhouettes), i.e. closed sets X⊂ IR2 whose

boundaries are Jordan curves [16]. Henceforth, we identify a shape X with its

characteristic function

χ(x) :=

{

1 if x∈X,

0 else.
(1.62)

Binary morphological operations affect only the boundary curve of the shape and,

therefore, they can be viewed as curve or shape deformations.

Grey-scale morphology generalizes these ideas [274] by decomposing an image

f into its level sets {Xaf, a∈IR}, where

Xaf := {x ∈ IR2, f(x) ≥ a}. (1.63)

A binary morphological operation A can be extended to some grey-scale image f

by defining

Xa(Af) := A(Xaf) ∀ a ∈ IR. (1.64)

We observe that for this type of morphological operations only grey-level sets

matter. As a consequence, they are invariant under monotone grey-level rescalings.

This morphological invariance (grey-scale invariance) is characteristic for all meth-

ods we shall study in Section 1.5 and 1.6, except for 1.5.6 and some modifications
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in 1.6.5. It is a very desirable property in all cases where brightness changes of the

illumination occur or where one wants to be independent of the specific contrast

range of the camera. On the other hand, for applications like edge detection or

image restoration, contrast provides important information which should be taken

into account. Moreover, in some cases isolines may give inadequate information

about the depicted physical object boundaries.

1.5.2 Basic operations

Classic morphology analyses a shape by matching it with a so-called structuring

element, a bounded set B⊂IR2. Typical shapes for B are discs, squares, or ellipses.

The two basic morphological operations, dilation and erosion with a structuring

element B, are defined for a grey-scale image f ∈L∞(IR2) by [60]

dilation: (f ⊕ B) (x) := sup {f(x−y), y∈B}, (1.65)

erosion: (f ⊖ B) (x) := inf {f(x+y), y∈B}. (1.66)

These names can be easily motivated when considering a shape in a binary image

and a disc-shaped structuring element. In this case dilation blows up its boundaries,

while erosion shrinks them.

Dilation and erosion form the basis for constructing other morphological pro-

cesses, for instance opening and closing:

opening: (f ◦B) (x) := ((f ⊖ B) ⊕ B) (x), (1.67)

closing: (f •B) (x) := ((f ⊕ B) ⊖ B) (x). (1.68)

In the preceding shape interpretation opening smoothes the shape by breaking nar-

row isthmuses and eliminating small islands, while closing smoothes by eliminating

small holes, fusing narrow breaks and filling gaps at the contours [181].

1.5.3 Continuous-scale morphology

Let us consider a convex structuring element tB with a scaling parameter t > 0.

Then, calculating u(t) = f⊕tB and u(t) = f⊖tB, respectively13, can be shown

to be equivalent to solving

∂tu(x, t) = sup
y∈B

〈y,∇u(x, t)〉, (1.69)

∂tu(x, t) = inf
y∈B

〈y,∇u(x, t)〉. (1.70)

with f as initial condition [12, 360].

13Henceforth, we frequently use the simplified notation u(t) instead of u(., t)
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By choosing e.g. B := {y ∈ IR2, |y| ≤ 1} one obtains

∂tu = |∇u|, (1.71)

∂tu = −|∇u|. (1.72)

The solution u(t) is the dilation (resp. erosion) of f with a disc of radius t and

centre 0 as structuring element. Figure 5.5 (a) presents the temporal evolution of

a test image under such a continuous-scale dilation.

Connection to curve evolution

Morphological PDEs such as (1.71) or (1.72) are closely related to shape and

curve evolutions. This can be illustrated by considering a smooth Jordan curve

C : [0, 2π] × [0,∞) → IR2,

C(p, t) =

(

x1(p, t)

x2(p, t)

)

(1.73)

where p is the parametrization and t is the evolution parameter. We assume that

C evolves in outer normal direction n with speed β, which may be a function of

its curvature κ := det(Cp,Cpp)
|Cp|3 :

∂tC = β(κ) · n, (1.74)

C(p, 0) = C0(p). (1.75)

One can embed the curve C(p, t) in an image u(x, t) in such a way that C is just

a level curve of u. The corresponding evolution for u is given by [319, 362, 16]

∂tu = β(curv(u)) · |∇u|. (1.76)

where the curvature of u is

curv(u) := div

(

∇u
|∇u|

)

. (1.77)

Sometimes the image evolution (1.76) is called the Eulerian formulation of the

curve evolution (1.74), because it is written in terms of a fixed coordinate system.

We observe that (1.71) and (1.72) correspond to the simple cases β = ±1.

Hence, they describe the curve evolutions

∂tC = ±n. (1.78)

This equation moves level sets in normal direction with constant speed. Such a

process is also named grassfire flow or prairie flow. It is closely related to the

Huygens principle for wave propagation [25]. Its importance for shape analysis

in biological vision has already been pointed out in the sixties by Blum [47]. He

simulated grassfire flow by a self-constructed opticomechanical device.
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1.5.4 Theoretical results

Equations such as (1.78) may develop singularities and intersections even for

smooth initial data. Hence, concepts of jump conditions, entropy solutions, and

shocks have to be applied to this shape evolution [228].

A suitable framework for the image evolution equation (1.76) is provided by

the theory of viscosity solutions [103]. The advantage of this analysis is that it

allows us to treat shapes with singularities such as corners, where the classical

solution concept does not apply, but a unique weak solution in the viscosity sense

still exists.

It can be shown [90, 129, 103], that for an initial value

f ∈ BUC(IR2) := {ϕ∈L∞(IR2) | ϕ is uniformly continuous on IR2} (1.79)

the equations (1.69),(1.70) possess a unique global viscosity solution u(x, t) which

fulfils the maximum–minimum principle

inf
IR2
f ≤ u(x, t) ≤ sup

IR2

f on IR2 × [0,∞). (1.80)

Moreover, it is L∞-stable: for two different initial images f , g the corresponding

solutions u(t), v(t) satisfy

‖u(t)−v(t)‖L∞(IR2) ≤ ‖f−g‖L∞(IR2). (1.81)

1.5.5 Scale-space properties

Brockett and Maragos [60] pointed out that the convexity of B is sufficient to

ensure the semigroup property of the corresponding dilations and erosions. This

establishes an important architectural scale-space property.

Similar results have been found by van den Boomgaard and Smeulders [53].

Moreover, they conjecture a causality property where singularities play a role sim-

ilar to zero-crossings in Gaussian scale-space.

Jackway and Deriche [206, 207] prove a causality theorem for the dilation–

erosion scale-space, which is also based on local extrema instead of zero-crossings.

They establish that under erosion the number of local minima is decreasing, while

dilation reduces the number of local maxima. The location of these extrema is

preserved during their whole lifetime.

A complete scale-space interpretation is due to Alvarez, Guichard, Lions and

Morel [12]: They prove that under three architectural assumptions (semigroup

property, locality and regularity), one smoothing axiom (comparison principle) and

additional invariance requirements (grey-level shift invariance, invariance under ro-

tations and translations, morphological invariance), a two-dimensional scale-space
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equation has the following form:

∂tu = |∇u| F (t, curv(u)) (1.82)

Clearly, dilation and erosion belong to the class (1.82), thus being good candi-

dates for morphological scale-spaces. Indeed, in [12] it is shown that the converse

is true as well: all axioms that lead to (1.82) are fulfilled.14

1.5.6 Generalizations

It is possible to extend morphology with a structuring element to morphology with

nonflat structuring functions. In this case we have to renounce invariance under

monotone grey level transformations, but we gain an interesting insight into a

process which has very much in common with Gaussian scale-space.

A dilation of an image f with a structuring function b : IR2 → IR is defined as

(f ⊕ b) (x) := sup
y∈IR2

{f(x−y) + b(y)}. (1.83)

This is a generalization of definition (1.65), since one can recover dilation with a

structuring element B by considering the flat structuring function

b(x) :=

{

0 (x∈B),

−∞ (x 6∈B).
(1.84)

Van den Boomgaard [50, 51] and Jackway [206] proposed to dilate an image f(x)

with quadratic structuring functions of type

b(x, t) = −|x|2
4t

(t > 0). (1.85)

It can be shown [50, 53] that the result u(x, t) is a weak solution of

∂tu = |∇u|2, (1.86)

u(x, 0) = f(x). (1.87)

The temporal evolution of a test image under this process is illustrated in Figure

5.5 (b).

In analogy to the fact that Gaussian-type functions k(x, t) = a exp( |x|
2

4t
) are the

only rotationally symmetric kernels which are separable with respect to convolu-

tion, van den Boomgaard proves that the quadratic structuring functions b(x, t)

are the only rotationally invariant structuring functions which are separable with

respect to dilation [50, 51].

14Invariance under rotations is only satisfied for a disc centered in 0 as structuring element.
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A useful tool for understanding this similarity and many other analogies be-

tween morphology and linear systems theory is the slope transform. This general-

ization of the Legendre transform is the morphological equivalent of the Fourier

transform. It has been discovered simultaneously by Dorst and van den Boomgaard

[119] and by Maragos [275] in slightly differing formulations.

The close relation between (1.86) and Gaussian scale-space has also triggered

Florack and Maas [142] to study a one-parameter family of isomorphisms of linear

diffusion which reveals (1.86) as limiting case.

1.5.7 Numerical aspects

Dilations or erosions with quadratic structuring functions are separable and, thus,

they can be implemented very efficiently by applying one-dimensional operations.

A fast algorithm is described by van den Boomgaard [51].

For morphological operations with flat structuring elements, the situation is

more complicated. Schemes for dilation or erosion which are based on curve evo-

lution turn out be be difficult to handle: they require prohibitive small time steps,

and suffer from the problem of coping with singularities and topological changes

[319, 25, 360].

For this reason it is useful to discretize the corresponding image evolution equa-

tions. The widely-used Osher–Sethian schemes [319] are based on the idea to derive

numerical methods for such equations from techniques for hyperbolic conservation

laws. Overviews of these level set approaches and their various applications can be

found in [372, 374].

To illustrate the basic idea with a simple example, let us restrict ourselves to the

one-dimensional dilation equation ∂tu= |∂xu|. A first-order upwind Osher–Sethian

scheme for this process is given by

un+1
i − un

i

τ
=

√
(

min
(
un

i − un
i−1

h
, 0
))2

+
(

max
(
un

i+1 − un
i

h
, 0
))2

, (1.88)

where h is the pixel size, τ is the time step size, and un
i denotes a discrete

approximation of u(ih, nτ).

Level set methods possess two advantages over classical set-theoretic schemes

for dilation/erosion [25, 360, 218, 66]:

(a) They give excellent results for non-digitally scalable structuring elements

whose shapes cannot be represented correctly on a discrete grid, for instance

discs or ellipses.

(b) The time t plays the role of a continuous scale parameter. Therefore, the

size of a structuring element need not be multiples of the pixel size, and it

is possible to get results with sub-pixel accuracy.
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However, they reveal also two disadvantages:

(a) They are slower than set-theoretic morphological schemes.

(b) Dissipative effects such as blurring of discontinuities occur.

To address the first problem, speed-up techniques for shape evolution have been

proposed which use only points close to the curve at every time step [8, 435,

373]. Blurring of discontinuities can be minimized by applying shock-capturing

techniques such as high-order ENO15 schemes [395, 385].

1.5.8 Applications

Continuous-scale morphology has been applied to shape-from-shading problems,

gridless image halftoning, distance transformations, and skeletonization. Applica-

tions outside the field of image processing and computer vision include for instance

shape offsets in CAD and path planning in robotics. Overviews and suitable ref-

erences can be found in [233, 276].

1.6 Curvature-based morphological processes

Besides providing a useful reinterpretation of classic continuous-scale morphology,

the PDE approach has led to the discovery of new morphological operators. These

processes are curvature-based, and – although they cannot be written in conserva-

tion form – they reveal interesting relations to diffusion processes. Two important

representatives of this class are mean curvature motion and its affine invariant

counterpart. In this subsection we shall discuss these PDEs, possible generaliza-

tions, numerical aspects, and applications.

1.6.1 Mean-curvature filtering

In order to motivate our first curvature-based morphological PDE, let us recall

that the linear diffusion equation (1.9) can be rewritten as

∂tu = ∂ηηu+ ∂ξξu, (1.89)

where the unit vectors η and ξ are parallel and perpendicular to ∇u, respectively.

The first term on the right-hand side of (1.89) describes smoothing along the

flowlines, while the second one smoothes along isophotes. When we want to smooth

15ENO means essentially non-oscillatory. By adapting the stencil for derivative approximations

to the local smoothness of the solution, ENO schemes obtain both high-order accuracy in smooth

regions and sharp shock transitions [183].
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the image anisotropically along its isophotes, we can neglect the first term and end

up with the problem

∂tu = ∂ξξu, (1.90)

u(x, 0) = f(x). (1.91)

By straightforward calculations one verifies that (1.90) can also be written as

∂tu =
u2

x2
ux1x1

− 2ux1
ux2

ux1x2
+ u2

x1
ux2x2

u2
x1

+ u2
x2

(1.92)

= ∆u− 1

|∇u|2 〈∇u,Hess(u)∇u〉 (1.93)

= |∇u| curv(u). (1.94)

Since curv(u)=div
(

∇u
|∇u|

)

is the curvature of u (mean curvature for dimensions ≥
3), equation (1.94) is named (mean) curvature motion (MCM). The corresponding

curve evolution

∂tC(p, t) = κ(p, t) · n(p, t) (1.95)

shows that (1.90) propagates isophotes in inner normal direction with a velocity

that is given by their curvature κ= det(Cp,Cpp)
|Cp|3 .

Processes of this type have first been studied by Brakke in 1978 [54]. They

arise in flame propagation, crystal growth, the derivation of minimal surfaces, grid

generation, and many other applications; see [372, 374] and the references therein

for an overview. The importance of MCM in image processing became only recently

clear: As nicely explained in a paper by Guichard and Morel [173], mean curvature

motion can be regarded as the limit process when classic morphological operators

such as median filtering are iteratively applied.

Figure 5.5 (c) and 5.11 (a) present examples for mean curvature filtering. Equa-

tion (1.95) is also called geometric heat equation or Euclidean shortening flow. The

subsequent discussions shall clarify these names.

Intrinsic heat flow

Interestingly, there exists a further connection between linear diffusion and motion

by curvature. Let v(p, t) denote the Euclidean arc-length of C(p, t), i.e.

v(p, t) :=

p∫

0

|Cρ(ρ, t)| dρ, (1.96)

where Cρ := ∂ρC. The Euclidean arc-length is characterized by |Cv| = 1. It is

invariant under Euclidean transformations, i.e. mappings

x → Rx+ b (1.97)
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where R∈ IR2×2 denotes a rotation matrix and b∈ IR2 is a translation vector.

Since it is well-known from differential geometry (see e.g. [71], p. 14) that

κ(p, t) · n(p, t) = ∂vvC(p, t), (1.98)

we recognize that curvature motion can be regarded as Euclidean invariant diffu-

sion of isophotes:

∂tC(p, t) = ∂vvC(p, t). (1.99)

This geometric heat equation is intrinsic, since it is independent of the curve para-

metrization. However, the reader should be aware of the fact that – although this

equation looks like a linear one-dimensional heat equation – it is in fact nonlinear,

since the arc-length v is again a function of the curve.

Theoretical results

For the evolution of a smooth curve under its curvature, it has been shown in

[188, 151, 169] that a smooth solution exists for some finite time interval [0, T ).

A convex curve remains convex, a nonconvex one becomes convex and, for t→T ,

the curve shrinks to a circular point, i.e. a point with a circle as limiting shape.

Moreover, since under all flows Ct =Cqq the Euclidean arc-length parametrization

q(p) :=v(p) is the fastest way to shrink the Euclidean perimeter
∮ |Cp| dp, equation

(1.99) is called Euclidean shortening flow [150]. The time for shrinking a circle of

radius σ to a point is given by

T = 1
2
σ2. (1.100)

In analogy to the dilation/erosion case it can be shown that, for an initial image

f ∈BUC(IR2), equation (1.90) has a unique viscosity solution which is L∞-stable

and satisfies a maximum–minimum principle [12].

Scale-space interpretation

A shape scale-space interpretation for curve evolution under Euclidean heat flow is

studied by Kimia and Siddiqi [227]. It is based on results of Evans and Spruck [129].

They establish the semigroup property as architectural quality, and smoothing

properties follow from the fact that the total curvature decreases. Moreover, the

number of extrema and inflection points of the curvature is nonincreasing.

As an image evolution, MCM belongs to the class of morphological scale-spaces

which satisfy the general axioms of Alvarez, Guichard, Lions and Morel [12], that

have been mentioned in 1.5.5.

When studying the evolution of isophotes under MCM, it can be shown that,

if one isophote is enclosed by another, this ordering is preserved [129, 227]. Such a

shape inclusion principle implies in connection with (1.100) that it takes the time

T = 1
2
σ2 to remove all isophotes within a circle of radius σ. This shows that the



40 CHAPTER 1. PARTIAL DIFFERENTIAL EQUATIONS

relation between temporal and spatial scale for MCM is the same as for linear

diffusion filtering (cf. (1.14)).

Moreover, two level sets cannot move closer to one another than they were

initially [129, 227]. Hence, contrast cannot be enhanced. This property is charac-

teristic for all scale-spaces of the Alvarez–Guichard–Lions–Morel axiomatic and

distinguishes them from nonlinear diffusion filters.

1.6.2 Affine invariant filtering

Motivation

Although Euclidean invariant smoothing methods are sufficient in many applica-

tions, there exist certain problems which also require invariance with respect to

affine transformations. A (full) affine transformation is a mapping

x → Ax+ b (1.101)

where b ∈ IR2 denotes a translation vector and the matrix A ∈ IR2×2 is invertible.

Affine transformations arise as shape distortions of planar objects when being

observed from a large distance under different angles.

Affine invariant intrinsic diffusion

In analogy to the Euclidean invariant heat flow, Sapiro and Tannenbaum [362,

363] constructed an affine invariant flow by replacing the Euclidean arc-length

v(p, t) in (1.99) by an “arc-length” s(p, t) that is invariant with respect to affine

transformations with det(A) = 1.

Such an affine arc-length was proposed by Blaschke [44, pp. 12–15] in 1923. It

is characterized by det(Cs, Css)=1, and it can be calculated as

s(p, t) :=

p∫

0

(

det
(

Cρ(ρ, t), Cρρ(ρ, t)
)) 1

3 dρ. (1.102)

By virtue of

∂ssC(p, t) =
(

κ(p, t)
) 1

3 · n(p, t) (1.103)

we obtain the affine invariant heat flow

∂tC(p, t) =
(

κ(p, t)
) 1

3 · n(p, t), (1.104)

C(p, 0) = C0(p). (1.105)
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Affine invariant image evolution

When regarding the curve C(p, t) as a level-line of an image u(x, t), we end up

with the evolution equation

∂tu = |∇u|
(

curv(u)
) 1

3 (1.106)

=
(

u2
x2
ux1x1

− 2ux1
ux2

ux1x2
+ u2

x1
ux2x2

) 1

3 (1.107)

= |∇u| 23 u
1

3

ξξ, (1.108)

where ξ is the direction perpendicular to ∇u. The temporal evolution of an image

under such an evolution resembles mean curvature motion; see Fig. 5.6(a).

Besides the name affine invariant heat flow, this equation is also called affine

shortening flow, affine morphological scale-space (AMSS), and fundamental equa-

tion in image processing.

This image evolution equation has been discovered independently of and si-

multaneously with the curve evolution approach of Sapiro and Tannenbaum by

Alvarez, Guichard, Lions and Morel [12] via an axiomatic scale-space approach.

After having mentioned some theoretical results, we shall briefly sketch this rea-

soning below.

Theoretical results

The curve evolution properties of affine invariant heat flow can be shown to be the

same as in the Euclidean invariant case, with three exceptions [363]:

(a) Closed curves shrink to points with an ellipse as limiting shape (elliptical

points).

(b) The name affine shortening flow reflects the fact that, under all flows Ct =

Cqq, the affine arc-length parametrization q(p) :=s(p) is the fastest way to

shrink the affine perimeter

L(t) :=
∮ (

det
(

Cp(p, t), Cpp(p, t)
)) 1

3 dp. (1.109)

(c) The time for shrinking a circle of radius σ to a point is

T = 3
4
σ

4

3 . (1.110)

For the image evolution equation (1.106) we have the same results as for MCM

and dilation/erosion concerning well-posedness of a viscosity solution which satis-

fies a maximum–minimum principle [12].
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Scale-space properties

Alvarez, Guichard, Lions and Morel [12] proved that (1.106) is unique (up to tem-

poral rescalings) when imposing on the scale-space axioms for (1.82) an additional

affine invariance axiom:

For every invertible A∈IR2×2 and for all t≥0, there exists a rescaled

time t′(t, A)≥0, such that

Tt(Af) = A(Tt′f) ∀ f ∈ BUC(IR2). (1.111)

For this reason they call the AMSS equation also fundamental equation in image

analysis. Simplifications of this axiomatic and related axioms for shape scale-spaces

can be found in [16].

The scale-space reasoning of Sapiro and Tannenbaum investigates properties

of the curve evolution, see [362] and the references therein. Based on results of

[229, 24] they point out that the Euclidean absolute curvature decreases as well

as the number of extrema and inflection points of curvature. Moreover, a shape

inclusion principle holds.

1.6.3 Generalizations

In order to analyse planar shapes in a way that does not depend on their location in

IR3, one requires a multiscale analysis which is invariant under a general projective

mapping

(x1, x2)
⊤ →

(
a11x1 + a21x2 + a31

a13x1 + a23x2 + a33

,
a12x1 + a22x2 + a32

a13x1 + a23x2 + a33

)⊤
(1.112)

with A= (aij) ∈ IR3×3 and detA= 1. Research in this direction has been carried

out by Faugeras and Keriven [130, 131, 133], Bruckstein and Shaked [62], Olver

et al. [314], and Dibos [112, 113]. It turns out that intrinsic heat-equation-like

formulations for the projective group are more complicated than the Euclidean

and affine invariant ones, and that there is some evidence that they do not reveal

the same smoothing scale-space properties [314]. A study of heat flows which are

invariant under subgroups of the projective group can be found in [314, 113].

An intrinsic heat flow for images painted on surfaces has been investigated by

Kimmel [232]. It is invariant to the bending (isometric mapping) of the surface.

This geodesic curvature flow and other evolutions, both for scalar and vector-valued

images, can be regarded as steepest descent methods of energy functionals which

have been proposed by Polyakov in the context of string theory [235].

Euclidean and affine invariant curve evolutions can also be modified in order

to obtain area- or length-preserving equations [188, 150, 352, 366].
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Recently it has been suggested to modify AMSS such that any evolution at T-

or X-junctions of isophotes is inhibited [75]. Such a filtering intends to simplify

the image while preserving its “semantical atoms” in the sense of Kanizsa [219].

Generalizations of MCM or AMSS to 3-D images are investigated in [91, 78, 298,

316]. In this case two principal curvatures occur. Since they can have different sign,

the question arises of how to combine them to a process which simplifies arbitrary

surfaces without creating singularities. In contrast to the 2-D situation, topological

changes such as the splitting of conconvex structures may occur. This problem is

reminescent of the creation of new extrema in diffusion scale-spaces when going

from 1-D to 2-D.

Affine scale-space axiomatics for image sequences (movies) have been estab-

lished in [12, 287, 288], and possibilities to generalize the axiomatic of Alvarez,

Guichard, Lions and Morel to colour images are discussed in [82].

1.6.4 Numerical aspects

Due to the equivalence between curve evolution and morphological image pro-

cessing PDEs, we have three main classes of numerical methods: curve evolution

schemes, set-theoretic morphological schemes and approximation schemes for the

Eulerian formulation. A comparison of different methods of these classes can be

found in [95].

Curve evolution schemes are investigated by Mokhtarian and Mackworth [291],

Bruckstein et al. [61], Cohignac et al. [95], Merriman et al. [285], Ruuth [347], and

Moisan [289]. In [61] discrete analogues of MCM and AMSS for the evolution of

planar polygons are introduced. In complete analogy to the behaviour of the con-

tinuous equations, convergence to polygones, whose corners belong to circles and

ellipses, respectively, is established. Related discrete curve evolutions are analysed

in [135, 359]. Curve evolution schemes can reveal perfect affine invariance.

Convergent set-theoretic morphological schemes for MCM and AMSS have been

proposed by Catté et al. [80, 79]. On the one hand, they are very fast and they

are entirely invariant under monotone grey-scale transformations, on the other

hand, it is difficult to find consistent approximations on a pixel grid which have

good rotational invariance. This is essentially the same tradeoff as for circular

structuring elements in classical set-theoretic morphology, cf. 1.5.7.

Most direct approximations of morphological image evolution equations are

based on the Osher–Sethian schemes [319, 372, 374]. In the case of MCM or AMSS,

this leads to an explicit finite difference method which approximates the spatial

derivatives by central differences. Different variants of these schemes have been

proposed in order to get better rotational invariance, higher stability or less dissi-

pative effects [10, 15, 95, 267, 362]. A comparative evaluation of these approaches

has been carried out by Lucido et al. [267]. Niessen et al. [305, 304] approximate
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the spatial derivatives by Gaussian derivatives which are calculated in the Fourier

domain.

Concerning stability one observes that all these explicit schemes can violate a

discrete maximum–minimum principle and require small time steps to be experi-

mentally stable. For AMSS an additional constraint appears: the behaviour of this

equation is highly nonlocal, since affine invariance implies that circles are equiva-

lent to ellipses of any arbitrary eccentricity. If one wants to have a good numerical

approximation of affine invariance, one has to decrease the temporal step size sig-

nificantly below the step size of experimental stability [16, 218]. Using Gaussian

derivatives for MCM or AMSS permits larger time steps for large kernels [304], but

their calculation in the Fourier domain is computationally expensive and aliasing

may lead to oscillatory solutions, cf. 1.2.3.

One way to achieve unconditional L∞-stability for MCM is to approximate

uξξ by suitable linear combinations of one-dimensional second-order derivatives

along grid directions and to apply an implicit finite difference scheme [95, 13, 146].

Schemes of this type, however, renounce consistency with the original equation as

well as rotational invariance: round shapes evolve into polygonal structures.

A consistent semi-implicit approximation of MCM which discretizes the first-

order spatial derivatives explicitly and the second-order derivatives implicitly has

been proposed by Alvarez [10]. In order to solve the resulting linear system of

equations he applies symmetric Gauß–Seidel iterations.

Nicolet and Spühler [301] investigate a consistent fully implicit scheme for MCM

leading to a nonlinear system of equations. It is solved by means of nonlinear Gauß–

Seidel iterations. Comparing it with the explicit scheme they report a tradeoff

between the larger time step size and the higher computational effort per step.

An inherent problem of all finite difference schemes for morphological image

evolutions are their dissipative effects which create additional blurring of discon-

tinuities. As a remedy, one can decompose the image into binary level sets, map

them into Lipschitz-continuous images by applying a distance transformation, and

run a finite difference method on them. Afterwards one extracts the processed level

sets as the zero-level sets of the evolved images, and assembles the final image by

superimposing all evolved level sets [75]. The natural price one has to pay for the

excellent results is a fairly high computational effort.

A software package which contains implementations of MCM, AMSS and many

other modern techniques such as wavelets, Mumford-Shah segmentation, and ac-

tive contour models (cf. 1.6.6) is available under the name MegaWave2.16

16MegaWave2 has been developed by Jacques Froment and Sylvain Parrino, CEREMADE,

University Paris IX, 75775 Paris Cedex 16, France. More information can be found under

http://www.ceremade.dauphine.fr.
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1.6.5 Applications

The special invariances of AMSS are useful for shape recognition tasks [12, 96, 97,

132], for corner detection [15], and for texture discrimination [265, 16]. MCM and

AMSS have also been applied to denoising [305, 304] and blob detection [157, 301]

in medical images and to terrain matching [268]. The potential of MCM for shape

segmentation [290] has even been used for classifying chrysanthemum leaves [1].

If one aims to use these equations for image restoration one usually modifies

them by multiplying them with a term that reduces smoothing at high-contrast

edges [13, 364, 365, 304]; see also Fig. 5.6 (b). Adapting them to tasks such as tex-

ture enhancement requires more sophisticated and more global feature descriptors

than the gradient, for instance an analysis by means of Gabor functions [72, 234].

Introducing a reaction term as in [102] allows to attract the solution to specified

grey values which can be used as quantization levels [11]. Another modification

results from omitting the factor |∇u| in the mean curvature motion (1.94), see e.g.

[126, 127]. This corresponds to nonlinear diffusion filters and a restoration method

by total variation minimization [345] which shall be described in 1.7.2.

In order to improve images, MCM or AMSS have also been combined with other

processes such as linear diffusion [13], shock filtering ([14], cf. 1.7.1) or global PDEs

for histogramme enhancement [358].

Malladi and Sethian [272] propose to replace MCM by a technique in which

the motion of level curves is based on either min(κ, 0) or max(κ, 0), depending on

the average grey value within a certain neighbourhood. This so-called min–max

flow produces a restored image as steady-state solution and reveals good denoising

properties. Well-posedness results are not known up to now, since the theory of

viscosity solutions is no longer applicable.

All these preceding modifications are at the expense of renouncing the mor-

phological invariance of the genuine operators (and also affine invariance in the

case of [364, 365, 304], unless an “affine invariant gradient” [231, 315] is used). If

one wants to stay within the morphological framework one can combine different

morphological processes, for instance MCM and dilation/erosion. This leads to a

process which is useful for analysing components of shape [228, 230, 383, 384, 453],

and which is called entropy scale-space or reaction–diffusion scale-space.

Recently Steiner et al. proposed a method for caricature-like shape exaggera-

tion [394]. They evolved the boundary curve by means of a backward Euclidean

shortening flow with a stabilizing bias term as in (1.56).

It is interesting to note that, already in 1965, Gabor – the inventor of optical

holography and the so-called Gabor functions – proposed a deblurring algorithm

based on combining MCM with backward smoothing along flowlines [149, 260].

This long-time forgotten method is similar to the Perona–Malik process (1.36) for

large image gradients.
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1.6.6 Active contour models

One of the main applications of curve evolution ideas appears in the context of

active contour models (deformable models). 2-D versions are also called snakes,

while 3-D active models are sometimes named active surfaces or active blobs. Ac-

tive contour models can be used to search image features in an interactive way.

Especially for assisting the segmentation of medical images they have become very

popular [282]: The expert user gives a good initial guess of an interesting contour

(organ, tumour, ...), which will be carried the rest of the way by some energy

minimization. Apart from these practical merits, snake models incorporate many

ideas ranging from energy minimization over curve evolution to the Perona–Malik

filter and diffusion–reaction models. It is therefore not surprising that they play an

important role in several generalization and unification attempts [356, 380, 452].

Explicit snakes

Kass, Witkin and Terzopoulos proposed the first active contour model in a journal

paper in 1988 [221]. Their snakes can be thought of as an energy-minimizing spline,

which is attracted by image features such as edges. For this reason, the energy

functional consists of two parts: an internal energy fraction which controls the

smoothness of the result, and an external energy term attracting the result to

salient image features.

Such a snake is represented by a curve C(s) = (x1(s), x2(s))
⊤ which minimizes

the functional

E(C(s)) =
∮

C(s)

(
α
2
|Cs(s)|2 + β

2
|Css(s)|2 − γ |∇f(C(s))|2

)

ds. (1.113)

The first summand is a membrane term causing the curve to shrink, the second

one is a rigidity term which encourages a straight contour, and the third term

pushes the contour to high gradients of the image f . We observe that terms 1

and 2 describe the internal energy, while the third one represents the external

(image) energy. The nonnegative parameters α, β and γ serve as weights of these

expressions. Since this model makes direct use of the snake contour, it is also called

an explicit model.

Minimizing the functional (1.113) by steepest descent gives

∂C

∂t
= αCss − βCssss − γ∇(|∇f |2), (1.114)

which can be approximated by finite differences. A 3-D version of such an active

contour model is presented in [401].

Usually, the result will depend on the choice of the initial curve and a good

segmentation requires an initial curve which is close to the final segment. The main
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disadvantage of the preceding model is its topological rigidity: a classical explicit

snake cannot split in order to segment several objects simultaneously17. In practice,

it is also sometimes not easy to find a good balance between the parameters α, β

and γ.

Implicit snakes

In 1993 some of the inherent difficulties of explicit snakes have been solved by

replacing them by a so-called implicit model. It was discovered by Caselles, Catté,

Coll and Dibos [73], and later on by Malladi, Sethian and Vemuri [273].

The idea behind implicit snakes is to embed the initial curve C0(s) as a zero

level curve into a function u0 : IR2 → IR, for instance by using the distance

transformation. Then u0 is evolved under a PDE which includes knowledge about

the original image f :

∂tu = g(|∇fσ|2) |∇u|
(

div

(

∇u
|∇u|

)

+ ν

)

. (1.115)

This evolution is stopped at some time T , when the process does hardly alter

anymore, and the final contour C is extracted as the zero level curve of u(x, T ).

The terms in (1.115) have the following meaning:

• |∇u| div (∇u/|∇u|) is the curvature term of MCM which smoothes level sets;

see (1.94).

• ν|∇u| describes motion in normal direction, i.e. dilation or erosion depending

on the sign of ν. This so-called balloon force [93] is required for pushing a

level set into concave regions, a compensation for the property of MCM to

create convex regions.

• g is a stopping function such as the Perona–Malik diffusivity (1.32): it be-

comes small for large |∇fσ| = |∇Kσ∗f |. Hence, it slows down the snake as

soon as it approaches significant edges of the original image f .

For this model Caselles et al. could prove well-posedness in the viscosity sense

[73]. Whitaker and Chen developed similar implicit active contour models for 3-D

images [436, 435], and Caselles and Coll investigated related approaches for image

sequences [74].

An advantage of implicit snake models is their topological flexibility: The con-

tour may split. This allows simultaneous segmentation of multiple objects. More-

over, they use essentially only one remaining parameter, the balloon force ν. On

17Recently McInerley and Terzopoulos have proposed modified explicit deformable models

which allow topological changes [281, 283].
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the other hand, the process does not really stop at the desired result, it only slows

down, and it is difficult to interpret implicit snakes in terms of energy minimiza-

tion. In order to address the initialization problem, Tek and Kimia use implicit

active contours starting from randomly chosen seed points, both in 2-D [399] and

in 3-D [400]. They name this technique reaction–diffusion bubbles.

Geodesic snakes

Geodesic snakes make a synthesis of explicit and implicit snake ideas. They have

been proposed simultaneously by Caselles, Kimmel and Sapiro [76] and by Kichenas-

samy, Kumar, Olver, Tannenbaum and Yezzi [226]. These snakes replace the con-

tour energy (1.113) by

E(C) =
∮

C(s)

(
α
2
|Cs(s)|2 − γ g(|∇fσ(C)|2)

)

ds (1.116)

where g denotes again a Perona–Malik diffusivity of type (1.32). Under some addi-

tional assumptions they derive that minimizing (1.116) is equivalent to searching

min
C

∮

C(s)

g
(

|∇fσ(C(s))|2
)

|Cs(s)| ds. (1.117)

This is nothing else than finding a curve of minimal distance (geodesic) with respect

to some image-induced metric. Embedding the initial curve as a level set of some

image u0 and applying a descent method to the corresponding Euler-Lagrange

equation leads to the image evolution PDE

∂tu = |∇u| div

(

g(|∇fσ|2)
∇u
|∇u|

)

. (1.118)

This active contour model is parameter-free, but often a speed term νg(|∇fσ|2)|∇u|
is added to achieve faster and more stable attraction to edges. A theoretical analysis

of geodesic snakes concerning existence, uniqueness and stability of a viscosity

solution can be found in [76, 226], and extensions to 3-D images are studied in [77,

226, 271]. Recently also an affine invariant analogue to geodesic active contours has

been proposed [315]. Techniques which can be related to geodesic active contours

have also been used for solving 3-D vision problems such as stereo [134] and motion

analysis [322].

Self-snakes

The properties of geodesic snakes induced Sapiro to use a related technique for

image enhancement [357]: he replaced g(|∇fσ|2) in (1.118) by g(|∇uσ|2). Then the
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snake becomes a self-snake no longer underlying external image forces. For σ = 0

this gives

∂tu = |∇u| div

(

g(|∇u|2) ∇u
|∇u|

)

(1.119)

= g(|∇u|2) uξξ + ∇⊤
(

g(|∇u|2)
)

∇u (1.120)

with ξ ⊥ ∇u. Although this equation cannot be cast in divergence form, we observe

striking similarities with the Perona–Malik process from Section 1.3.1: the latter

can be written as

∂tu = g(|∇u|2) ∆u + ∇⊤
(

g(|∇u|2)
)

∇u. (1.121)

Thus, it cannot be excluded that a self-snake without spatial regularization reveals

the same ill-posedness problems as the Perona–Malik filter [356]. For σ > 0, how-

ever, Chen, Vemuri and Wong [89] established existence and stability of a unique

viscosity solution to a modified self-snake process. Their model contains a reaction

term which inhibits smoothing at edges and keeps the filtered image u close to the

original image f ; cf. [380]. The restored image is given by the steady-state of

∂tu = |∇u| div

(

g(|∇uσ|2)
∇u
|∇u|

)

+ β |∇u| (f−u) (β > 0). (1.122)

The temporal evolution of a regularized self-snake without reaction term is de-

picted in Fig. 5.6(c). Generalizations of self-snakes to vector-valued images [357,

361] can be obtained using Di Zenzo’s first fundamental form for colour images

[114]; see also [414, 422] for related ideas.

1.7 Total variation methods

Inspired by observations from fluid dynamics where the total variation (TV)

TV (u) :=
∫

Ω

|∇u| dx (1.123)

plays an important role for shock calculations, one may ask if it is possible to apply

related ideas to image processing. This would be useful to restore discontinuities

such as edges.

Below we shall focus on two important TV-based image restoration techniques

which have been pioneered by Osher and Rudin: TV-preserving methods and tech-

niques which are TV-minimizing subject to certain constraints.18

18Another image enhancement method that is close in spirit is due to Eidelman, Grossmann

and Friedman [125]. It maps the image grey values to gas dynamical parameters and solves the

compressible Euler equations using shock-capturing total variation diminishing (TVD) techniques

based on Godunov’s method.
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1.7.1 TV-preserving methods

In 1990 Osher and Rudin have proposed to restore blurred images by shock filtering

[317]. These filters calculate the restored image as the steady-state solution of the

problem

∂tu = −|∇u| F (L(u)), (1.124)

u(x, 0) = f(x). (1.125)

Here, sgn(F (u)) = sgn(u), and L(u) is a second-order elliptic operator whose zero-

crossings correspond to edges, e.g. the Laplacian L(u) = ∆u or the second-order

directional derivative L(u)=uηη with η‖∇u.
By means of our knowledge from morphological processes, we recognize that

this filter aims to produce a flow field that is directed from the interior of a region

towards its edges where it develops shocks. Thus, the goal is to obtain a piecewise

constant steady-state solution with discontinuities only at the edges of the initial

image.

It has been shown that a one-dimensional version of this filter preserves the

total variation and satisfies a maximum–minimum principle, both in the continuous

and discrete case. For the two-dimensional case not many theoretical results are

available except for a discrete maximum–minimum principle.

Recently van den Boomgaard [52] pointed out that the 1-D version of (1.124)

with F (u) := sgn(u) arises as the PDE formulation of a classical image enhance-

ment algorithm by Kramer and Bruckner [243]. Kramer and Bruckner proved in

1975 that their N -dimensional discrete scheme converges after a finite number of

iterations to a state where each point is a local extremum.

Osher and Rudin have also proposed another TV-preserving deblurring tech-

nique [318]. It solves the linear diffusion equation backwards in time under the

regularizing constraint that the total variation remains constant. This stabiliza-

tion can be realized by keeping local extrema fixed during the whole evolution.

From a practical point of view, TV-preserving methods suffer from the problem

that fluctuations due to noise do also create shocks. For this reason, Alvarez and

Mazorra [14] replace the operator L(u) = uηη in (1.124) by a Gaussian-smoothed

version L(Kσ∗u) = Kσ∗uηη and supplement the resulting equation with a noise-

eliminating mean curvature process. They prove that their semi-implicit finite-

difference scheme has a unique solution which satisfies a maximum–minimum prin-

ciple.

1.7.2 TV-minimizing methods

Total variation is good for quantifying the simplicity of an image since it mea-

sures oscillations without unduly punishing discontinuities. For this reason, blocky
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images (consisting only of a few almost piecewise constant segments) reveal very

small total variation.

In order to restore noisy blocky images, Rudin, Osher and Fatemi [345] have

proposed to minimize the total variation under constraints which reflect assump-

tions about noise.19

To fix ideas, let us study an example. Given an image f with additive noise of

zero mean and known variance σ2, we seek a restoration u satisfying

min
u

∫

Ω

|∇u| dx (1.126)

subject to
∫

Ω

(u−f)2 dx = σ2, (1.127)

∫

Ω

u dx =
∫

Ω

f dx. (1.128)

In order to solve this constrained variational problem, PDE methods can be

applied: A solution of (1.126)–(1.128) verifies necessarily the Euler equation

div

(

∇u
|∇u|

)

− µ− λ(u−f) = 0 (1.129)

with homogeneous Neumann boundary conditions. The (unknown) Lagrange mul-

tipliers µ and λ have to be determined in such a way that the constraints are

fulfilled. Interestingly, (1.129) looks similar to the steady-state equation of the

diffusion–reaction equation (1.56), but – in contrast to TV approaches – equa-

tion (1.56) is not intended to satisfy the noise constraint exactly [346]. Moreover,

the divergence term in (1.129) is identical with the curvature, which relates TV-

minimizing techniques to MCM.

In [345] a gradient descent method is proposed to solve (1.129). It uses an

explicit finite difference scheme with central and one-sided spatial differences and

adapts the Lagrange multiplier by means of the gradient projection method of

Rosen.

One may also reformulate the constrained TV minimization as an uncon-

strained problem [83]: The penalized least square problem

min
u

(

1

2
‖u−f‖2

L2(Ω) + α
∫

Ω

|∇u| dx
)

(1.130)

is equivalent to the constrained TV minimization, if α is related to the Lagrange

multiplier λ via α = 1
λ
.

19Related ideas have also been developed by Geman and Reynolds [153].
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In recent years, problems of type (1.130) have attracted much interest from

mathematicians working on inverse problems, optimization, or numerical analysis

[2, 84, 85, 87, 115, 117, 118, 204, 205, 253, 409]. To overcome the problem that

the total variation integral contains the nondifferentiable argument |∇u|, one ap-

plies regularization strategies or techniques from nonsmooth optimization. Much

research is done in order to find efficient numerical methods for which convergence

can be established.

TV-minimizing methods have been generalized in different ways:

• The constrained TV-minimization idea is frequently adapted to other con-

straints such as blur, noise with blur, or other types of noise [262, 344, 346,

116, 253, 410, 83]. Lions et al. [262] and Dobson and Santosa [115] have

shown the existence of BV(Ω)-solutions for problems of this type. Recently,

Chambolle and Lions [83] have extended the existence proof to noncompact

operators (which comprises also the situation without blur), and they have

established uniqueness.

• The tendency of TV-minimizing to create piecewise constant structures can

cause undesired effects such as the creation of staircases at sigmoid-like edges

[116, 83]. As a remedy, it has been proposed to minimize the L1-norm of

expressions containing also higher-order derivatives [344, 83]. Another pos-

sibility is to consider the constrained minimization of

B(u) :=
∫

Ω

|∇u| p(|∇u|) dx, (1.131)

where p(|∇u|) decreases from 2 to 1, as |∇u| ranges from 0 to ∞; see [46].

• TV-minimizing methods have also been used for estimating discontinuous

blurring kernels such as motion or out-of-focus blur from a degraded image.

This leads to TV-based blind deconvolution algorithms [86].

• They have been applied to colour images [45], where the generalized TV

norm is chosen as the l2-norm of the TV norms of the separate channels.

• Strong and Chan have identified the parameter α in (1.130) as a scale para-

meter [396]. By adapting α to the local image structure, they establish re-

lations between TV-minimizing methods and nonlinear diffusion techniques

[397].

Total variation methods have been applied to restoring images of military rele-

vance [345, 346, 262, 253], to improving material from criminal and civil investiga-

tions as court evidence [344], and to enhancing pictures from confocal microscopy

[409] and tomography [115, 396]. They are useful for enhancing reconstruction al-

gorithms for inverse scattering problems [37], and the idea of L1-norm minimization

has also led to improved optic flow algorithms [245].
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1.8 Conclusions and further scope of the book

Although we have seen that there exists a large variety of PDE-based scale-space

and image restoration methods which offer many advantages, we have also become

aware of some limitations. They shall serve as a motivation for the theory which

will be explored in the subsequent chapters.

Linear diffusion and morphological scale-spaces are well-posed and have a solid

axiomatic foundation. On the other hand, for some applications, they possess the

undesirable property that they do not permit contrast enhancement and that they

may blur and delocalize structures.

Pure restoration methods such as diffusion–reaction equations or TV-based

techniques do allow contrast enhancement and lead to stable structures but can

suffer from theoretical or practical problems, for instance unsolved well-posedness

questions or the search for efficient minimizers of nonconvex or nondifferentiable

functionals. Moreover, most image-enhancing PDE methods focus on edge detec-

tion and segmentation problems. Other interesting image restoration topics have

found less attention.

For both scale-space and restoration methods many questions concerning their

discrete realizations are still open: discrete scale-space results are frequently miss-

ing, minimization algorithms can get trapped in a poor local minimum, or the use

of explicit schemes causes restrictive step size limitations.

The goal of the subsequent chapters is to develop a theory for nonlinear aniso-

tropic diffusion filters which addresses some of the abovementioned shortcomings.

In particular, we shall see that anisotropic nonlinear diffusion processes can share

many advantages of the scale-space and the image enhancement world. A scale-

space interpretation is presented which does not exclude contrast enhancement,

and well-posedness results are established. Both scale-space and well-posedness

properties carry over from the continuous to the semidiscrete and discrete setting.

The latter comprises for instance semi-implicit techniques for which unconditional

stability in the L∞-norm is proved. The general framework, for which the results

hold, includes also linear and isotropic nonlinear diffusion filters. Finally, specific

anisotropic models are presented which permit applications beyond segmentation

and edge enhancement tasks, for instance enhancement of coherent flow-like struc-

tures in textures.
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Chapter 2

Continuous diffusion filtering

This chapter presents a general continuous model for anisotropic diffusion filters,

analyses its theoretical properties and gives a scale-space interpretation. To this

end, we adapt the diffusion process to the structure tensor, a well-known tool

for analysing local orientation. Under fairly weak assumptions on the class of fil-

ters, it is possible to establish well-posedness and regularity results and to prove a

maximum–minimum principle. Since the proof does not require any monotony as-

sumption it applies also to contrast-enhancing diffusion processes. After sketching

invariances of the resulting scale-space, we focus on analysing its smoothing prop-

erties. We shall see that, besides the extremum principle, a large class of associated

Lyapunov functionals plays an important role in this context [414, 415].

2.1 Basic filter structure

Let us consider a rectangular image domain Ω := (0, a1) × (0, a2) with boundary

Γ := ∂Ω and let an image be represented by a mapping f ∈ L∞(Ω). The class

of anisotropic diffusion filters we are concerned with is represented by the initial

boundary value problem

∂tu = div (D ∇u) on Ω × (0,∞), (2.1)

u(x, 0) = f(x) on Ω, (2.2)

〈D∇u, n〉 = 0 on Γ × (0,∞). (2.3)

Hereby, n denotes the outer normal and 〈., .〉 the Euclidean scalar product on IR2.

In order to adapt the diffusion tensor D ∈ IR2×2 to the local image structure, one

would usually let it depend on the edge estimator ∇uσ (cf. 1.3.3), where

uσ(x, t) := (Kσ ∗ ũ(., t)) (x) (σ > 0) (2.4)

and ũ denotes an extension of u from Ω to IR2, which may be obtained by mirroring

at Γ (cf. [81]).

55



56 CHAPTER 2. CONTINUOUS DIFFUSION FILTERING

However, we shall choose a more general structure descriptor which comprises

the edge detector ∇uσ, but also allows to extract more information. This will be

presented next.

2.2 The structure tensor

In order to identify features such as corners or to measure the local coherence of

structures, we need methods which take into account how the orientation of the

(smoothed) gradient changes within the vicinity of any investigated point.

The structure tensor – also called interest operator, scatter matrix or (windowed

second) moment tensor – is an important representative of this class. Matrices of

this type are useful for many different tasks, for instance for analysing flow-like

textures [340, 31], corners and T-junctions [145, 182, 310, 309], shape cues [256,

pp. 349–382] and spatio–temporal image sequences [209, pp. 147–153], [168, pp.

219–258]. Related approaches can also be found in [39, 40, 220]. Let us focus on

some aspects which are of importance in our case.

In order to study orientations instead of directions, we have to identify gra-

dients which differ only by their sign: they share the same orientation, but point

in opposite directions. To this end, we reconsider the vector-valued structure de-

scriptor ∇uσ within a matrix framework. The matrix J0 resulting from the tensor

product

J0(∇uσ) := ∇uσ ⊗∇uσ := ∇uσ∇uT
σ (2.5)

has an orthonormal basis of eigenvectors v1, v2 with v1 ‖ ∇uσ and v2 ⊥ ∇uσ.

The corresponding eigenvalues |∇uσ|2 and 0 give just the contrast (the squared

gradient) in the eigendirections.

Averaging this orientation information can be accomplished by convolving

J0(∇uσ) componentwise with a Gaussian Kρ. This gives the structure tensor

Jρ(∇uσ) := Kρ ∗ (∇uσ ⊗∇uσ) (ρ ≥ 0). (2.6)

It is not hard to verify that the symmetric matrix Jρ =
(

j11
j12

j12
j22

)

is positive semidef-

inite and possesses orthonormal eigenvectors v1, v2 with

v1 ‖



2j12

j22 − j11 +
√

(j11−j22)2 + 4j2
12



 . (2.7)

The corresponding eigenvalues µ1 and µ2 are given by

µ1,2 =
1

2

(

j11+j22 ±
√

(j11−j22)2 + 4j2
12

)

, (2.8)

where the + sign belongs to µ1. As they integrate the variation of the grey values

within a neighbourhood of size O(ρ), they describe the average contrast in the
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eigendirections. Thus, the integration scale ρ should reflect the characteristic win-

dow size over which the orientation is to be analysed. Presmoothing in order to

obtain ∇uσ makes the structure tensor insensitive to noise and irrelevant details

of scales smaller than O(σ). The parameter σ is called local scale or noise scale.

By virtue of µ1≥µ2≥0, we observe that v1 is the orientation with the highest

grey value fluctuations, and v2 gives the preferred local orientation, the coherence

direction. Furthermore, µ1 and µ2 can be used as descriptors of local structure:

Constant areas are characterized by µ1 = µ2 = 0, straight edges give µ1 ≫ µ2 = 0,

corners can be identified by µ1 ≥ µ2 ≫ 0, and the expression

(µ1 − µ2)
2 = (j11−j22)2 + 4j2

12 (2.9)

becomes large for anisotropic structures. It is a measure of the local coherence.

An example which illustrates the advantages of the structure tensor for analysing

coherent patterns can be found in Figure 5.10 (d); see Section 5.2.

2.3 Theoretical results

In order to discuss well-posedness results, let us first recall some useful notations.

Let H1(Ω) be the Sobolev space of functions u(x) ∈ L2(Ω) with all distributional

derivatives of first order being in L2(Ω). We equip H1(Ω) with the norm

‖u‖H1(Ω) :=

(

‖u‖2
L2(Ω) +

2∑

i=1

‖∂xi
u‖2

L2(Ω)

)1/2

(2.10)

and identify it with its dual space. Let L2(0, T ; H1(Ω)) be the space of functions

u, strongly measurable on [0, T ] with range in H1(Ω) (for the Lebesgue measure

dt on [0, T ]) such that

‖u‖L2(0,T ;H1(Ω)) :=





T∫

0

‖u(t)‖2
H1(Ω) dt





1/2

< ∞. (2.11)

In a similar way, C([0, T ]; L2(Ω)) is defined as the space of continuous functions

u : [0, T ] → L2(Ω) supplemented with the norm

‖u‖C([0,T ];L2(Ω)) := max
[0,T ]

‖u(t)‖L2(Ω). (2.12)

As usual, we denote by Cp(X, Y ) the set of Cp-mappings from X to Y .

Now we can give a precise formulation of the problem we are concerned with.

We need the following prerequisites:
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Assume that f ∈L∞(Ω), ρ≥0, and σ, T >0.

Let a :=ess inf
Ω

f , b := ess sup
Ω

f , and consider the problem

∂tu = div (D(Jρ(∇uσ)) ∇u) on Ω × (0, T ],

u(x, 0) = f(x) on Ω,

〈D(Jρ(∇uσ))∇u, n〉 = 0 on Γ × (0, T ],

where the diffusion tensor D = (dij) satisfies the following

properties:

(C1) Smoothness:

D ∈ C∞(IR2×2, IR2×2).

(C2) Symmetry:

d12(J)=d21(J) for all symmetric matrices J ∈IR2×2.

(C3) Uniform positive definiteness:

For all w∈L∞(Ω, IR2) with |w(x)| ≤ K on Ω̄, there

exists a positive lower bound ν(K) for the eigenvalues

of D(Jρ(w)).







(Pc)

Under these assumptions the following theorem, which generalizes and extends

results from [81, 414], can be proved.

Theorem 1 (Well-posedness,1 regularity, extremum principle)

The problem (Pc) has a unique solution u(x, t) in the distributional sense which

satisfies

u ∈ C([0, T ]; L2(Ω)) ∩ L2(0, T ; H1(Ω)), (2.13)

∂tu ∈ L2(0, T ; H1(Ω)). (2.14)

Moreover, u∈C∞(Ω̄×(0, T ]). This solution depends continuously on f with respect

to ‖ . ‖L2(Ω), and it fulfils the extremum principle

a ≤ u(x, t) ≤ b on Ω × (0, T ]. (2.15)

1For a complete well-posedness proof one also has to establish stability with respect to per-

turbations of the diffusion equation. This topic will not be addressed here.
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Proof:

(a) Existence, uniqueness and regularity

Existence, uniqueness and regularity are straightforward anisotropic exten-

sions of the proof for the isotropic case studied by Catté, Lions, Morel and

Coll [81]. Therefore, we just sketch the basic ideas of this proof.

Existence can be proved using Schauder’s fixed point theorem. One considers

the solution U(w) of a distributional linear version of (Pc) where D depends

on some function w instead of u. Then one shows that U is a weakly contin-

uous mapping from a nonempty, convex and weakly compact subset W0 of

W (0, T ) :=
{

w ∈ L2(0, T ; H1(Ω)), dw
dt

∈ L2(0, T ; H1(Ω))
}

into itself. Since

W (0, T ) is contained in L2(0, T ; L2(Ω)), with compact inclusion, U reveals a

fixed point u ∈W0, i.e. u = U(u).

Smoothness follows from classical bootstrap arguments and the general the-

ory of parabolic equations [246]. Since u(t) ∈ H1(Ω) for all t > 0, one deduces

that u(t) ∈ H2(Ω) for all t > 0. By iterating, one can establish that u is a

strong solution of (Pc) and u ∈ C∞((0, T ] × Ω̄).

The basic idea of the uniqueness proof consists of using energy estimates for

the difference of two solutions, such that the Gronwall–Bellman inequality

can be applied. Then, uniqueness follows from the fact that both solutions

start with the same initial values.

Finally an iterative linear scheme is investigated, whose solution is shown to

converge in C([0, T ]; L2(Ω)) to the strong solution of (Pc).

(b) Extremum principle

In order to prove a maximum–minimum principle, we utilize Stampacchia’s

truncation method (cf. [58], p. 211).

We restrict ourselves to proving only the maximum principle. The minimum

principle follows from the maximum principle when being applied to the

initial datum −f .

Let G ∈ C1(IR) be a function with G(s) = 0 on (−∞, 0] and 0 < G′(s) ≤ C

on (0,∞) for some constant C. Now, we define

H(s) :=

s∫

0

G(σ) dσ, s ∈ IR,

ϕ(t) :=
∫

Ω

H(u(x, t) − b) dx, t ∈ [0, T ].

By the Cauchy–Schwarz inequality, we have
∫

Ω

|G(u(x, t)−b) ∂tu(x, t)| dx ≤ C · ‖u(t)−b‖L2(Ω) · ‖∂tu(t)‖L2(Ω)
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and by virtue of (2.13), (2.14) we know that the right-hand side of this

estimate exists. Therefore, ϕ is differentiable for t > 0, and we get

dϕ

dt
=

∫

Ω

G(u−b) ∂tu dx

=
∫

Ω

G(u−b) div (D(Jρ(∇uσ))∇u) dx

=
∫

Γ

G(u−b) 〈D(Jρ(∇uσ))∇u, n〉
︸ ︷︷ ︸

=0

dS

−
∫

Ω

G′(u−b)
︸ ︷︷ ︸

≥0

〈∇u,D(Jρ(∇uσ))∇u〉
︸ ︷︷ ︸

≥0

dx

≤ 0. (2.16)

By means of H(s) ≤ C
2
s2, we have

0 ≤ ϕ(t) ≤
∫

Ω

H(u(x, t)−f(x)) dx ≤ C

2
‖u(t)−f‖2

L2(Ω). (2.17)

Since u ∈ C([0, T ]; L2(Ω)), the right-hand side of (2.17) tends to 0 = ϕ(0)

for t→ 0+ which proves the continuity of ϕ(t) in 0. Now from

ϕ ∈ C[0, T ], ϕ(0) = 0, ϕ ≥ 0 on [0, T ]

and (2.16), it follows that

ϕ ≡ 0 on [0, T ].

Hence, for all t ∈ [0, T ], we obtain u(x, t)−b ≤ 0 almost everywhere (a.e.) on

Ω. Due to the smoothness of u for t > 0, we finally end up with the assertion

u(x, t) ≤ b on Ω̄ × (0, T ].

(c) Continuous dependence on the initial image

Let f, h ∈ L∞(Ω) be two initial values and u, w the corresponding solutions.

In the same way as in the uniqueness proof in [81], one shows that there

exists some constant c > 0 such that

d

dt

(

‖u(t)−w(t)‖2
L2(Ω)

)

≤ c · ‖∇u(t)‖2
L2(Ω) · ‖u(t)−w(t)‖2

L2(Ω).

Applying the Gronwall–Bellman lemma [57, pp. 156–137] yields

‖u(t)−w(t)‖2
L2(Ω) ≤ ‖f−h‖2

L2(Ω) · exp



c ·
t∫

0

‖∇u(s)‖2
L2(Ω) ds



 .
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By means of the extremum principle we know that u is bounded on Ω̄×[0, T ].

Thus, ∇uσ is also bounded, and prerequisite (C3) implies that there exists

some constant ν = ν(σ, ‖f‖L∞(Ω)) > 0, such that

t∫

0

‖∇u(s)‖2
L2(Ω) ds

≤
T∫

0

‖∇u(s)‖2
L2(Ω) ds

≤ 1

ν

T∫

0

∣
∣
∣
∣
∣
∣

∫

Ω

〈∇u(x, s), D(Jρ(∇uσ(x, s)))∇u(x, s)〉 dx
∣
∣
∣
∣
∣
∣

ds

=
1

ν

T∫

0

∣
∣
∣
∣
∣
∣

∫

Ω

u(x, s) · div
(

D(Jρ(∇uσ(x, s)))∇u(x, s)
)

dx

∣
∣
∣
∣
∣
∣

ds

≤ 1

ν

T∫

0

‖u(s)‖L2(Ω) ‖∂tu(s)‖L2(Ω) ds

≤ 1

ν
‖u‖L2(0,T ;H1(Ω)) ‖∂tu‖L2(0,T ;H1(Ω)).

By virtue of (2.13), (2.14), we know that the right-hand of this estimate

exists. Now, let ǫ > 0 and choose

δ := ǫ · exp
(−c

2ν
‖u‖L2(0,T ;H1(Ω)) ‖∂tu‖L2(0,T ;H1(Ω))

)

.

Then for ‖f−h‖L2(Ω) < δ, the preceding results imply

‖u(t)−w(t)‖L2(Ω) < ǫ ∀ t ∈ [0, T ],

which proves the continuous dependence on the initial data. ✷

Remarks:

(a) We observe a strong smoothing effect which is characteristic for many dif-

fusion processes: under fairly weak assumptions on the initial image (f ∈
L∞(Ω)) we obtain an infinitely often differentiable solution for arbitrary small

positive times. More restrictive requirements – for instance f ∈ BUC(IR2)

in order to apply the theory of viscosity solutions – are not necessary in our

case.

(b) Moreover, our proof does not require any monotony assumption. This has the

advantage that contrast-enhancing processes are permitted as well. Chapter

5 will illustrate this by presenting examples where contrast is enhanced.
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(c) The continuous dependence of the solution on the initial image has signif-

icant practical impact as it ensures stability with respect to perturbations

of the original image. This is of importance when considering stereo image

pairs, spatio-temporal image sequences or slices from medical CT or MRI

sequences, since we know that similar images remain similar after filtering.2

(d) The extremum principle offers the practical advantage that, if we start for

instance with an image within the range [0, 255], we will never obtain results

with grey value such as 257. It is also closely related to smoothing scale-space

properties, as we shall see in 2.4.2.

(e) The well-posedness results are essentially based on the fact that the regu-

larization by convolution with a Gaussian allows to estimate ‖∇uσ‖L∞(Ω) by

‖u‖L∞(Ω). This property is responsible for the uniform positive definiteness

of the diffusion tensor.

2.4 Scale-space properties

Let us now investigate scale-space properties of the class (Pc) and juxtapose the re-

sults to other scale-spaces. To this end, we shall not focus on further investigations

of architectural requirements like recursivity, regularity and locality, as these qual-

ities do not distinguish nonlinear diffusion scale-spaces from other ones. We start

with briefly discussing invariances. Afterwards, we turn to a more crucial task,

namely the question in which sense our evolution equation – which may allow con-

trast enhancement – can still be considered as a smoothing, information-reducing

image transformation.

2.4.1 Invariances

Let u(x, t) be the unique solution of (Pc) and define the scale-space operator Tt by

Ttf := u(t), t ≥ 0, (2.18)

where u(t) := u(., t).

The properties we discuss now illustrate that an invariance of Tt with respect to

some image transformation P is characterized by the fact that Tt and P commute.

Much of the terminology used below is borrowed from [12].

2This does not contradict contrast enhancement: In the case of two similar images, where

one leads to contrast enhancement and the other not, the regularization damps the enhancement

process in such a way that both images do not differ much after filtering.
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Grey level shift invariance

Since the diffusion tensor is only a function of Jρ(∇uσ), but not of u, we may shift

the grey level range by an arbitrary constant C, and the filtered images will also

be shifted by the same constant. Moreover, a constant function is not affected by

diffusion filtering. Therefore, we have

Tt(0) = 0, (2.19)

Tt(f + C) = Tt(f) + C ∀ t ≥ 0. (2.20)

Reverse contrast invariance

From D(Jρ(−∇uσ)) = D(Jρ(∇uσ)), it follows that

Tt(−f) = −Tt(f) ∀ t ≥ 0. (2.21)

This property is not fulfilled by classical morphological scale-space equations like

dilation and erosion. When reversing the contrast, the role of dilation and erosion

has to be exchanged as well.

Average grey level invariance

Average grey level invariance is a further property in which diffusion scale-spaces

differ from morphological scale-spaces. In general, the evolution PDEs of the latter

ones are not of divergence form and do not preserve the mean grey value. A con-

stant average grey level is essential for scale-space based segmentation algorithms

such as the hyperstack [307, 408]. It is also a desirable quality for applications

in medical imaging where grey values measure physical qualities of the depicted

object, for instance proton densities in MR images.

Proposition 1 (Conservation of average grey value).

The average grey level

µ :=
1

|Ω|
∫

Ω

f(x) dx (2.22)

is not affected by nonlinear diffusion filtering:

1

|Ω|
∫

Ω

Ttf dx = µ ∀ t > 0. (2.23)

Proof:

Define I(t) :=
∫

Ω
u(x, t) dx for all t ≥ 0. Then the Cauchy–Schwarz inequality
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implies

|I(t)−I(0)| =

∣
∣
∣
∣
∣
∣

∫

Ω

(

u(x, t)−f(x)
)

dx

∣
∣
∣
∣
∣
∣

≤ |Ω|1/2 ‖u(t)−f‖L2(Ω).

Since u ∈ C([0, T ]; L2(Ω)), the preceding inequality gives the continuity of I(t) in

0.

For t > 0, Theorem 1, the divergence theorem and the boundary conditions yield

dI

dt
=
∫

Ω

∂tu dx =
∫

Γ

〈D(Jρ(∇uσ))∇u, n〉 dS = 0.

Hence, I(t) must be constant for all t ≥ 0. ✷

Average grey level invariance may be described by commuting operators, when

introducing an averaging operator M : L1(Ω) → L1(Ω) which maps f to a constant

image with the same mean grey level:

(Mf)(y) :=
1

|Ω|
∫

Ω

f(x) dx ∀ y ∈ Ω. (2.24)

Then Proposition 1 and grey level shift invariance imply that the order of M and

Tt can be exchanged:

M(Ttf) = Tt(Mf) ∀ t ≥ 0. (2.25)

When studying diffusion filtering as a pure initial value problem in the domain

IR2, it also makes sense to investigate Euclidean transformations of an image. This

leads us to translation and isometry invariance.

Translation invariance

Define a translation τh by (τhf)(x) := f(x+ h). Then diffusion filtering fulfils

Tt(τhf) = τh(Ttf) ∀ t ≥ 0. (2.26)

This is a consequence of the fact that the diffusion tensor depends on Jρ(∇uσ)

solely, but not explicitly on x.

Isometry invariance

Let R ∈ IR2×2 be an orthogonal transformation. If we apply R to f by defining

Rf(x) := f(Rx), then the eigenvalues of the diffusion tensor are unaltered and

any eigenvector v is transformed into Rv. Thus, it makes no difference whether

the orthogonal transformation is applied before or after diffusion filtering:

Tt(Rf) = R(Ttf) ∀ t ≥ 0. (2.27)
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2.4.2 Information-reducing properties

Nonenhancement of local extrema

Koenderink [240] required that a scale-space evolution should not create new level

curves when increasing the scale parameter. If this is satisfied, iso-intensity linking

through the scales is possible and a structure at a coarse scale can (in principle) be

traced back to the original image (causality). For this reason, he imposed that at

spatial extrema with nonvanishing determinant of the Hessian isophotes in scale-

space are upwards convex. He showed that this constraint can be written as

sgn(∂tu) = sgn(∆u). (2.28)

A sufficient condition for the causality equation (2.28) to hold is requiring that

local extrema with positive or negative definite Hessians are not enhanced: an

extremum in ξ at time θ satisfies ∂tu > 0 if ξ is a minimum, and ∂tu < 0 if ξ

is a maximum. This implication is easily seen: In the first case, for instance, the

eigenvalues η1, η2 of the Hessian Hess(u) are positive. Thus,

∆u = trace(Hess(u)) = η1 + η2 > 0, (2.29)

giving immediately the causality requirement (2.28).

Nonenhancement of local extrema has first been used by Babaud et al. [30] in

the context of linear diffusion filtering. However, it is also satisfied by nonlinear

diffusion scale-spaces, as we shall see now.3

Theorem 2 (Nonenhancement of local extrema).

Let u be the unique solution of (Pc) and consider some θ > 0. Suppose that ξ ∈ Ω

is a local extremum of u(., θ) with nonvanishing Hessian. Then,

∂tu(ξ, θ) < 0, if ξ is a local maximum, (2.30)

∂tu(ξ, θ) > 0, if ξ is a local minimum. (2.31)

Proof:

Let D(Jρ(∇uσ)) =: (dij(Jρ(∇uσ))). Then we have

∂tu =
2∑

i=1

2∑

j=1

(

∂xi
dij(Jρ(∇uσ))

)

∂xj
u +

2∑

i=1

2∑

j=1

dij(Jρ(∇uσ)) ∂xixj
u. (2.32)

Since ∇u(ξ, θ) = 0 and ∂xi
dij(Jρ(∇uσ(ξ, θ))) is bounded, the first term of the

right-hand side of (2.32) vanishes in (ξ, θ).

3As in the linear diffusion case, nonenhancement of local extrema generally does not imply

that their number is nonincreasing, cf. 1.2.5 and [342].
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We know that the diffusion tensor D := D(Jρ(∇uσ(ξ, θ))) is positive definite.

Hence, there exists an orthogonal matrix S ∈ IR2×2 such that

STDS = diag(λ1, λ2) =: Λ

with λ1, λ2 being the positive eigenvalues of D.

Now, let us assume that (ξ, θ) is a local maximum where H := Hess(u(ξ, θ))

and, thus, B := (bij) := STHS are negative definite. Then we have

bii < 0 (i = 1, 2),

and by the invariance of the trace with respect to orthogonal transformations it

follows that

∂tu(ξ, θ) = trace (DH)

= trace (STDS STHS)

= trace (ΛB)

=
2∑

i=1

λi bii

< 0.

If ξ is a local minimum of u(x, θ), one proceeds in the same way utilizing the

positive definiteness of the Hessian. ✷

Nonenhancement of local extrema distinguishes anisotropic diffusion from clas-

sical contrast enhancing methods such as high-frequency emphasis [163, pp. 182–

183], which do violate this principle. Although possibly behaving like backward

diffusion across edges, nonlinear diffusion is always in the forward region at ex-

trema. This ensures its stability.

It should be noted that nonenhancement of local extrema is just one possibil-

ity to end up with Koenderink’s causality requirement. Another way to establish

causality is via the extremum principle (2.15) following Hummel’s reasoning; see

[189] for more details.

Lyapunov functionals and behaviour for t→ ∞
Since scale-spaces are intended to subsequently simplify an image, it is desirable

that, for t → ∞, we obtain the simplest possible image representation, namely a

constant image with the same average grey value as the original one. The following

theorem states that anisotropic diffusion filtering always leads to a constant steady-

state. This is due to the class of Lyapunov functionals associated with the diffusion

process.
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Theorem 3 (Lyapunov functionals and behaviour for t→ ∞).

Suppose that u is the solution of (Pc) and let a, b, µ and M be defined as in (Pc),

(2.22) and (2.24), respectively. Then the following properties are valid:

(a) (Lyapunov functionals)

For all r ∈ C2[a, b] with r′′ ≥ 0 on [a, b], the function

V (t) := Φ(u(t)) :=
∫

Ω

r(u(x, t)) dx (2.33)

is a Lyapunov functional:

(i) Φ(u(t)) ≥ Φ(Mf) for all t ≥ 0.

(ii) V ∈ C[0,∞) ∩ C1(0,∞) and V ′(t) ≤ 0 for all t > 0.

Moreover, if r′′>0 on [a, b], then V (t) = Φ(u(t)) is a strict Lyapunov func-

tional:

(iii) Φ(u(t)) = Φ(Mf) ⇐⇒
{

u(t) = Mf on Ω̄ (if t > 0)

u(t) = Mf a.e. on Ω (if t = 0)

(iv) If t > 0, then V ′(t) = 0 if and only if u(t) = Mf on Ω̄.

(v) V (0) = V (T ) for T > 0 ⇐⇒
{

f = Mf a.e. on Ω and

u(t) = Mf on Ω̄ × (0, T ]

(b) (Convergence)

(i) lim
t→∞

‖u(t) −Mf‖Lp(Ω) = 0 for p ∈ [1,∞).

(ii) In the 1D case, the convergence lim
t→∞

u(x, t) = µ is uniform on Ω̄.

Proof:

(a) (i) Since r ∈ C2[a, b] with r′′ ≥ 0 on [a, b], we know that r is convex on

[a, b]. Using the average grey level invariance and Jensen’s inequality we

obtain, for all t ≥ 0,

Φ(Mf) =
∫

Ω

r




1

|Ω|
∫

Ω

u(x, t) dx



 dy

≤
∫

Ω




1

|Ω|
∫

Ω

r(u(x, t)) dx



 dy

=
∫

Ω

r(u(x, t)) dx

= Φ(u(t)). (2.34)
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(ii) Let us start by proving the continuity of V (t) in 0. Thanks to the

maximum–minimum principle, we may choose a constant

L := max
s∈[a,b]

|r′(s)|

such that for all t > 0, the Lipschitz condition

|r(u(x, t))−r(f(x))| ≤ L |u(x, t)−f(x)|

is verified a.e. on Ω. From this and the Cauchy–Schwarz inequality, we

get

|V (t)−V (0)| ≤ |Ω|1/2 ‖r(u(t))−r(f)‖L2(Ω)

≤ |Ω|1/2 L ‖u(t)−f‖L2(Ω),

and by virtue of u ∈ C([0, T ]; L2(Ω)), the limit t → 0+ gives the an-

nounced continuity in 0.

By Theorem 1 and the boundedness of r′ on [a, b], we know that V is

differentiable for t > 0 and V ′(t) =
∫

Ω r
′(u) ut dx. Thus, the divergence

theorem yields

V ′(t) =
∫

Ω

r′(u) div (D(Jρ(∇uσ))∇u) dx

=
∫

Γ

r′(u) 〈D(Jρ(∇uσ))∇u, n〉
︸ ︷︷ ︸

=0

dS

−
∫

Ω

r′′(u)
︸ ︷︷ ︸

≥0

〈∇u,D(Jρ(∇uσ))∇u〉
︸ ︷︷ ︸

≥0

dx

≤ 0.

(iii) Let Φ(u(t)) = Φ(Mf).

If t > 0, then u(t) is continuous in Ω̄. Let us now show that equality in

the estimate (2.34) implies that u(t) = const. on Ω̄. To this end, assume

that u is not constant on Ω̄. Then, by the continuity of u, there exists

a partition Ω = Ω1 ∪ Ω2 with |Ω1|, |Ω2| ∈ (0, |Ω|) and

α :=
1

|Ω1|
∫

Ω1

u dx 6= 1

|Ω2|
∫

Ω2

u dx =: β.

From r′′>0 on [a, b] it follows that r is strictly convex on [a, b] and

r




1

|Ω|
∫

Ω

u dx



 = r

(

|Ω1|
|Ω| α +

|Ω2|
|Ω| β

)
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<
|Ω1|
|Ω| r(α) +

|Ω1|
|Ω| r(β)

≤ 1

|Ω|
∫

Ω1

r(u) dx+
1

|Ω|
∫

Ω2

r(u) dx

=
1

|Ω|
∫

Ω

r(u) dx.

If we utilize this result in the estimate (2.34) we observe that, for t>0,

Φ(u(t)) = Φ(Mf) implies that u(t) = const. on Ω̄. Thanks to the

average grey value invariance we finally obtain u(t) = Mf on Ω̄.

So let us turn to the case t = 0. From (i) and (ii), we conclude that

Φ(u(θ)) = Φ(Mf) for all θ > 0. Thus, we have u(θ) = Mf for all θ > 0.

For θ > 0, the Cauchy–Schwarz inequality gives

∫

Ω

|u(x, θ) − µ| dx ≤ |Ω|1/2 ‖u(θ) −Mf‖L2(Ω) = 0.

Since u ∈ C([0, T ]; L2(Ω)), the limit θ → 0+ finally yields u(0) = Mf

a.e. on Ω.

Conversely, it is obvious that u(t) = Mf (a.e.) on Ω implies Φ(u(t)) =

Φ(Mf).

(iv) Let t > 0 and V ′(t) = 0. Then from

0 = V ′(t) = −
∫

Ω

r′′(u(x, t))
︸ ︷︷ ︸

>0

〈∇u(x, t), D(Jρ(∇uσ(x, t)))∇u(x, t)〉 dx

and the smoothness of u we obtain

〈∇u,D(Jρ(∇uσ))∇u〉 = 0 on Ω̄.

By the uniform boundedness of D, there exists some constant ν > 0,

such that

ν |∇u|2 ≤ 〈∇u,D(Jρ(∇uσ))∇u〉 on Ω̄ × (0,∞).

Thus, we have ∇u(x, t) = 0 a.e. on Ω. Due to the continuity of ∇u,
this yields u(x, t) = const. for all x ∈ Ω, and the average grey level

invariance finally gives u(x, t) = µ on Ω.

Conversely, let u(x, t) = µ on Ω. Then,

V ′(t) = −
∫

Ω

r′′(u) 〈∇u,D(Jρ(∇uσ))∇u〉 dx = 0.



70 CHAPTER 2. CONTINUOUS DIFFUSION FILTERING

(v) Suppose that V (T ) = V (0). Since V is decreasing, we have

V (t) = const. on [0, T ].

Let ǫ > 0. Then for any t ∈ [ǫ, T ], we have V ′(t) = 0, and part (iv)

implies that u(t) = Mf on Ω. Now, the Cauchy–Schwarz inequality

gives
∫

Ω

|f −Mf | dx ≤ |Ω|1/2 ‖f − u(t)‖L2(Ω).

As u ∈ C([0, T ]; L2(Ω)), the limit t→ 0+ yields f = Mf a.e. on Ω.

Conversely, if u(t) = Mf (a.e.) on Ω holds for all t ∈ [0, T ], it is evident

that V (0) = V (T ).

(b) (i) By the grey level shift invariance we know that v := u−Mf satisfies the

diffusion equation as well. We multiply this equation by v, integrate,

and use the divergence theorem to obtain
∫

Ω

vvt dx = −
∫

Ω

〈∇v,D(Jρ(∇vσ))∇v〉 dx.

Since ∇vσ is bounded, we find some ν > 0 such that

1

2

d

dt
(‖v‖2

L2(Ω)) ≤ −ν ‖∇v‖2
L2(Ω).

For t > 0, there exists some x0 with v(x0) = 0. Therefore, Poincaré’s

inequality (cf. [9, p. 122]) may be applied giving

‖v‖2
L2(Ω) ≤ C0 ‖∇v‖2

L2(Ω)

with some constant C0 = C0(Ω) > 0. This yields

d

dt
‖v‖2

L2(Ω) ≤ −2ν C0 ‖v‖2
L2(Ω)

and hence the exponential decay of ‖v‖L2(Ω) to 0.

By the maximum principle, we know that ‖v(t)‖L∞(Ω) is bounded by

‖f−Mf‖L∞(Ω). Thus, for q ∈ IN, q ≥ 2, we get

‖v(t)‖q
Lq(Ω) ≤ ‖f−Mf‖q−2

L∞(Ω) · ‖v(t)‖2
L2(Ω) → 0,

and Hölder’s inequality gives, for 1 ≤ p < q <∞,

‖v(t)‖Lp(Ω) ≤ |Ω|(1/p)−(1/q) · ‖v(t)‖Lq(Ω) → 0.

This proves the assertion.
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(ii) To prove uniform convergence in the one-dimensional setting, we can

generalize and adapt methods from [202] to our case.

Let Ω = (0, a). From part (a) we know that V (t) :=
a∫

0
u2(x, t) dx is

nonincreasing and bounded from below. Thus, the sequence (V (i))i∈IN

converges.

Since V ∈ C[0,∞) ∩ C1(0,∞) the mean value theorem implies

∃ ti ∈ (i, i+1) : V ′(ti) = V (i+ 1) − V (i).

Thus, (ti)i∈IN → ∞ and from the convergence of (V (i))i∈IN it follows

that

V ′(ti) → 0. (2.35)

Thanks to the uniform positive definiteness ofD there exists some ν > 0

such that, for t > 0,

V ′(t) = −2

a∫

0

u2
xD(Jρ(∂xuσ)) dx

≤ −2ν

a∫

0

u2
x dx

≤ 0. (2.36)

Equations (2.35) and (2.36) yield

‖ux(ti)‖L2(Ω) → 0.

Hence, u(ti) is a bounded sequence in H1(0, a). By virtue of the Rellich–

Kondrachov theorem [7, p. 144] we know that the embedding from

H1(0, a) into C0,α[0, a], the space of Hölder-continuous functions on [0, a]

[7, pp. 9–12], is compact for α∈ (0, 1
2
). Therefore, there exists a subse-

quence (tij ) → ∞ and some ū with

u(tij ) → ū in C0,α[0, a].

This also gives u(tij ) → ū in L2(0, a). Since we already know from (b)(i)

that u(tij) →Mf in L2(0, a), it follows that ū = Mf . Hence,

lim
j→∞

‖u(tij) −Mf‖L∞(Ω) = 0. (2.37)

Part (a) tells us that ‖u(t)−Mf‖p
Lp(Ω) is a Lyapunov function for p ≥ 2.

Thus,

‖u(t)−Mf‖L∞(Ω) = lim
p→∞ ‖u(t)−Mf‖Lp(Ω)
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is also nonincreasing. Therefore, lim
t→∞

‖u(t)−Mf‖L∞(Ω) exists and from

(2.37) we conclude that

lim
t→∞

‖u(t)−Mf‖L∞(Ω) = 0.

The smoothness of u establishes finally that the convergence

lim
t→∞

u(x, t) = µ

is uniform on Ω̄. ✷

Since the class (Pc) does not forbid contrast enhancement it admits processes

where forward diffusion has to compete with backward diffusion. Theorem 3 is

of importance as it states that the regularization by convolving with Kσ tames

the backward diffusion in such a way that forward diffusion wins in the long run.

Moreover, the competition evolves in a certain direction all the time: although

backward diffusion may be locally superior, the global result – denoted by the

Lyapunov functional – becomes permanently better for forward diffusion.

Let us have a closer look at what might be the meaning of this global result in

the context of image processing. Considering the Lyapunov functions associated

with r(s) := |s|p, r(s) := (s−µ)2n and r(s) := s ln s, respectively, the preceding

theorem gives the following corollary.

Corollary 1 (Special Lyapunov functionals).

Let u be the solution of (Pc) and a and µ be defined as in (Pc) and (2.22). Then

the following functions are decreasing for t ∈ [0,∞):

(a) ‖u(t)‖Lp(Ω) for all p ≥ 2.

(b) M2n[u(t)] :=
1

|Ω|
∫

Ω

(u(x, t) − µ)2n dx for all n ∈ IN.

(c) H [u(t)] :=
∫

Ω

u(x, t) ln(u(x, t)) dx, if a > 0.

Corollary 1 offers multiple possibilities of how to interpret nonlinear anisotropic

diffusion filtering as a smoothing transformation.

As a special case of (a) it follows that the energy ‖u(t)‖2
L2(Ω) is reduced by

diffusion.

Part (b) gives a probabilistic interpretation of anisotropic diffusion filtering.

Consider the intensity in an image f as a random variable Zf with distribution
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Ff (z), i.e. Ff (z) is the probability that an arbitrary grey value Zf of f does not

exceed z. By the average grey level invariance, µ is equal to the expected value

EZu(t) :=
∫

IR

z dFu(t)(z), (2.38)

and it follows that M2n[u(t)] is just the even central moment
∫

IR

(

z−EZu(t)

)2n
dFu(t)(z). (2.39)

The second central moment (the variance) characterizes the spread of the intensity

about its mean. It is a common tool for constructing measures for the relative

smoothness of the intensity distribution. The fourth moment is frequently used to

describe the relative flatness of the grey value distribution. Higher moments are

more difficult to interpret, although they do provide important information for

tasks like texture discrimination [163, pp. 414–415]. All decreasing even moments

demonstrate that the image becomes smoother during diffusion filtering. Hence,

local effects such as edge enhancement, which object to increase central moments,

are overcompensated by smoothing in other areas.

If we choose another probabilistic model of images, then part (c) characterizes

the information-theoretical side of our scale-space. Provided the initial image f is

strictly positive on Ω, we may regard it also as a two-dimensional density.4 Then,

S[u(t)] := −
∫

Ω

u(x, t) ln(u(x, t)) dx (2.40)

is called the entropy of u(t), a measure of uncertainty and missing information [63].

Since anisotropic diffusion filters increase the entropy the corresponding scale-space

embeds the genuine image f into a family of subsequently likelier versions of it

which contain less information. Moreover, for t→ ∞, the process reaches the state

with the lowest possible information, namely a constant image. This information-

reducing property indicates that anisotropic diffusion might be generally useful in

the context of image compression. In particular, it helps to explain the success of

nonlinear diffusion filtering as a preprocessing step for subsampling as observed in

[144]. The interpretation of the entropy in terms of Lyapunov functionals carries

also over to generalized entropies; see [390] for more details.

From all the previous considerations, we recognize that, in spite of possible

contrast-enhancing properties, anisotropic diffusion does really simplify the ori-

ginal image in a steady way.

Let us finally point out another interpretation of the Lyapunov functionals. In

a classic scale-space representation, the time t plays the role of the scale para-

meter. By increasing t, one transforms the image from a local to a more global

4Without loss of generality we omit the normalization.
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representation. We have seen in Chapter 1 that, for linear diffusion scale-spaces

and morphological scale-spaces, it is possible to associate with the evolution time

a corresponding spatial scale.

In the nonlinear diffusion case, however, the situation is more complicated.

Since the smoothing is nonuniform, one can only define an average measure for

the globality of the representation. This can be achieved by taking some Lyapunov

function Φ(u(t)) and investigating the expression

Ψ(u(t)) :=
Φ(f) − Φ(u(t))

Φ(f) − Φ(Mf)
. (2.41)

We observe that Ψ(t) increases from 0 to 1. It gives the average globality of u(t) and

its value can be used to measure the distance of u(t) from the initial state f and the

final state Mf . Prescribing a certain value for Ψ provides us with an a-posteriori

criterion for the stopping time of the nonlinear diffusion process. Experiments in

this direction can be found in [431, 308].



Chapter 3

Semidiscrete diffusion filtering

The goal of this chapter is to study a semidiscrete framework for diffusion scale-

spaces where the image is sampled on a finite grid and the scale parameter is

continuous. This leads to a system of nonlinear ordinary differential equations

(ODEs). We shall investigate conditions under which one can establish similar

properties as in the continuous setting concerning well-posedness, extremum prin-

ciples, average grey level invariance, Lyapunov functions, and convergence to a

constant steady-state. Afterwards we shall discuss whether it is possible to obtain

such filters from spatial discretizations of the continuous models that have been

investigated in Chapter 2. We will see that there exists a finite stencil on which

a difference approximation of the spatial derivatives are in accordance with the

semidiscrete scale-space framework.

3.1 The general model

A discrete image can be regarded as a vector f ∈ IRN , N ≥ 2, whose components

fj , j = 1,...,N represent the grey values at each pixel. We denote the index set

{1, ..., N} by J . In order to specify the requirements for our semidiscrete filter

class we first recall a useful definition of irreducible matrices [407, pp. 18–20].

Definition 1 (Irreducibility). A matrix A = (aij) ∈ IRN×N is called irreducible

if for any i, j ∈ J there exist k0,...,kr ∈ J with k0 = i and kr = j such that

akpkp+1
6= 0 for p = 0,...,r−1.

The semidiscrete problem class (Ps) we are concerned with is defined in the

following way:

75
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Let f ∈ IRN . Find a function u ∈ C1([0,∞), IRN) which satisfies an

initial value problem of type

du

dt
= A(u) u,

u(0) = f,

where A = (aij) has the following properties:

(S1) Lipschitz-continuity of A ∈ C(IRN , IRN×N) for every bounded

subset of IRN ,

(S2) symmetry: aij(u) = aji(u) ∀ i, j ∈ J, ∀u ∈ IRN ,

(S3) vanishing row sums:
∑

j∈J aij(u) = 0 ∀ i ∈ J, ∀u ∈ IRN ,

(S4) nonnegative off-diagonals: aij(u) ≥ 0 ∀ i 6= j, ∀u ∈ IRN ,

(S5) irreducibility for all u ∈ IRN .







(Ps)

Not all of these requirements are necessary for every theoretical result below.

(S1) is needed for well-posedness, the proof of a maximum–minimum principle

involves (S3) and (S4), while average grey value invariance uses (S2) and (S3).

The existence of Lyapunov functions can be established by means of (S2)–(S4),

and strict Lyapunov functions and the convergence to a constant steady-state

require (S5) in addition to (S2)–(S4).

This indicates that these properties reveal some interesting parallels to the

continuous setting from Chapter 2: In both cases we need smoothness assumptions

to ensure well-posedness; (S2) and (S3) correspond to the specific structure of the

divergence expression with a symmetric diffusion tensor D, while (S4) and (S5)

play a similar role as the nonnegativity of the eigenvalues of D and its uniform

positive definiteness, respectively.

3.2 Theoretical results

Before we can establish scale-space results, it is of importance to ensure the ex-

istence of a unique solution. This is done in the theorem below which also states

the continuous dependence of the solution and a maximum–minimum principle.
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Theorem 4 (Well-posedness, extremum principle).

For every T > 0 the problem (Ps) has a unique solution u(t) ∈ C1([0, T ], IRN ).

This solution depends continuously on the initial value and the right-hand side of

the ODE system, and it satisfies the extremum principle

a ≤ ui(t) ≤ b ∀ i ∈ J, ∀ t ∈ [0, T ], (3.1)

where

a := min
j∈J

fj , (3.2)

b := max
j∈J

fj . (3.3)

Proof:

(a) Local existence and uniqueness

Local existence and uniqueness are proved by showing that our problem

satisfies the requirements of the Picard–Lindelöf theorem [432, p. 59].

Let t0 := 0 and β > 0. Evidently, φ(t, u) := ψ(u) := A(u) u is continuous on

B0 := [0, T ] ×
{

u ∈ IRN
∣
∣
∣ ‖u‖∞ ≤ ‖f‖∞ + β

}

,

since it is a composition of continuous functions. Moreover, by the compact-

ness of B0 there exists some c > 0 with

‖φ(t, u)‖∞ ≤ c ∀ (t, u) ∈ B0.

In order to prove existence and uniqueness of a solution of (Ps) in

R0 :=
{

(t, u)
∣
∣
∣ t ∈ [t0, t0+min(β

c
, T )], ‖u−f‖∞ ≤ β

}

⊂ B0

we have to show that φ(t, u) satisfies a global Lipschitz condition on R0 with

respect to u. However, this follows directly from the fact that A is Lipschitz-

continuous on {u ∈ IRN | ‖u−f‖∞ ≤ β}.

(b) Maximum–minimum principle

We prove only the maximum principle, since the proof for the minimum

principle is analogous.

Assume that the problem (Ps) has a unique solution on [0, θ]. First we show

that the derivative of the largest component of u(t) is nonpositive for every
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t ∈ [0, θ]. Let uk(ϑ) := max
j∈J

uj(ϑ) for some arbitrary ϑ ∈ [0, θ]. If we keep

this k fixed we obtain, for t = ϑ,

duk

dt
=

∑

j∈J

akj(u) uj

= akk(u) uk +
∑

j∈J\{k}
akj(u)
︸ ︷︷ ︸

≥0

uj
︸︷︷︸

≤uk

≤ uk ·
∑

j∈J

akj(u)

(S4)
= 0. (3.4)

Let us now prove that this implies a maximum principle (cf. [201]).

Let ε > 0 and set

uε(t) := u(t) −







εt
...

εt






.

Moreover, let P := {p∈J | uεp(0) = max
j∈J

uεj(0)}. Then, by (3.4),

(

duεp

dt

)

(0) =

(

dup

dt

)

(0)

︸ ︷︷ ︸

≤0

− ε < 0 ∀ p ∈ P. (3.5)

By means of

max
i∈J\P

uεi(0) < max
j∈J

uεj(0),

and the continuity of u there exists some t1 ∈ (0, θ) such that

max
i∈J\P

uεi(t) < max
j∈J

uεj(0) ∀ t ∈ [0, t1). (3.6)

Next, let us consider some p ∈ P . Due to (3.5) and the smoothness of u we

may find a ϑp ∈ (0, θ) with

(

duεp

dt

)

(t) < 0 ∀ t ∈ [0, ϑp).

Thus, we have

uεp(t) < uεp(0) ∀ t ∈ (0, ϑp)

and, for t2 := min
p∈P

ϑp, it follows that

max
p∈P

uεp(t) < max
j∈J

uεj(0) ∀ t ∈ (0, t2). (3.7)
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Hence, for t0 := min(t1, t2), the estimates (3.6) and (3.7) give

max
j∈J

uεj(t) < max
j∈J

uεj(0) ∀ t ∈ (0, t0). (3.8)

Now we prove that this estimate can be extended to the case t ∈ (0, θ). To

this end, assume the opposite is true. Then, by virtue of the intermediate

value theorem, there exists some t3 which is the smallest time in (0, θ) such

that

max
j∈J

uεj(t3) = max
j∈J

uεj(0).

Let uεk := max
j∈J

uεj(t3). Then the minimality of t3 yields

uεk(t) < uεk(t3) ∀ t ∈ (0, t3), (3.9)

and inequality (3.4) gives

(

duεk

dt

)

(t3) =

(

duk

dt

)

(t3)

︸ ︷︷ ︸

≤0

− ε < 0.

Due to the continuity of du
dt

there exists some t4 ∈ (0, t3) with

(

duεk

dt

)

(t) < 0 ∀ t ∈ (t4, t3]. (3.10)

The mean value theorem, however, implies that we find a t5 ∈ (t4, t3) with

(

duεk

dt

)

(t5) =
uεk(t3) − uεk(t4)

t3 − t4

(3.9)
> 0,

which contradicts (3.10). Hence, (3.8) must be valid on the entire interval

(0, θ).

Together with u = lim
ε→0

uε and the continuity of u this yields the announced

maximum principle

max
j∈J

uj(t) ≤ max
j∈J

uj(0) ∀ t ∈ [0, θ].

(c) Global existence and uniqueness

Global existence and uniqueness follow from local existence and uniqueness

when being combined with the extremum principle.

Using the notations and results from (a), we know that the problem (Ps) has

a unique solution u(t) for t ∈ [t0, t0 + min(β
c
, T )].
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Now let t1 := t0 + min(β
c
, T ), g := u(t1), and consider the problem

du

dt
= A(u) u,

u(t1) = g.

Clearly, φ(t, u) = A(u)u is continuous on

B1 := [0, T ] ×
{

u ∈ IRN
∣
∣
∣ ‖u‖∞ ≤ ‖g‖∞ + β

}

,

and by the extremum principle we know that B1 ⊂ B0. Hence,

‖φ(t, u)‖∞ ≤ c ∀ (t, u) ∈ B1.

with the same c as in (a). Using the same considerations as in (a) one shows

that φ is Lipschitz-continuous on

R1 :=
{

(t, u)
∣
∣
∣ t ∈ [t1, t1+min(β

c
, T )], ‖u−g‖∞ ≤ β

}

.

Hence, the considered problem has a unique solution on [t1, t1 + min(β
c
, T )].

Therefore, (Ps) reveals a unique solution on [0,min(2β
c
, T )], and, by iterating

this reasoning, the existence of a unique solution can be extended to the

entire interval [0, T ]. As a consequence, the extremum principle is valid on

[0, T ] as well.

(d) Continuous dependence

Let u(t) be the solution of

du

dt
= φ(t, u),

u(0) = f

for t∈ [0, T ] and φ(u, t)=ψ(u)=A(u)u. In order to show that u(t) depends

continuously on the initial data and the right-hand side of the ODE system,

it is sufficient to prove that φ(t, u) is continuous, and that there exists some

α > 0 such that φ(t, u) satisfies a global Lipschitz condition on

Sα :=
{

(t, v)
∣
∣
∣ t ∈ [0, T ], ‖v−u‖∞ ≤ α

}

.

with respect to its second argument. In this case the results in [412, p. 93]

ensure that for every ε > 0 there exists a δ > 0 such that the solution ũ of

the perturbed problem

dũ

dt
= φ̃(t, ũ),

ũ(0) = f̃
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with continuous φ̃ and

‖f̃ − f‖∞ < δ,

‖φ̃(t, v) − φ(t, v)‖∞ < δ for ‖v − u‖∞ < α

exists in [0, T ] and satisfies the inequality

‖ũ(t) − u(t)‖∞ < ε.

Similar to the the local existence and uniqueness proof, the global Lipschitz

condition on Sα follows direcly from the fact that A is Lipschitz-continuous

on {v ∈ IRN | ‖v−u‖∞ ≤ α}. ✷

3.3 Scale-space properties

It is evident that properties such as grey level shift invariance or reverse contrast

invariance are automatically satisfied by every consistent semidiscrete approxima-

tion of the continuous filter class (Pc). On the other hand, translation invariance

only makes sense for translations in grid direction with multiples of the grid size,

and isometry invariance is satisfied for consistent schemes up to an discretization

error. So let us focus on average grey level invariance now.

Proposition 2 (Conservation of average grey value).

The average grey level

µ :=
1

N

∑

j∈J

fj (3.11)

is not affected by the semidiscrete diffusion filter:

1

N

∑

j∈J

uj(t) = µ ∀ t ≥ 0. (3.12)

Proof:

By virtue of (S2) and (S3) we have
∑

j∈J
ajk(u) = 0 for all k ∈ J . Thus, for t ≥ 0,

∑

j∈J

duj

dt
=

∑

j∈J

∑

k∈J

ajk(u) uk =
∑

k∈J

(∑

j∈J

ajk(u)
)

uk = 0,

which shows that
∑

j∈J
uj(t) is constant on [0,∞) and concludes the proof. ✷

This property is in complete accordance with the result for the continuous filter

class.
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Similar to the continuous setting, it is possible to find a large class of Lyapunov

functions which establish smoothing scale-space properties and ensure that the

image tends to a constant steady-state with the same average grey level as the

initial image.

Theorem 5 (Lyapunov functions and behaviour for t→ ∞).

Let u(t) be the solution of (Ps), let a, b, and µ be defined as in (3.2), (3.3), and

(3.11), respectively, and let c := (µ, µ, ..., µ)⊤ ∈ IRN .

Then the following properties are valid:

(a) (Lyapunov functions)

For all r ∈ C1[a, b] with increasing r′ on [a, b], the function

V (t) := Φ(u(t)) :=
∑

i∈J

r(ui(t))

is a Lyapunov function:

(i) Φ(u) ≥ Φ(c) for all t ≥ 0.

(ii) V ∈ C1[0,∞) and V ′(t) ≤ 0 for all t ≥ 0.

Moreover, if r′ is strictly increasing on [a, b], then V (t) = Φ(u(t)) is a strict

Lyapunov function:

(iii) Φ(u) = Φ(c) ⇐⇒ u = c

(iv) V ′(t) = 0 ⇐⇒ u = c

(b) (Convergence)

lim
t→∞

u(t) = c.

Proof:

(a) (i) Since r′ is increasing on [a, b] we know that r is convex on [a, b]. Average

grey level invariance and this convexity yield, for all t ≥ 0,

Φ(c) =
N∑

i=1

r





N∑

j=1

1

N
uj





≤
N∑

i=1




1

N

N∑

j=1

r(uj)





=
N∑

j=1

r(uj)

= Φ(u). (3.13)
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(ii) Since u ∈ C1([0,∞), IRN ) and r ∈ C1[a, b], it follows that V ∈ C1[0,∞).

Using the prerequisites (S2) and (S3) we get

V ′(t) =
N∑

i=1

dui

dt
r′(ui)

(S3)
=

N∑

i=1

N∑

j=1

aij(u) (uj−ui) r
′(ui)

=
N∑

i=1





N∑

j=i+1

+
i−1∑

j=1



 aij(u) (uj−ui) r
′(ui)

=
N∑

i=1

N−i∑

k=1

ai,i+k(u) (ui+k−ui) r
′(ui)

+
N∑

i=1

N−i∑

k=1

ai+k,i(u) (ui−ui+k) r
′(ui+k)

(S2)
=

N∑

i=1

N−i∑

k=1

ai,i+k(u) (ui+k−ui)
(

r′(ui)−r′(ui+k)
)

. (3.14)

Since r′ is increasing, we always have

(ui+k − ui)
(

r′(ui) − r′(ui+k)
)

≤ 0.

With this and (S4), equation (3.14) implies that V ′(t) ≤ 0 for t ≥ 0.

(iii) Let us first prove that equality in the estimate (3.13) implies that all

components of u are equal.

To this end, suppose that ui0 := min
i
ui < max

j
uj =: uj0 and let

η :=
N∑

j=1

j 6=j0

1
N
uj

1 − 1
N

.

Then, η<uj0. Since r′ is strictly increasing on [a, b], we know that r is

strictly convex. Hence, we get

r

(
N∑

i=1

1

N
uj

)

= r
(

1

N
uj0 +

(

1− 1

N

)

η
)

<
1

N
r(uj0) +

(

1− 1

N

)

r(η)

≤ 1

N
r(uj0) +

N∑

j=1

j 6=j0

1

N
r(uj)

=
N∑

j=1

1

N
r(uj).
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This shows that equality in (3.13) implies that u1 = ... = uN . By virtue

of the grey level shift invariance we conclude that u = c.

Conversely, it is trivial that Φ(u) = Φ(c) for u = c.

(iv) Let V ′(t) = 0. From (3.14) we have

0 = V ′(t) =
N∑

i=1

N−i∑

k=1

ai,i+k(u) (ui+k−ui)
(

r′(ui)−r′(ui+k)
)

︸ ︷︷ ︸

≤0

,

and by virtue of the symmetry of A(u) it follows that

aij(u) (uj−ui)
(

r′(ui)−r′(uj)
)

= 0 ∀ i, j ∈ J. (3.15)

Now consider two arbitrary i0, j0 ∈ J . The irreducibility of A(u) implies

that there exist k0,...,kr ∈ J with k0 = i0, kr = j0, and

akpkp+1
(u) 6= 0, p = 0, ..., r − 1.

As r′ is strictly increasing we have, for p = 0,...,r − 1,

(ukp
−ukp+1

)
(

r′(ukp+1
)−r′(ukp

)
)

= 0 ⇐⇒ ukp
= ukp+1

.

From this and (3.15) we get

ui0 = uk0
= uk1

= ... = ukr
= uj0.

Since i0 and j0 are arbitrary, we obtain ui = const. for all i ∈ J ,

and the average grey level invariance gives u = c. This proves the first

implication.

Conversely, let ui = const. for all i ∈ J . Then from the representation

(3.14) we immediately conclude that V ′(t) = 0.

(b) The convergence proof is based on classical Lyapunov reasonings, see e.g.

[180] for an introduction to these techniques.

Consider the Lyapunov function V (t) := Φ(u(t)) := |u(t)−c|2, which results

from the choice r(s) := (s−µ)2. Since V (t) is decreasing and bounded from

below by 0, we know that lim
t→∞

V (t) =: η exists and η ≥ 0.

Now assume that η > 0.

Since |u(t)−c| is bounded from above by α := |f−c| we have

|u(t)−c| ≤ α ∀ t ≥ 0. (3.16)

By virtue of Φ(x) = |x− c|2 we know that, for β ∈ (0,
√
η),

Φ(x) < η ∀x ∈ IRN , |x−c| < β.
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Let w.l.o.g. β < α. Since Φ(u(t)) ≥ η we conclude that

|u(t)−c| ≥ β ∀ t ≥ 0. (3.17)

So from (3.16) and (3.17) we have

u(t) ∈ {x ∈ IRN | β ≤ |x−c| ≤ α} =: S ∀ t ≥ 0.

By (a)(ii),(iv), the compactness of S, and β > 0 there exists some M > 0

such that

V ′(t) ≤ −M ∀ t ≥ 0.

Therefore, it follows

V (t) = V (0) +
∫ t

0
V ′(θ) dθ ≤ V (0) − tM

which implies lim
t→∞

V (t) = −∞ and, thus, contradicts (a)(i).

Hence the assumption η > ρ is wrong and we must have η = ρ.

According to (a)(iii) this yields lim
t→∞

u(t) = c. ✷

As in the continuous case, we can consider the Lyapunov functions associated

with r(s) := |s|p, r(s) := (s−µ)2n and r(s) := s ln s, respectively, and obtain the

following corollary.

Corollary 2 (Special Lyapunov functions).

Let u be the solution of (Ps) and a and µ be defined as in (3.2) and (3.11). Then

the following functions are decreasing for t ∈ [0,∞):

(a) ‖u(t)‖p for all p ≥ 2.

(b) M2n[u(t)] := 1
N

N∑

j=1
(uj(t) − µ)2n for all n ∈ IN.

(c) H [u(t)] :=
N∑

j=1
uj(t) ln(uj(t)), if a > 0.

Since all p-norms (p ≥ 2) and all central moments are decreasing, while the

discrete entropy

S[u(t)] := −
N∑

j=1

uj(t) ln(uj(t)) (3.18)

is increasing with respect to t, we observe that the semidiscrete setting reveals

smoothing scale-space properties which are closely related to the continuous case.
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3.4 Relation to continuous models

In this section we investigate whether it is possible to use spatial discretizations of

the continuous filter class (Pc) in order to construct semidiscrete diffusion models

satisfying (S1)–(S5). First we shall verify that this is easily done for isotropic

models. In the anisotropic case, however, the mixed derivative terms make it more

difficult to ensure nonnegative off-diagonal elements. A constructive existence proof

is presented showing that for a sufficiently large stencil it is always possible to find

such a nonnegative discretization. This concept is illustrated by investigating the

situation on a (3×3)-stencil in detail.

3.4.1 Isotropic case

Let the rectangle Ω = (0, a1)× (0, a2) be discretized by a grid of N = n1 ·n2 pixels

such that a pixel (i, j) with 1≤ i≤n1 and 1≤j≤n2 represents the location (xi, yj)

where

xi := (i− 1
2
) h1, (3.19)

yj := (j − 1
2
) h2, (3.20)

and the grid sizes h1, h2 are given by h1 := a1/n1 and h2 := a2/n2, respectively.

These pixels can be numbered by means of an arbitrary bijection

p : {1, ..., n1} × {1, ..., n2} → {1, ..., N}. (3.21)

Thus, pixel (i, j) is represented by a single index p(i, j).

Let us now verify that a standard FD space discretization of an isotropic variant

of (Pc) leads to a semidiscrete filter satisfying the requirements (S1)–(S5). To

this end, we may replace the diffusion tensor D(Jρ(∇uσ)) by some scalar-valued

function g(Jρ(∇uσ)). The structure tensor requires the calculations of convolutions

with ∇Kσ and Kρ, respectively. In the spatially discrete case this comes down to

specific vector–matrix multiplications. For this reason, we may approximate the

structure tensor by some matrix H(u) = (hij(u)) where H ∈ C∞(IRN , IR2×2).

Next, consider some pixel k = p(i, j). Then a consistent spatial discretization of

the isotropic diffusion equation with homogeneous Neumann boundary conditions

can be written as
duk

dt
=

2∑

n=1

∑

l∈Nn(k)

gl + gk

2h2
l

(ul − uk), (3.22)

where Nn(k) consists of the one or two neighbours of pixel k along the n-th coor-

dinate axis (boundary pixels have only one neighbour) and gk := g ((H(u))k).

In vector–matrix notation (3.22) becomes

du

dt
= A(u) u, (3.23)
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where the matrix A(u) = (akl(u))kl is given by

akl :=







gk+gl

2h2
n

(l ∈ Nn(k)),

−
2∑

n=1

∑

l∈Nn(k)

gk+gl

2h2
n

(l = k),

0 (else).

(3.24)

Let us now verify that (S1)–(S5) are fulfilled.

Since H ∈ C∞(IRN , IR2×2) and g ∈ C∞(IR2×2), we have A ∈ C∞(IRN , IRN×N).

This proves (S1).

The symmetry of A follows directly from (3.24) and the symmetry of the neigh-

bourhood relation:

l ∈ Nn(k) ⇐⇒ k ∈ Nn(l).

By the construction of A it is also evident that all row sums vanish, i.e. (S3)

is satisfied. Moreover, since g is positive, it follows that akl ≥ 0 for all k 6= l and,

thus, (S4) holds.

In order to show that A is irreducible, let us consider two arbitrary pixels k and

l. Then we have to find k0,...,kr ∈ J with k0 = k and kr = l such that akqkq+1
6= 0

for q = 0,...,r−1. If k = l, we already know from (3.24) that akk < 0. In this case

we have the trivial path k = k0 = kr = l. For k 6= l, we may choose any arbitrary

path k0,...,kr, such that kq and kq+1 are neighbours for q = 0,...,r−1. Then,

akqkq+1
=

gkq
+ gkq+1

2h2
n

> 0

for some n ∈ {1, 2}. This proves (S5).

Remarks:

(a) We observe that (S1)–(S5) are properties which are valid for all arbitrary

pixel numberings.

(b) The filter class (Pc) is not the only family which leads to semidiscrete fil-

ters satisfying (S1)–(S5). Interestingly, a semidiscrete version of the Perona–

Malik filter – which is to a certain degree ill-posed in the continuous setting

(cf. 1.3.1) – also satisfies (S1)–(S5) and, thus, reveals all the discussed well-

posedness and scale-space properties [425]. This is due to the fact that the

extremum principle limits the modulus of discrete gradient approximations.

Hence, the spatial discretization implicitly causes a regularization. These

results are also in accordance with a recent paper by Pollak et al. [332].

They study an image evolution under an ODE system with a discontinuous

right hand side, which has some interesting relations to the limit case of a

semidiscrete Perona–Malik model. They also report stable behaviour of their

process.
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3.4.2 Anisotropic case

If one wishes to transfer the results from the isotropic case to the general aniso-

tropic setting the main difficulty arises from the fact that, due to the mixed deriva-

tive expressions, it is not obvious how to ensure (S4), the nonnegativity of all off-

diagonal elements of A(u). The theorem below states that this is always possible

for a sufficiently large stencil.

Theorem 6 (Existence of a nonnegative discretization).

Let D ∈ IR2×2 be symmetric positive definite with a spectral condition number

κ. Then there exists some m(κ)∈ IN such that div (D∇u) reveals a second-order

nonnegative FD discretization on a (2m+1)×(2m+1)-stencil.

Proof:

Let us consider some m ∈ IN and the corresponding (2m+1)×(2m+1)-stencil. The

“boundary pixels” of this stencil define 4m principal orientations βi ∈ (−π
2
, π

2
],

i = −2m+1, ..., 2m according to

βi :=







arctan
(

ih2

mh1

)

(|i| ≤ m),

arccot
(

(2m−i)h1

mh2

)

(m < i ≤ 2m),

arccot
(

(i−2m)h1

mh2

)

(−2m+ 1 ≤ i < −m).

Now let Jm := {1, ..., 2m−1} and define a partition of (−π
2
, π

2
] into 4m−2 subin-

tervals Ii, |i|∈Jm:

(−π
2
, π

2
] =

−1⋃

i=−2m+1

(θi, θi+1]
︸ ︷︷ ︸

=:Ii

∪
2m−1⋃

i=1

(θi−1, θi]
︸ ︷︷ ︸

=:Ii

,

where

θi :=







0 (i = 0),
1
2
arctan

(
2

cot βi−tan βi+1

)

(i ∈ {1, ..., 2m−2}, βi+βi+1 <
π
2
),

π
4

(i ∈ {1, ..., 2m−2}, βi+βi+1 = π
2
),

π
2

+ 1
2
arctan

(
2

cot βi−tan βi+1

)

(i ∈ {1, ..., 2m−2}, βi+βi+1 >
π
2
),

π
2

(i = 2m−1),

and

θi := −θ−i (i ∈ {−2m+1, ...,−1}).
It is not hard to verify that βi∈Ii for |i|∈Jm.

Let λ1 ≥ λ2 > 0 be the eigenvalues of D with corresponding eigenvectors

(cosψ, sinψ)⊤ and (− sinψ, cosψ)⊤, where ψ ∈ (−π
2
, π

2
]. Now we show that for

a suitable m there exists a stencil direction βk, |k| ∈ Jm such that the splitting

div (D∇u) = ∂eβ0

(

α0 ∂eβ0
u
)

+ ∂eβk

(

αk ∂eβk
u
)

+ ∂eβ2m

(

α2m ∂eβ2m
u
)

(3.25)
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with eβi
:= (cosβi, sin βi)

⊤ reveals nonnegative “directional diffusivities” α0, αk,

α2m along the stencil orientations β0, βk, β2m. This can be done by proving the

following properties:

(a) Let ψ ∈ Ik and D =
(

a
b

b
c

)

. Then a nonnegative splitting of type (3.25) is

possible if

min
(

a− b cotβk, c− b tan βk

)

≥ 0. (3.26)

(b) Inequality (3.26) is satisfied for

λ1

λ2

≤ min
(

cot(ρk−βk) tan ρk, cot(βk−ηk) cot ηk

)

=: κk,m (3.27)

with

ρk :=

{

θk (|k| ∈ {1, ..., 2m−2}),
1
2
(θk + βk) (|k| = 2m−1),

ηk :=

{
1
2
βk (|k| = 1),

θk−1 (|k| ∈ {2, ..., 2m−1}).

(c) lim
m→∞

(

min
|i|∈Jm

κi,m

)

= ∞.

Once these assertions are proved a nonnegative second-order discretization of (3.25)

arises in a natural way, as we shall see at the end of this chapter. So let us now

verify (a)–(c).

(a) In order to use subsequent indices, let ϕ0 := 0, ϕ1 := βk where ψ ∈ Ik, and

ϕ2 := π
2
. Furthermore, let γ0 := α0, γ1 := αk, and γ2 := α2m. Then (3.25)

requires that

div

((

a b

b c

)

∇u
)

=
2∑

i=0

∂

∂eϕi

(

γi
∂u

∂eϕi

)

=
∂

∂x

2∑

i=0

cosϕi

(

γi(ux cosϕi + uy sinϕi)
)

+
∂

∂y

2∑

i=0

sinϕi

(

γi(ux cosϕi + uy sinϕi)
)

= div













2∑

i=0
γi cos2ϕi

2∑

i=0
γi sinϕi cosϕi

2∑

i=0
γi sinϕi cosϕi

2∑

i=0
γi sin

2ϕi







∇u






.

By comparing the coefficients and using the definition of ϕ0, ϕ1 and ϕ2 we

obtain the linear system





1 cos2βk 0

0 sin βk cosβk 0

0 sin2βk 1











γ0

γ1

γ2




 =






a

b

c
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which has the unique solution

γ0 = a− b cot βk, (3.28)

γ1 =
b

sin βk cosβk
, (3.29)

γ2 = c− b tanβk. (3.30)

From the structure of the eigenvalues and eigenvectors of D it is easily seen

that

b = (λ1−λ2) sinψ cosψ.

Now, λ1 − λ2 ≥ 0, and since ψ, βk ∈ Ik we conclude that ψ and βk belong to

the same quadrant. Thus, γ1 is always nonnegative. In order to satisfy the

nonnegativity of γ0 and γ2 we need that

min
(

a− b cotβk, c− b tan βk

)

≥ 0.

(b) Let λ1

λ2
≤ κk,m and consider the case 0 < βk <

π
2
. By defining

B(ϕ) := cos2ϕ− sinϕ cosϕ cotβk,

C(ϕ) := sin2ϕ+ sinϕ cosϕ cotβk

we get

λ1

λ2

≤ cot(ρk−βk) tan ρk = −C(ρk)

B(ρk)
= min

ϕ∈(βk,θk)

(

−C(ϕ)

B(ϕ)

)

.

Since B(ϕ) < 0 on (βk,
π
2
) we have

λ1B(ϕ) + λ2C(ϕ) ≥ 0 ∀ ϕ ∈ (βk, θk). (3.31)

Because of

B(ϕ) ≥ 0 ∀ ϕ ∈ [−π
2
, βk],

C(ϕ) ≥ 0 ∀ ϕ ∈ [0, π
2
],

and the continuity of B(ϕ) and C(ϕ) we may extend (3.31) to the entire

interval Ik = (θk−1, θk]. In particular, since ψ ∈ Ik, we have

0 ≤ λ1B(ψ) + λ2C(ψ)

= (λ1 cos2ψ + λ2 sin2ψ) − (λ1−λ2) sinψ cosψ cotβk.

By the representation
(

a b

b c

)

=

(

cosψ − sinψ

sinψ cosψ

) (

λ1 0

0 λ2

) (

cosψ sinψ

− sinψ cosψ

)

=

(

λ1 cos2ψ + λ2 sin2ψ (λ1−λ2) sinψ cosψ

(λ1−λ2) sinψ cosψ λ1 sin2ψ + λ2 cos2ψ

)
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we recognize that this is just the desired condition

a− b cotβk ≥ 0. (3.32)

For the case −π
2
< βk < 0 a similar reasoning can be applied leading also to

(3.32).

In an analogous way one verifies that

λ1

λ2
≤ cot(βk−ηk) cot ηk =⇒ c− b tan βk ≥ 0.

(c) Let us first consider the case 1 ≤ i ≤ 2m−2. Then, ρi = θi, and the definition

of θi implies that

cot ρi − tan ρi = cot βi − tanβi+1.

Solving for cot ρi and tan ρi, respectively, yields

cot ρi =
1

2

(

cot βi − tan βi+1 +
√

(cot βi − tanβi+1)2 + 4
)

,

tan ρi =
1

2

(

− cot βi + tanβi+1 +
√

(cotβi − tan βi+1)2 + 4
)

.

By means of these results we obtain

cot(ρi−βi) tan ρi =
cotβi + tan ρi

cotβi − cot ρi
= 1 +

2
√

(cot βi+tan βi+1)2

(cot βi−tan βi+1)2+4
− 1

.

Let us now assume that 1 ≤ i ≤ m−1. Then we have

tanβi+1 =
(i+ 1) h2

mh1
,

cotβi =
mh1

ih2
.

This gives

(cot βi + tanβi+1)
2

(cotβi − tan βi+1)2 + 4
=

1

1 − 4m2i
(

m2 h1
h2

+i(i+1)
h2
h1

)2

=:
1

1 − gm(i)
=: fm(i).

For m > 1
2

h2

h1
the function gm(x) is bounded and attains its global maximum

in

xm := −1
6

+ 1
6

√

1 + 12m2 h2
1

h2
2

.
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Thus, for 1 ≤ i ≤ m−1,

gm(i) ≤ gm(xm) → 0+ for m→ ∞,

which yields

fm(i) ≤ 1

1 − gm(xm)
→ 1+ for m→ ∞.

This gives

min
1≤i≤m−1

(

cot(ρi−βi) tan ρi

)

≥ 1 +
2

√

fm(xm) − 1
→ ∞ for m→ ∞.

For m ≤ i ≤ 2m−2 similar calculations show that by means of

tan βi+1 =
mh2

(2m−i−1) h1
,

cot βi =
(2m−i) h1

mh2

one obtains

min
m≤i≤2m−2

(

cot(ρi−βi) tan ρi

)

→ ∞ for m→ ∞.

For i = 2m−1 we have

cot
(

ρ2m−1−β2m−1

)

tan ρ2m−1 = cot

(

π

4
− β2m−1

2

)

tan

(

π

4
+
β2m−1

2

)

= tan2

(

π

4
+
β2m−1

2

)

→ ∞ for m→ ∞.

It is not hard to verify that for −2m + 1 ≤ i ≤ −1 the preceding results

carry over. Hence,

lim
m→∞

(

min
|i|∈Jm

(

cot(ρi−βi) tan ρi

)
)

= ∞. (3.33)

Now, in a similar way as above, one establishes that

lim
m→∞

(

min
|i|∈Jm

(

cot(βi−ηi) cot ηi

)
)

= ∞. (3.34)

From (3.33) and (3.34) we finally end up with the assertion

lim
m→∞

(

min
|i|∈Jm

κi,m

)

= ∞.

✷
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Remarks:

(a) We observe that the preceding existence proof is constructive. Moreover,

only three directions are sufficient to guarantee a nonnegative directional

splitting. Thus, unless m is very small, most of the stencil coefficients can be

set to zero.

(b) Especially for largem, a (2m+1)×(2m+1)-stencil reveals much more directions

than those 4m that are induced by the 8m “boundary pixels”. Therefore,

even if we use only 3 directions, we may expect to find stricter estimates

than those given in the proof. These estimates might be improved further by

admitting more than 3 directions.

(c) For a specified diffusion tensor function D it is possible to give a-priori es-

timates for the required stencil size: using the extremum principle it is not

hard to show that

|∇uσ(x, t)| = |(∇Kσ∗u)(x, t)| ≤ 4 ‖f‖L∞(Ω)√
2π σ

on Ω̄ × (0,∞),

where the notations from Chapter 2 have been used. Thanks to the uniform

positive definiteness ofD there exists an upper limit for the spectral condition

number of D. This condition limit can be used to fix a suitable stencil size.

(d) The existence of a nonnegative directional splitting distinguishes the filter

class (Pc) from morphological anisotropic equations such as mean curvature

motion. In this case it has been proved that it is impossible to find a nonneg-

ative directional splitting on a finite stencil [13]. As a remedy, Crandall and

Lions [104] propose to study a convergent sequence of regularizations which

can be approximated on a finite stencil.

Let us now illustrate the ideas in the proof of Theorem 6 by applying them

to a practical example: We want to find a nonnegative spatial discretization of

div (D∇u) on a (3×3)-stencil, where

D =

(

a

b

b

c

)

and a, b and c may be functions of Jρ(∇uσ).

Since m = 1 we have a partition of (−π
2
, π

2
] into 4m−2 = 2 subintervals:

(−π
2
, π

2
] = (−π

2
, 0] ∪ (0, π

2
] =: I−1 ∪ I1.
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I−1 and I1 belong to the grid angles

β−1 = arctan

(

−h2

h1

)

,

β1 = arctan

(

h2

h1

)

=: β.

First we focus on the case ψ ∈ I1 where (cosψ, sinψ) denotes the eigenvector to

the larger eigenvalue λ1 of D. With the notations from the proof of Theorem 6 we

obtain

θ1 =
π

2
,

ρ1 =
θ1 + β1

2
=

π

4
+
β

2
,

η1 =
β

2
.

Therefore, we get

cot(ρ1−β1) tan ρ1 = cot

(

π

4
− β

2

)

tan

(

π

4
+
β

2

)

=
1 + sin β

1 − sin β
,

cot(β1−η1) cot η1 = cot2

(

β

2

)

=
1 + cosβ

1 − cosβ
,

which restricts the upper condition number for a nonnegative discretization with

ψ ∈ I1 to

κ1,1 := min

(

1 + sin β

1 − sin β
,

1 + cos β

1 − cosβ

)

. (3.35)

Thanks to the symmetry we obtain the same condition restriction for ψ ∈ I−1.

These bounds on the condition number attain their maximal value for h1 = h2. In

this case β = π
4

gives

κ1,1 = κ−1,1 =
1 + 1

2

√
2

1 − 1
2

√
2

= 3 + 2
√

2 ≈ 5.8284. (3.36)

By virtue of (3.28)–(3.30) we obtain as expressions for the directional diffusivities

α−1 =
(

|b| − b
)

· h
2
1 + h2

2

2h1h2
,

α0 = a− |b| · h1

h2

,

α1 =
(

|b| + b
)

· h
2
1 + h2

2

2h1h2
,

α2 = c− |b| · h2

h1
.
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This induces in a natural way the following second-order discretization for div (D∇u):

|bi−1,j+1|−bi−1,j+1

4h1h2

+ |bi,j |−bi,j

4h1h2

ci,j+1+ci,j

2h2
2

− |bi,j+1|+|bi,j |
2h1h2

|bi+1,j+1|+bi+1,j+1

4h1h2

+ |bi,j |+bi,j

4h1h2

ai−1,j+ai,j

2h2
1

− |bi−1,j |+|bi,j |
2h1h2

−ai−1,j+2ai,j+ai+1,j

2h2
1

− |bi−1,j+1|−bi−1,j+1+|bi+1,j+1|+bi+1,j+1

4h1h2

− |bi−1,j−1|+bi−1,j−1+|bi+1,j−1|−bi+1,j−1

4h1h2

+ |bi−1,j |+|bi+1,j |+|bi,j−1|+|bi,j+1|+2|bi,j |
2h1h2

− ci,j−1+2ci,j+ci,j+1

2h2
2

ai+1,j+ai,j

2h2
1

− |bi+1,j |+|bi,j |
2h1h2

|bi−1,j−1|+bi−1,j−1

4h1h2

+ |bi,j |+bi,j

4h1h2

ci,j−1+ci,j

2h2
2

− |bi,j−1|+|bi,j |
2h1h2

|bi+1,j−1|−bi+1,j−1

4h1h2

+ |bi,j |−bi,j

4h1h2

All nonvanishing entries of the p-th row of A(u) are represented in this stencil,

where p(i, j) is the index of some inner pixel (i, j). Thus, for instance, the upper

left stencil entry gives the element (p(i, j), p(i−1, j+1)) of A(u). The other nota-

tions should be clear from the context as well, e.g. bi,j denotes a finite difference

approximation of b(Jρ(∇uσ)) at some grid point (xi, yj).

The problem of finding nonnegative difference approximations to elliptic expres-

sions with mixed derivatives has a long history; see e.g. [294, 120, 170]. Usually it

is studied for the expression

a(x, y) ∂xxu+ 2b(x, y) ∂xyu+ c(x, y) ∂yyu.

The approach presented here extends these results to

∂x

(

a(x, y) ∂xu
)

+ ∂x

(

b(x, y) ∂yu
)

+ ∂y

(

b(x, y) ∂xu
)

+ ∂y

(

c(x, y) ∂yu
)

and establishes the relation between the condition number of
(

a
b

b
c

)

and the non-

negativity of the difference operator. Recently Kocan described an interesting al-

ternative to obtain upper bounds for the stencil size as a function of the condition

number [238]. His derivation is based on the diophantine problem of approximating

irrationals by rational numbers.
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Chapter 4

Discrete diffusion filtering

This chapter presents a discrete class of diffusion processes for which one can estab-

lish similar properties as in the semidiscrete case concerning existence, uniqueness,

continuous dependence of the solution on the initial image, maximum-minimum

principle, average grey level invariance, Lyapunov sequences and convergence to a

constant steady-state. We shall see that this class comprises α-semi-implicit dis-

cretizations of the semidiscrete filter class (Ps) as well as certain variants of them

which are based on an additive operator splitting.

4.1 The general model

As in Chapter 3 we regard a discrete image as a vector f ∈IRN , N≥2, and denote

the index set {1, ..., N} by J . We consider the following discrete filter class (Pd):

Let f ∈IRN . Calculate a sequence (u(k))k∈IN0
of processed versions

of f by means of

u(0) = f,

u(k+1) = Q(u(k)) u(k), ∀ k ∈ IN0,

where Q = (qij) has the following properties:

(D1) continuity in its argument: Q ∈ C(IRN , IRN×N),

(D2) symmetry: qij(v) = qji(v) ∀ i, j ∈ J, ∀ v ∈ IRN ,

(D3) unit row sum:
∑

j∈J qij(v) = 1 ∀ i ∈ J, ∀ v ∈ IRN ,

(D4) nonnegativity: qij(v) ≥ 0 ∀ i, j ∈ J, ∀ v ∈ IRN ,

(D5) irreducibility for all v ∈ IRN ,

(D6) positive diagonal: qii(v) > 0 ∀ i ∈ J, ∀ v ∈ IRN .







(Pd)

97
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Remarks:

(a) Although the basic idea behind scale-spaces is to have a continuous scale

parameter, it is evident that fully discrete results are of importance since, in

practice, scale-space evolutions are evaluated exclusively at a finite number

of scales.

(b) The requirements (D1)–(D5) have a similar meaning as their semidiscrete

counterparts (S1)–(S5). Indeed, (D1) immediately gives well-posedness re-

sults, while the proof of the extremum principle requires (D3) and (D4),

and average grey value invariance is based on (D2) and (D3). The existence

of Lyapunov sequences is a consequence of (D2)–(D4), strict Lyapunov se-

quences need (D5) and (D6) in addition to (D2)–(D4), and the convergence

to a constant steady-state utilizes (D2)–(D5).

(c) Nonnegative matrices Q = (qij)∈ IRN×N satisfying
∑

j∈J qij = 1 for all i∈ J
are also called stochastic matrices. Moreover, if Q is stochastic and

∑

i∈J qij =

1 for all j ∈ J , then Q is doubly stochastic. This indicates that our discrete

diffusion processes are related to the theory of Markov chains [370, 223].

4.2 Theoretical results

It is obvious that for a fixed filter belonging to the class (Pd) every initial image

f ∈ IRN generates a unique sequence (u(k))k∈IN0
. Moreover, by means of (D1) we

know that, for every finite k, u(k) depends continuously on f . Therefore, let us now

prove a maximum–minimum principle.

Proposition 3 (Extremum principle).

Let f ∈IRN and let (u(k))k∈IN0
be the sequence of filtered images according to (Pd).

Then,

a ≤ u
(k)
i ≤ b ∀ i ∈ J, ∀ k ∈ IN0, (4.1)

where

a := min
j∈J

fj , (4.2)

b := max
j∈J

fj . (4.3)

Proof:

The maximum–minimum principle follows directly from the fact that, for all i∈J
and k∈IN0, the following inequalities hold:

(i) u
(k+1)
i =

∑

j∈J
qij(u

(k))u
(k)
j

(D4)

≤ max
m∈J

u(k)
m

∑

j∈J
qij(u

(k))
(D3)
= max

m∈J
u(k)

m .
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(ii) u
(k+1)
i =

∑

j∈J
qij(u

(k))u
(k)
j

(D4)

≥ min
m∈J

u(k)
m

∑

j∈J
qij(u

(k))
(D3)
= min

m∈J
u(k)

m .

✷

4.3 Scale-space properties

All statements from Chapter 3 with respect to invariances are valid in the discrete

framework as well. Below we focus on proving average grey level invariance.

Proposition 4 (Conservation of average grey value).

The average grey level

µ :=
1

N

∑

j∈J

fj (4.4)

is not affected by the discrete diffusion filter:

1

N

∑

j∈J

u
(k)
j = µ ∀ k ∈ IN0. (4.5)

Proof:

By virtue of (D2) and (D3) we have
∑

i∈J qij(u
(k))=1 for all j∈J and k∈IN0. This

so-called redistribution property [164] ensures that, for all k ∈ IN0,
∑

i∈J

u
(k+1)
i =

∑

i∈J

∑

j∈J

qij(u
(k))u

(k)
j =

∑

j∈J

(∑

i∈J

qij(u
(k))

)

u
(k)
j =

∑

j∈J

u
(k)
j ,

which proves the proposition. ✷

As one might expect, the class (Pd) allows an interpretation as a transformation

which is smoothing in terms of Lyapunov sequences. These functions ensure that

u(k) converges to a constant image as k → ∞. However, we need less regularity

than in the semidiscrete case: The convex function r, which generates the Lyapunov

sequences, needs only to be continuous, but no more differentiable.

Theorem 7 (Lyapunov sequences and behaviour for k → ∞).

Assume that (u(k))k∈IN0
satisfies the requirements of (Pd), let a, b, and µ be defined

as in (4.2), (4.3), and (4.4), respectively, and let c := (µ, µ, ..., µ)⊤ ∈ IRN .

Then the following properties are fulfilled:

(a) (Lyapunov sequences)

For all convex r ∈ C[a, b] the sequence

V (k) := Φ(u(k)) :=
∑

i∈J

r(u
(k)
i ), k ∈ IN0

is a Lyapunov sequence:
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(i) Φ(u(k)) ≥ Φ(c) ∀ k ∈ IN0

(ii) V (k+1) − V (k) ≤ 0 ∀ k ∈ IN0

Moreover, if r is strictly convex, then V (k) = Φ(u(k)) is a strict Lyapunov

sequence:

(iii) Φ(u(k)) = Φ(c) ⇐⇒ u(k) = c

(iv) V (k+1) − V (k) = 0 ⇐⇒ u(k) = c

(b) (Convergence)

lim
k→∞

u(k) = c.

Proof:

(a) (i) Average grey level invariance and the convexity of r give

Φ(c) =
N∑

i=1

r





N∑

j=1

1

N
u

(k)
j





≤
N∑

i=1




1

N

N∑

j=1

r(u
(k)
j )





=
N∑

j=1

r(u
(k)
j )

= Φ(u(k)). (4.6)

(ii) For i, j ∈ J we define

aij(u
(k)) :=

{

qij(u
(k)) − 1 (i = j)

qij(u
(k)) (i 6= j).

(4.7)

Using the convexity of r, the preceding definition, and the prerequisites

(D2) and (D3) we obtain

V (k+1) − V (k) =
N∑

i=1



r





N∑

j=1

qij(u
(k)) u

(k)
j



− r(u
(k)
i )





conv.

≤
N∑

i=1





N∑

j=1

qij(u
(k)) r(u

(k)
j ) − r(u

(k)
i )





(4.7)
=

N∑

i=1

N∑

j=1

aij(u
(k)) r(u

(k)
j )

(D3)
=

N∑

i=1

N∑

j=1

aij(u
(k))

(

r(u
(k)
j ) − r(u

(k)
i )

)
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=
N∑

i=1

N−i∑

m=1

ai+m,i(u
(k))

(

r(u
(k)
i ) − r(u

(k)
i+m)

)

+
N∑

i=1

N−i∑

m=1

ai,i+m(u(k))
(

r(u
(k)
i+m) − r(u

(k)
i )

)

(D2)
= 0. (4.8)

(iii) This part of the proof can be shown in exactly the same manner as in

the semidiscrete case (Chapter 3, Theorem 5): Equality in the estimate

(4.6) holds due to the strict convexity of r if and only if u(k) = c.

(iv) In order to verify the first implication, let us start with a proof that

V (k+1) = V (k) implies u
(k)
1 = ... = u

(k)
N . To this end, assume that u(k) is

not constant:

u
(k)
i0 := min

i∈J
u

(k)
i < max

j∈J
u

(k)
j =: u

(k)
j0 .

Then, by the irreducibility of Q(u(k)), we find l0, ..., lr ∈ J with l0 = i0,

lr = j0 and qlplp+1
6= 0 for p = 0, ..., r−1. Hence, there exists some

p0 ∈ {0, ..., r−1} such that n := lp0
, m := lp0+1, qnm(u(k)) 6= 0, and

u(k)
m 6= u(k)

n . Moreover, the nonnegativity of Q(u(k)) gives qnm(u(k)) > 0,

and by (D6) we have qnn(u(k)) > 0. Together with the strict convexity

of r these properties lead to

r





N∑

j=1

qnj(u
(k)) u

(k)
j





= r






N∑

j=1

j 6=n,m

qnj(u
(k)) u

(k)
j + qnn(u(k)) u(k)

n + qnm(u(k)) u(k)
m






<
N∑

j=1

j 6=n,m

qnj(u
(k)) r(u

(k)
j ) + qnn(u(k)) r(u(k)

n ) + qnm(u(k)) r(u(k)
m )

=
N∑

j=1

qnj(u
(k)) r(u

(k)
j ).

If we combine this with the results in (4.8), we obtain

V (k+1) − V (k) =
N∑

i=1

i6=n



r





N∑

j=1

qij(u
(k)) u

(k)
j



− r(u
(k)
i )





+ r





N∑

j=1

qnj(u
(k)) u

(k)
j



− r(u(k)
n )
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<
N∑

i=1





N∑

j=1

qij(u
(k)) r(u

(k)
j ) − r(u

(k)
i )





(4.8)
= 0.

This establishes that V (k+1) = V (k) implies u
(k)
1 = ... = u

(k)
N . Then, by

virtue of the grey value invariance, we conclude that u(k) = c.

Conversely, let u(k) = c. By means of prerequisite (D3) we obtain

V (k+1) − V (k) =
N∑

i=1

r





N∑

j=1

qij(u
(k))µ



−
N∑

i=1

r(µ) = 0.

(c) In order to prove convergence to a constant steady-state, we can argue exactly

in the same way as in the semidiscrete case if we replace Lyapunov functions

by Lyapunov sequences and integrals by sums. See Chapter 3, Theorem 5 for

more details. ✷

In analogy to the semidiscrete case the preceding theorem comprises many

Lyapunov functions which demonstrate the information-reducing qualities of our

filter class. Choosing the convex functions r(s) := |s|p, r(s) := (s−µ)2n and

r(s) := s ln s, we immediately obtain the following corollary.

Corollary 3 (Special Lyapunov sequences).

Let (u(k))k∈IN0
be a diffusion sequence according to (Pd), and let a and µ be defined

as in (4.2) and (4.4). Then the following functions are decreasing in k:

(a) ‖u(k)‖p for all p ≥ 1.

(b) M2n[u(k)] := 1
N

N∑

j=1
(u

(k)
j − µ)2n for all n ∈ IN.

(c) H [u(k)] :=
N∑

j=1
u

(k)
j ln(u

(k)
j ), if a > 0.

An interpretation of these results in terms of decreasing energy, decreasing

central moments and increasing entropy is evident.

4.4 Relation to semidiscrete models

4.4.1 Semi-implicit schemes

Let us now investigate in which sense our discrete filter class covers in a natural

way time discretizations of semidiscrete filters. To this end, we regard u(k) as an
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approximation of the solution u of (Ps) at time t = kτ , where τ denotes the time

step size. We consider a finite difference scheme with two time levels where the

operator A – which depends nonlinearly on u – is evaluated in an explicit way,

while the linear remainder is discretized in an α-implicit manner. Such schemes

are called α-semi-implicit. They reveal the advantage that the linear implicit part

ensures good stability properties, while the explicit evaluation of the nonlinear

terms avoids the necessity to solve nonlinear systems of equations. The theorem

below states that this class of schemes is covered by the discrete framework, for

which we have established scale-space results.

Theorem 8 (Scale-space interpretation for α-semi-implicit schemes).

Let α ∈ [0, 1], τ > 0, and let A = (aij) : IRN → IRN×N satisfy the requirements

(S1)–(S5) of section 3.1. Then the α-semi-implicit scheme

u(k+1) − u(k)

τ
= A(u(k))

(

αu(k+1) + (1−α)u(k)
)

(4.9)

fulfils the prerequisites (D1)–(D6) for discrete diffusion models provided that

τ ≤ 1

(1−α) max
i∈J

|aii(u(k))| (4.10)

for α ∈ (0, 1). In the explicit case (α=0) the properties (D1)–(D6) hold for

τ <
1

max
i∈J

|aii(u(k))| , (4.11)

and the semi-implicit case (α=1) satisfies (D1)–(D6) unconditionally.

Proof: Let

B(u(k)) := (bij(u
(k))) := I − ατA(u(k)),

C(u(k)) := (cij(u
(k))) := I + (1−α)τA(u(k)),

where I∈IRN denotes the unit matrix. Since (4.9) can be written as

B(u(k)) u(k+1) = C(u(k)) u(k)

we first have to show that B(u(k)) is invertible for all u(k) ∈ IRN . Henceforth, the

argument u(k) is suppressed frequently since the considerations below are valid for

all u(k) ∈ IRN .

If α=0, then B= I and hence invertible. Now assume that α > 0. Then B is

strictly diagonally dominant, since

bii = 1 − ατaii
(S3)
= 1 + ατ

∑

j∈J
j 6=i

aij > ατ
∑

j∈J
j 6=i

aij
(S4)
=

∑

j∈J
j 6=i

|bij | ∀ i ∈ J.
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This also shows that bii > 0 for all i ∈ J , and by the structure of the off-diagonal

elements of B we observe that the irreducibility of A implies the irreducibility of

B. Thanks to the fact that B is irreducibly diagonally dominant, bij ≤ 0 for all

i 6= j, and bii > 0 for all i ∈ J , we know from [407, p. 85] that B−1 =: H =: (hij)

exists and hij > 0 for all i, j ∈ J . Thus, Q := (qij) := B−1C exists and by (S1) it

follows that Q ∈ C(IRN , IRN×N). This proves (D1).

The requirement (D2) is not hard to satisfy: Since B−1 and C are symmetric

and reveal the same set of eigenvectors – namely those of A – it follows that

Q = B−1C is symmetric as well.

Let us now verify (D3). By means of (S3) we obtain

∑

j∈J

bij = 1 =
∑

j∈J

cij ∀ i ∈ J. (4.12)

Let v := (1, ..., 1)⊤ ∈ IRN . Then (4.12) is equivalent to

Bv = v = Cv, (4.13)

and the invertibility of B gives

v = B−1v = Hv. (4.14)

Therefore, from

Qv = HCv
(4.13)
= Hv

(4.14)
= v

we conclude that
∑

j∈J
qij = 1 for all i ∈ J . This proves (D3).

In order to show that (D4) is fulfilled, we first check the nonnegativity of C.

For i 6= j we have

cij = (1−α)τaij

(S4)

≥ 0.

The diagonal entries yield

cii = 1 + (1−α)τaii.

If α = 1 we have cii = 1 for all i ∈ J . For 0 ≤ α < 1, however, nonnegativity of C

is not automatically guaranteed: Using (S3)–(S5) we obtain

aii
(S3)
= −

∑

j∈J
j 6=i

aij

(S4),(S5)
< 0 ∀ i ∈ J. (4.15)

Hence, C(u(k)) is nonnegative if

τ ≤ 1

(1−α) max
i∈J

|aii(u(k))| =: τα(u(k)).
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Since H is nonnegative, we know that the nonnegativity of C implies the nonneg-

ativity of Q=HC.

Now we want to prove (D5). If α = 1, then C = I, and by the positivity of H

we have qij > 0 for all i, j ∈ J . Thus, Q is irreducible.

Next let us consider the case 0< α< 1 and τ ≤ τα(u(k)). Then we know that

C is nonnegative. Using this information, the positivity of H , the symmetry of C,

and (4.12) we obtain

qij =
∑

k∈J

hikckj ≥ min
k∈J

hik

︸ ︷︷ ︸

>0

·
∑

k∈J

ckj

︸ ︷︷ ︸

=1

> 0 ∀ i, j ∈ J,

which establishes the irreducibility of Q.

Finally, for α = 0, we have Q = C. For i, j ∈ J with i 6= j we know that

aij(u
(k)) > 0 implies cij(u

(k)) > 0. Now for

τ <
1

max
i∈J

|aii(u(k))|

it follows that cii(u
(k)) > 0 for all i ∈ J and, thus, the irreducibility of A(u(k))

carries over to Q(u(k)).

In all the abovementioned cases the time step size restrictions for ensuring irre-

ducibility imply that all diagonal elements of Q(u(k)) are positive. This establishes

(D6). ✷

Remarks:

(a) We have seen that the discrete filter class (Pd) – although at first glance

looking like a pure explicit discretization – covers the α-semi-implicit case as

well. Explicit two-level schemes are comprised by the choice α=0. Equation

(4.11) shows that they reveal the most prohibitive time step size restrictions.

(b) The conditions (4.10) and (4.11) can be satisfied by means of an a-priori

estimate. Since the semi-implicit scheme fulfils (D1)–(D6) we know by The-

orem 3 that the solution obeys an extremum principle. This means that u(k)

belongs to the compact set {v ∈ IRN
∣
∣
∣ ‖v‖∞ ≤ ‖f‖∞} for all k ∈ IN0. By

A∈C(IRN , IRN×N) it follows that

Kf := max
{

|aii(v)|
∣
∣
∣ i ∈ J, v ∈ IRN , ‖v‖∞ ≤ ‖f‖∞

}

exists, and (4.15) shows that Kf > 0. Thus, choosing

τ ≤ 1

(1−α)Kf
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ensures that (4.10) is always satisfied, and

τ <
1

Kf

guarantees that (4.11) holds.

(c) If α>0, a large linear system of equations has to be solved. Its system matrix

is symmetric, diagonally dominant, and positive definite. Usually, it is also

sparse: For instance, if it results from a finite difference discretization on a

(2p+1)×(2p+1)-stencil it contains at most 4p2+4p+1 nonvanishing entries

per row. One should not expect, however, that in the i-th row these entries

can be found within the positions [i, i−2p2−2p] to [i, i+2p2+2p]. In general,

the matrix reveals a much larger bandwidth.

Applying standard direct algorithms such as Gaussian elimination would

destroy the zeros within the band and would lead to an immense storage and

computation effort. Modifications in order to reduce these problems [122] are

quite difficult to implement.

Iterative algorithms appear to be better suited. Classical methods such as

Gauß–Seidel or SOR [447] are easy to code, they do not need additional

storage, and their convergence can be guaranteed for the special structure of

A. Unfortunately, they converge rather slowly. Faster iterative methods such

as preconditioned conjugate gradient algorithms [348] need significantly more

storage, which can become prohibitive for large images. A typical problem of

iterative methods is that their convergence slows down for larger τ , since this

increases the condition number of the system matrix. Multigrid methods [59,

179] are one possibility to circumvent these difficulties; another possibility

will be studied in Section 4.4.2.

(d) For α = 1 we obtain semi-implicit schemes which do not suffer from time

step size restrictions. In spite of the fact that the nonlinearity is discretized

in an explicit way they are absolutely stable in the maximum norm, and

they inherit the scale-space properties from the semidiscrete setting regard-

less of the step size. Compared to explicit schemes, this advantage usually

overcompensates for the additional effort of resolving a linear system.

(e) By the explicit discretization of the nonlinear operator A it follows that all

schemes in the preceding theorem are of first order in time. This should not

give rise to concern, since in image processing one is in general more inter-

ested in maintaining qualitative properties such as maximum principles or

invariances rather than having an accurate approximation of the continu-

ous equation. However, if one insists in second-order schemes, one may for



4.4. RELATION TO SEMIDISCRETE MODELS 107

instance use the predictor–corrector approach by Douglas and Jones [121]:

u(k+1/2) − u(k)

τ/2
= A(u(k)) u(k+1/2),

u(k+1) − u(k)

τ
= A(u(k+1/2))

(
1
2
u(k+1) + 1

2
u(k)

)

.

This scheme satisfies the properties (D1)–(D6) for τ ≤ 2/Kf .

(f) The assumptions (S1)–(S5) are sufficient conditions for the α-semi-implicit

scheme to fulfil (D1)–(D6), but they are not necessary. Nonnegativity of

Q(u(k)) may also be achieved using spatial discretizations where A(u(k)) has

negative off-diagonal elements (see [55] for examples).

4.4.2 AOS schemes

We have seen that, for α > 0, the preceding α-semi-implicit schemes require to

solve a linear system with the system matrix (I − ατA(u(k))). Since this can be

numerically expensive, it would be nice to have an efficient alternative. Suppose

we know a splitting

A(u(k)) =
m∑

l=1

Al(u
(k)), (4.16)

such that the m linear systems with system matrices (I−mατAl(u
(k))), l = 1,...,m

can be solved more efficiently. Then it is advantageous to study instead of the α-

semi-implicit scheme

u(k+1) =
(

I − ατ
m∑

l=1

Al(u
(k))

)−1 (

I + (1−α)τ
m∑

l=1

Al(u
(k))

)

u(k) (4.17)

its additive operator splitting (AOS) variant [424]

u(k+1) =
1

m

m∑

l=1

(

I − αmτAl(u
(k))

)−1 (

I + (1−α)mτAl(u
(k))

)

u(k). (4.18)

By means of a Taylor expansion one can verify that, although both schemes are not

identical, they have the same approximation order in space and time. Hence, from

a numerical viewpoint, they are both consistent approximations to the semidiscrete

ODE system from (Ps).

The following theorem clarifies the conditions under which AOS schemes create

discrete scale-spaces.
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Theorem 9 (Scale-space interpretation for AOS schemes).

Let α∈ (0, 1], τ > 0, and let Al = (aijl)ij : IRN → IRN×N , l = 1,...,m satisfy the

requirements (S1)–(S4) of section 3.1. Moreover, assume that A(u) =
∑m

l=1Al(u)

is irreducible for all u ∈ IRN , and that for each Al there exists a permutation

matrix Pl ∈ IRN×N such that PlAlP
T
l is block diagonal and irreducible within each

block. Then the following holds:

For α ∈ (0, 1), the AOS scheme (4.18) fulfils the prerequisites (D1)–(D6) of

discrete diffusion scale-spaces provided that

τ <
1

(1−α)m max
i,l

|aiil(u(k))| . (4.19)

In the semi-implicit case (α = 1), the properties (D1)–(D6) are unconditionally

satisfied.

Proof: The reasoning is similar to the proof of Theorem 8. Let

Bl(u
(k)) := (bijl(u

(k)))ij := I − αmτAl(u
(k)),

Cl(u
(k)) := (cijl(u

(k)))ij := I + (1−α)mτAl(u
(k)).

Bl is invertible because of its strict diagonal dominance:

biil
(S3)
= 1 + αmτ

∑

j∈J
j 6=i

aijl > αmτ
∑

j∈J
j 6=i

aijl
(S4)
=

∑

j∈J
j 6=i

|bijl| ∀ i ∈ J.

Since Al(u) is continuous in u by virtue of (S1), it follows that

Q(u) :=
1

m

m∑

l=1

B−1
l (u)Cl(u)

is also continuous in u. This proves (D1).

The symmetry property (D2) of Q results directly from the fact that B−1
l and

Cl are symmetric and share their eigenvectors with those of Al.

In the same way as in the proof of Theorem 8 one shows that B−1
l Cl has only

unit row sums for all l. Thus, the row sums of Q are 1 as well, and (D3) is satisfied.

To verify (D4), we utilize that Bl is strictly diagonally dominant, biil > 0 for

all i, and bijl ≤ 0 for i 6= j. Under these circumstances it follows from [284, p. 192]

that Hl := B−1
l is nonnegative in all components. Thus, a sufficient condition for

proving (D4) is to ensure that Cl is nonnegative for all l. For i 6= j we have

cijl = (1−α)mτaijl

(S4)

≥ 0.
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The diagonal entries yield

ciil = 1 + (1−α)mτaiil.

If α = 1 we have cii = 1 for all i ∈ J . For 0 < α < 1, however, nonnegativity of

C is not automatically guaranteed: Since Al satisfies (S3) and (S4), we know that

aiil ≤ 0, for all i. Moreover, by (4.15) it follows that for every i there exists an l

with aiil < 0. Thus, requiring

τ <
1

(1−α)m max
i,l

|aiil(u(k))| =: τα(u(k))

guarantees that

ciil > 0 ∀ i ∈ J, ∀ l = 1, ..., m. (4.20)

Next we prove (D5), the irreducibility of Q. Suppose that ai0j0 6= 0 for some

i0, j0 ∈ J . Then there exists an l0 ∈ {1, ..., m} such that ai0j0l0 6= 0. Denoting B−1
l

by Hl = (hijl)ij, we show now that ai0j0l0 6= 0 implies hi0j0l0 > 0.

This can be seen as follows: There exist permutation matrices Pl, l = 1, ..., m

such that PlBlP
T
l is block diagonal. Each block is irreducible and strictly diagonally

dominant with a positive diagonal and nonpositive off-diagonals. Thus, a theorem

by Varga [407, p. 85] ensures that the inverse of each block contains only positive

elements. As a consequence, ai0j0l0 6= 0 implies hi0j0l0 > 0.

Together with (4.20) this yields

qi0j0 =
1

m






∑

(l,n)6=(l0,j0)

hi0nl
︸ ︷︷ ︸

≥0

cnj0l
︸ ︷︷ ︸

≥0

+ hi0j0l0
︸ ︷︷ ︸

>0

cj0j0l0
︸ ︷︷ ︸

>0




 > 0.

Recapitulating, this means that, for τ < τα(u(k)),

ai0j0 6= 0 =⇒ qi0j0 > 0. (4.21)

Thus, the irreducibility of A carries over to Q, and (D5) is proved.

Moreover, (4.21) also proves (D6): By virtue of (4.15) we have aii < 0 for all

i ∈ J . Therefore, Q must have a positive diagonal. ✷

Remarks:

(a) In analogy to the unsplit α-semi-implicit schemes, the case α = 1 is especially

interesting, because no time step size restriction occurs. Again, it is also

possible to construct a predictor–corrector scheme of Douglas–Jones type

[121] within the AOS framework:

u(k+1/2) =
1

m

m∑

l=1

(

I − 1
2
mτAl(u

(k))
)−1

u(k),

u(k+1) =
1

m

m∑

l=1

(

I − 1
2
mτAl(u

(k+1/2))
)−1 (

I + 1
2
mτAl(u

(k+1/2))
)

u(k).
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It satisfies (D1)–(D6) for τ < 2/Kf , where Kf is determined by the a-priori

estimate

Kf := m max
{

|aiil(v)|
∣
∣
∣ i ∈ J, l ∈ {1, ..., m}, v ∈ IRN , ‖v‖∞ ≤ ‖f‖∞

}

.

However, the AOS–Douglas–Jones scheme is only first order accurate in time.

(b) The fact that AOS schemes use an additive splitting ensures that all coordi-

nate axes are treated in exactly the same manner. This is in contrast to the

various conventional splitting techniques from the literature [120, 277, 286,

354, 442]. They are multiplicative splittings. A typical representative is

u(k+1) =
m∏

l=1

(

I − τAl(u
(k))

)−1
u(k).

Since in the general nonlinear case the split operators Al, l = 1,..., m do not

commute, the result of multiplicative splittings will depend on the order of

the operators. In practice, this means that these schemes produce different

results if the image is rotated by 90 degrees. Moreover, most multiplicative

splittings lead to a nonsymmetric matrix Q(u(k)). This violates requirement

(D2) for discrete scale-spaces.

(c) The result u(k+1) of an AOS scheme can be regarded as the average of m

filters of type

v
(k+1)
l :=

(

I −αmτAl(u
(k))

)−1 (

I + (1−α)mτAl(u
(k))

)

u(k) (l = 1, ..., m).

Since v
(k+1)
l , l = 1,...,m can be calculated independently from each other, it

is possible to distribute their computation to different processors of a parallel

machine.

(d) AOS schemes with α= 1 have been presented in [424, 430] as efficient dis-

cretizations of the isotropic nonlinear diffusion filter of Catté et al. [81]. In

Section 1.3.2 we have seen that this filter is based on the PDE

∂tu = div (g(|∇uσ|2) ∇u).

In this case, a natural operator splitting A =
∑m

l=1Al results from a decom-

position of the divergence expression into one-dimensional terms of type

∂xl
(g(|∇uσ|2) ∂xl

u) (l = 1, ..., m).

This separation is very efficient: There exist permutation matrices Pl (pixel

orderings) such that PlAlP
T
l is block diagonal and each block is diagonally

dominant and tridiagonal. Hence, the corresponding linear systems can be
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solved in linear effort by means of a simple Gaussian algorithm. The resulting

forward substitution and backward elimination can be regarded as a recursive

filter.

A parallel implementation assigning these tridiagonal subsystems to different

processors is described in [431]. The denoising of a medical 3-D ultrasound

data set with 138 × 208 × 138 voxels on an SGI Power Challenge XL with

eight 195 MHz R10000 processors was possible in less than 1 minute.

(e) The idea to base AOS schemes on decompositions into one-dimensional op-

erators can also be generalized to anisotropic diffusion filters: Consider for

instance the discretization on a (3× 3)-stencil at the end of Section 3.4.2. If

it fulfils (S1)–(S5), then a splitting of such a 2-D filter into 4 one-dimensional

diffusion processes acting along the 4 stencil directions satisfies all prerequi-

sites of Theorem 9.
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Chapter 5

Examples and applications

The scale-space theory from Chapters 2–4 also covers methods such as linear or

nonlinear isotropic diffusion filtering, for which many interesting applications have

already been mentioned in Chapter 1. Therefore, the goal of the present chapter is

to show that a generalization to anisotropic models with diffusion tensors depend-

ing on the structure tensor offers novel properties and application fields. Thus, we

focus mainly on these anisotropic techniques and juxtapose the results to other

methods. In order to demonstrate the flexibility of anisotropic diffusion filtering,

we shall pursue two different objectives:

• smoothing with simultaneous edge-enhancement,

• smoothing with enhancement of coherent flow-like textures.

All calculations for diffusion filtering are performed using semi-implicit FD

schemes with time steps ∆t ∈ [2, 5]. In order to compare anisotropic diffusion to

other methods, morphological scale-spaces and modifications of them have been

discretized as well. For MCM and AMSS this is achieved by means of explicit FD

schemes (cf. 1.6.4) with ∆t := 0.1 and ∆t := 0.01, respectively. Dilation with a flat

structuring element is approximated by an Osher-Sethian scheme of type (1.88)

with ∆t := 0.5, and dilation with a quadratic structuring function is performed

in a noniterative way using van den Boomgaard’s algorithm from [51]. On an

HP 9000/889 workstation it takes less than 0.3 CPU seconds to calculate one

nonlinear diffusion step for a 256× 256 image, and MCM, AMSS or dilation with

a disc require approximately 0.06 seconds per iteration. Typical dilations with a

quadratic structuring function take less than 0.3 seconds.

113



114 CHAPTER 5. EXAMPLES AND APPLICATIONS

5.1 Edge-enhancing diffusion

5.1.1 Filter design

In accordance with the notations in 2.2, let µ1, µ2 with µ1 ≥ µ2 be the eigenvalues

of the structure tensor Jρ, and v1, v2 the corresponding orthonormal eigenvectors.

Since the diffusion tensor should reflect the local image structure it ought to be

chosen in such a way that it reveals the same set of eigenvectors v1, v2 as Jρ. The

choice of the corresponding eigenvalues λ1, λ2 depends on the desired goal of the

filter.

If one wants to smooth preferably within each region and aims to inhibit dif-

fusion across edges, then one can reduce the diffusivity λ1 perpendicular to edges

the more the higher the contrast µ1 is, see 1.3.3 and [415]. This behaviour may be

accomplished by the following choice (m ∈ IN, Cm > 0, λ > 0):

λ1(µ1) := g(µ1), (5.1)

λ2 := 1 (5.2)

with

g(s) :=







1 (s ≤ 0)

1 − exp
(

−Cm

(s/λ)m

)

(s > 0).
(5.3)

This exponentially decreasing function is chosen in order to fulfil the smoothness

requirement stated in (Pc), cf. 2.3. Since ∇uσ remains bounded on Ω× [0,∞) and

µ1 = |∇uσ|2, we know that the uniform positive definiteness of D is automatically

satisfied by this filter.

The constant Cm is calculated in such a way that the flux Φ(s) = sg(s) is

increasing for s ∈ [0, λ] and decreasing for s ∈ (λ,∞). Thus, the preceding filter

strategy can be regarded as an anisotropic regularization of the Perona–Malik

model.

The choice m := 4 (which implies C4 = 3.31488) gives visually good results

and is used exclusively in the examples below. Since in this section we are only

interested in edge-enhancing diffusion we may set the integration scale ρ of the

structure tensor equal to 0. Applications which require nonvanishing integration

scales shall be studied in section 5.2.

5.1.2 Applications

Figure 5.1 illustrates that anisotropic diffusion filtering is still capable of possessing

the contrast-enhancing properties of the Perona–Malik filter (provided the regu-

larization parameter σ is not too large). It depicts the temporal evolution of a
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Figure 5.1: Anisotropic diffusion filtering of a Gaussian-type function,

Ω = (0, 256)2, λ = 3.6, σ = 2. From top left to bottom right: t = 0,

125, 625, 3125, 15625, 78125.
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Gaussian-like function and its isolines.1 It can be observed that two regions with

almost constant grey value evolve which are separated by a fairly steep edge. Edge

enhancement is caused by the fact that, due to the rapidly decreasing diffusivity,

smoothing within each region is strongly preferred to diffusion between the two

adjacent regions. The edge location remains stable over a very long time interval.

This indicates that, in practice, the determination of a suitable stopping time is

not a critical problem. After the process of contrast enhancement is concluded, the

steepness of edges decreases very slowly until the gradient reaches a value where no

backward diffusion is possible anymore. Then the image converges quickly towards

a constant image.

Let us now compare the denoising properties of different diffusion filters. Figure

5.2(a) consists of a triangle and a rectangle with 70 % of all pixels being completely

degraded by noise. This image is taken from the software package MegaWave.

Test images of this type have been used to study the behaviour of filters such

as [13, 15, 16, 99, 102]. In Fig. 5.2(b) we observe that linear diffusion filtering

is capable of removing all noise, but we have to pay a price: the image becomes

completely blurred. Besides the fact that edges get smoothed so that they are

harder to identify, the correspondence problem appears: edges become dislocated.

Thus, once they are identified at a coarse scale, they have to be traced back in

order to find their true location, a theoretically and practically rather difficult

problem.

Fig. 5.2(c) shows the effect when applying the isotropic nonlinear diffusion

equation [81]

∂tu = div (g(|∇uσ|2)∇u) (5.4)

with g as in (5.3). Since edges are hardly affected by this process, nonlinear

isotropic diffusion does not lead to correspondence problems which are charac-

teristic for linear filtering. On the other hand, the drastically reduced diffusivity

at edges is also responsible for the drawback that noise at edges is preserved.

Figure 5.2(d) demonstrates that nonlinear anisotropic filtering shares the ad-

vantages of both methods. It combines the good noise eliminating properties of

linear diffusion with the stable edge structure of nonlinear isotropic filtering. Due

to the permitted smoothing along edges, however, corners get more rounded than

in the nonlinear isotropic case.

The scale-space behaviour of different PDE-based methods is juxtaposed in

Figures 5.3–5.6, where an MRI slice of a human head is processed [414, 423].

1Except for Figs. 5.1, 5.3–5.6, where contrast enhancement is to be demonstrated, all images

in the present work are depicted in such a way that the lowest value is black and the highest one

appears white. They reveal a range within the interval [0, 255] and all pixels have unit length in

both directions.
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Figure 5.2: Restoration properties of diffusion filters. (a) Top Left:

Test image, Ω = (0, 128)2. (b) Top Right: Linear diffusion, t = 80.

(c) Bottom Left: Nonlinear isotropic diffusion, λ = 3.5, σ = 3,

t = 80. (d) Bottom Right: Nonlinear anisotropic diffusion, λ = 3.5,

σ = 3, t = 80.

Again we observe that linear diffusion (Fig. 5.3(a)) does not only blur all struc-

tures in an equal amount but also dislocates them more and more with increasing

scale.

A first step to reduce these problems is to adapt the diffusivity to the gradient

of the initial image f [147]. Fig. 5.3(b) shows the evolution under

∂tu = div (g(|∇f |2) ∇u), (5.5)
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where a diffusivity of type [88]

g(|∇f |2) :=
1

√

1 + |∇f |2/λ2
(λ > 0). (5.6)

is used. Compared with homogeneous linear diffusion, edges remain better localized

and their blurring is reduced. On the other hand, for large t the filtered image

reveals some artifacts which reflect the differential structure of the initial image.

A natural idea to reduce the artifacts of inhomogeneous linear diffusion filtering

would be to introduce a feedback in the process by adapting the diffusivity g to

the gradient of the actual image u(x, t) instead of the original image f(x). This

leads to the nonlinear diffusion equation [326]

∂tu = div (g(|∇u|2) ∇u). (5.7)

Figure 5.3(c) shows how such a nonlinear feedback is useful to increase the edge

localization in a significant way: Structures remain well-localized as long as they

can be recognized. Also blurring at edges is reduced very much. The absolute

contrast at edges, however, becomes smaller.

The latter problem can be avoided using a diffusivity which decreases faster

than (5.6) and leads to a nonmonotone flux function. This is illustrated in Figure

5.4(a) where the regularized isotropic nonlinear diffusion filter (5.4) with the diffu-

sivity (5.3) is applied. At the chin we observe that this equation is indeed capable

of enhancing edges. All structures are extremely well-localized and the results are

segmentation-like. On the other hand, also small structures exist over a long range

of scales if they differ from their vicinity by a sufficiently large contrast. One can

try to make this filter faster and more insensitive to small-size structures by in-

creasing the regularizing Gaussian kernel size σ (cf. Fig. 5.4(b)), but this also leads

to stronger blurring of large structures, and it is no longer possible to enhance the

contour of the entire head.

Anisotropic nonlinear diffusion (Fig. 5.4(c)) permits diffusion along edges and

inhibits smoothing across them. As in Figure 5.2(d), this causes a stronger round-

ing of structures, which can be seen at the nose. A positive consequence of this

slight shrinking effect is the fact that small or elongated and thin structures are

better eliminated than in the isotropic case. Thus, we recognize that most of the

depicted “segments” coincide with semantically correct objects that one would ex-

pect at these scales. Finally the image turns into a silhouette of the head, before

it converges to a constant image.

The tendency to produce piecewise almost constant regions indicates that dif-

fusion scale-spaces with nonmonotone flux are ideal preprocessing tools for seg-

mentation. Unlike diffusion–reaction models aiming to yield one segmentation-like

result for t → ∞ (cf. 1.4), the temporal evolution of these models generates a
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complete hierarchical family of segmentation-like images. The contrast-enhancing

quality distinguishes nonlinear diffusion filters from most other scale-spaces. It

should be noted that contrast enhancement is a local phenomenon which cannot

be replaced by simple global rescalings of the grey value range. Therefore, it is

generally not possible to obtain similar segmentation-like results by just rescaling

the grey values from a scale-space which is only contrast-reducing.

The contrast and noise parameters λ and σ give the user the liberty to adapt

nonlinear diffusion scale-spaces to the desired purpose in order to reward inter-

esting features with a longer lifetime. Suitable values for them should result in a

natural way from the specific problem. In this sense, the time t is rather a para-

meter of importance, with respect to the specified task, than a descriptor of spatial

scale. The traditional opinion that the evolution parameter t of scale-spaces should

be related to the spatial scale reflects the assumption that a scale-space analysis

should be uncommitted. Nonlinear diffusion filtering renounces this requirement by

allowing to incorporate a-priori information (e.g. about the contrast of semantically

important structures) into the evolution process. The basic idea of scale-spaces,

however, is maintained: to provide a family of subsequently simplified versions of

the original image, which gives a hierarchy of structures and allows to extract the

relevant information from a certain scale.

Besides these specific features of nonlinear diffusion scale-spaces it should be

mentioned that, due to the homogeneous Neumann boundary condition and the

divergence form, both linear and nonlinear diffusion filters preserve the average

grey level of the image.

This is not true for the morphological filters and their modifications which are

depicted in Fig. 5.5 and 5.6.

Figure 5.5(a) and (b) show the result under continuous-scale dilation with a flat

disc-shaped structuring element and a quadratic structuring function, respectively.

From Section 1.5.3 and 1.5.6 we know that their evolution equations are given by

∂tu = |∇u|, (5.8)

for the disc, and by

∂tu = |∇u|2 (5.9)

for the quadratic structuring function. In both cases the number of local maxima

is decreasing, and maxima keep their location in scale-space until they disappear

[206, 207]. The fact that the maximum with the largest grey value will dominate

at the end shows that these processes can be sensitive to noise (maxima might

be caused by noise), and that they usually do not preserve the average grey level.

It is not very difficult to guess the shape of the structuring function from the

scale-space evolution.
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Figure 5.3: Evolution of an MRI slice under different PDEs. Top: Original im-

age, Ω = (0, 236)2. (a) Left Column: Linear diffusion, top to bottom: t = 0,

12.5, 50, 200. (b) Middle Column: Inhomogeneous linear diffusion (λ = 8),

t = 0, 70, 200, 600. (c) Right Column: Nonlinear isotropic diffusion with the

Charbonnier diffusivity (λ = 3), t = 0, 70, 150, 400.
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Figure 5.4: Evolution of an MRI slice under different PDEs. Top: Original image,

Ω = (0, 236)2. (a) Left Column: Isotropic nonlinear diffusion (λ = 3, σ =

1), t = 0, 25000, 500000, 7000000. (b) Middle Column: Isotropic nonlinear

diffusion (λ = 3, σ = 4), t = 0, 40, 400, 1500. (c) Right Column: Edge-

enhancing anisotropic diffusion (λ = 3, σ = 1), t = 0, 250, 875, 3000.
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Figure 5.5: Evolution of an MRI slice under different PDEs. Top: Original image,

Ω = (0, 236)2. (a) Left Column: Dilation with a disc, t = 0, 4, 10, 20. (b)

Middle Column: Dilation with a quadratic structuring function, t = 0, 0.25,

1, 4. (c) Right Column: Mean curvature motion, t = 0, 70, 275, 1275.
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Figure 5.6: Evolution of an MRI slice under different PDEs. Top: Original image,

Ω = (0, 236)2. (a) Left Column: Affine morphological scale-space, t = 0, 20,

50, 140. (b) Middle Column: Modified mean curvature motion (λ = 3, σ = 1),

t = 0, 100, 350, 1500. (c) Right Column: Self-snakes (λ = 3, σ = 1), t = 0,

600, 5000, 40000.
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A completely different morphological evolution is given by the mean curvature

motion (1.90) depicted in Fig. 5.5(c). Since MCM shrinks level lines with a ve-

locity that is proportional to their curvature, low-curved object boundaries are

less affected by this process, while high-curved structures (e.g. the nose) exhibit

roundings at an earlier stage. This also explains its excellent noise elimination

qualities. After some time, however, the head looks almost like a ball. This is in

accordance with the theory which predicts convergence of all closed level lines to

circular points.

A similar behaviour can be observed for the affine invariant morphological scale-

space (1.108) shown in Fig. 5.6(a). Since it takes the time T = 3
4
s

4

3 to remove

all isolines within a circle of radius s – in contrast to T = 1
2
s2 for MCM – we

see that, for a comparable elimination of small structure, the shrinking effect of

large structures is stronger for AMSS than for MCM. Thus, the correspondence

problem is more severe than for MCM. Nevertheless, the advantage of having affine

invariance may counterbalance the correspondence problem in certain applications.

Since the AMSS involves no additional parameters and offers more invariances

than other scale-spaces, it is ideal for uncommitted image analysis and shape

recognition. Both MCM and AMSS give significantly sharper edges than linear

diffusion filtering, but they are not designed to act contrast-enhancing.

One possibility to reduce the correspondence problem of morphological scale-

spaces is to attenuate the curve evolution at high-contrast edges. This is at the

expense of withdrawing morphology in terms of invariance under monotone grey-

scale transformations.

One possibility is to use the damping function outside the divergence expression.

Processes of this type are studied in [13, 364, 365, 304]. As a simple prototype for

this idea, let us investigate the modified MCM

∂tu = g(|∇uσ|2) |∇u| div

(

∇u
|∇u|

)

(5.10)

with g(|∇uσ|2) as in (1.32). The corresponding evolution is depicted in Fig. 5.6(b).

We observe that structures remain much better localized than in the original MCM.

On the other hand, the experiments give evidence that this process is probably

not contrast-enhancing, see e.g. the chin. As a consequence, the results appear less

segmentation-like than those for nonlinear diffusion filtering.

Using g(|∇uσ|2) inside the divergence expression leads to

∂tu = |∇u| div

(

g(|∇uσ|2)
∇u
|∇u|

)

. (5.11)

In Section 1.6.6 we have seen that processes of this type are called self-snakes

[357]. Since they differ from isotropic nonlinear diffusion filters by the |∇u| terms

inside and outside the divergence expression, they will not preserve the average
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Figure 5.7: Preprocessing of a fabric image. (a) Left: Fabric, Ω =

(0, 257)2. (b) Right: Anisotropic diffusion, λ = 4, σ = 2, t = 240.

grey value. The evolution in Fig. 5.6(c) indicates that g(|∇uσ|2) gives similar edge-

enhancing effects as in a nonlinear diffusion filter, but one can observe a stronger

tendency to create circular structures. This behaviour which resembles MCM is

not surprising if one compares (1.120) with (1.121).

Let us now study two applications of nonlinear diffusion filtering in computer

aided quality control (CAQ): the grading of fabrics and wood surfaces (see also

[413]).

The quality of a fabric is determined by two criteria, namely clouds and stripes.

Clouds result from isotropic inhomogeneities of the density distribution, whereas

stripes are an anisotropic phenomenon caused by adjacent fibres pointing in the

same direction. Anisotropic diffusion filters are capable of visualizing both quality-

relevant features simultaneously (Fig. 5.7). For a suitable parameter choice, they

perform isotropic smoothing at clouds and diffuse in an anisotropic way along fi-

bres in order to enhance them. However, if one wants to visualize both features

separately, one can use a fast pyramid algorithm based on linear diffusion filter-

ing for the clouds [417], whereas stripes can be enhanced by a special nonlinear

diffusion filter which is designed for closing interrupted lines and which shall be

discussed in Section 5.2.

For furniture production it is of importance to classify the quality of wood

surfaces. If one aims to automize this evaluation, one has to process the image in

such a way that quality relevant features become better visible und unimportant

structures disappear. Fig. 5.8(a) depicts a wood surface possessing one defect. To

visualize this defect, equation (5.4) can be applied with good success (Fig. 5.8(b)).
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Figure 5.8: Defect detection in wood. (a) Left: Wood surface, Ω =

(0, 256)2. (b) Right: Isotropic nonlinear diffusion, λ = 4, σ = 2,

t = 2000.

In [413] it is demonstrated how a modified anisotropic diffusion process yields even

more accurate results with less roundings at the corners.

Fig. 5.9(a) gives an example for possible medical applications of nonlinear dif-

fusion filtering as a preprocessing tool for segmentation (see also [415] for another

example). It depicts an MRI slice of the human head. For detecting Alzheimer’s

disease one is interested in determining the ratio between the ventricle areas, which

are given by the two white longitudinal objects in the centre, and the entire head

area.

In order to make the diagnosis more objective and reliable, it is intended to

automize this feature extraction step by a segmentation algorithm. Figure 5.9(c)

shows a segmentation according to the following simplification of the Mumford–

Shah functional (1.58):

Ef (u,K) =
∫

Ω

(u−f)2 dx + α|K|. (5.12)

It has been obtained by a MegaWave programme using a hierarchical region grow-

ing algorithm due to Koepfler et al. [239]. As is seen in Fig. 5.9(d), one gets a better

segmentation when processing the original image slightly by means of nonlinear

diffusion filtering (Fig. 5.9(b)) prior to segmenting it.
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Figure 5.9: Preprocessing of an MRI slice. (a) Top Left: Head, Ω =

(0, 256)2. (b) Top Right: Diffusion-filtered, λ = 5, σ = 0.1, t =

2.5. (c) Bottom Left: Segmented original image, α = 8192. (d)

Bottom Right: Segmented filtered image, α = 8192.

5.2 Coherence-enhancing diffusion

5.2.1 Filter design

In this section we shall investigate how the structure tensor information can be

used to design anisotropic diffusion scale-spaces which enhance the coherence of

flow-like textures [418]. This requires a nonvanishing integration scale ρ.

Let again µ1, µ2 with µ1 ≥ µ2 be the eigenvalues of Jρ, and v1, v2 the cor-

responding orthonormal eigenvectors. As in 5.1 the diffusion tensor D(Jρ(∇uσ))

ought to possess the same set of eigenvectors as Jρ(∇uσ).

If one wants to enhance coherent structures, one should smooth preferably
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Figure 5.10: Local orientation in a fingerprint image. (a) Top Left:

Original fingerprint, Ω = (0, 256)2. (b) Top Right: Orientation

of smoothed gradient, σ = 0.5. (c) Bottom Left: Orientation of

smoothed gradient, σ = 5. (d) Bottom Right: Structure tensor

orientation, σ = 0.5, ρ = 4.

along the coherence direction v2 with a diffusivity λ2 which increases with respect

to the coherence (µ1−µ2)
2. This may be achieved by the following choice for the

eigenvalues of the diffusion tensor (C > 0, m ∈ IN):

λ1 := α,

λ2 :=







α if µ1 =µ2,

α + (1−α) exp
(

−C
(µ1−µ2)2m

)

else,

where the exponential function was chosen to ensure the smoothness of D and the
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Figure 5.11: Anisotropic equations applied to the fingerprint image.

(a) Left: Mean-curvature motion, t = 5. (b) Right: Coherence-

enhancing anisotropic diffusion, σ = 0.5, ρ = 4, t = 20.

small positive parameter α∈(0, 1) keeps D(Jρ(∇uσ)) uniformly positive definite.2

All examples below are calculated using C := 1, m := 1, and α := 0.001.

5.2.2 Applications

Figure 5.10 illustrates the advantages of local orientation analysis by means of

the structure tensor. In order to detect the local orientation of the fingerprint

depicted in Fig. 5.10(a), the gradient orientation of a slightly smoothed image has

been calculated (Fig. 5.10(b)). Horizontally oriented structures appear black, while

vertical structures are represented in white. We observe very high fluctuations in

the local orientation. When applying a larger smoothing kernel it is clear that

adjacent gradients having the same orientation but opposite direction cancel out.

Therefore, the results in (c) are much worse than in (b). The structure tensor,

however, averages the gradient orientation instead of its direction. This is the

reason for the reliable estimates of local orientation that can be obtained with this

method (Fig. 5.10(d)).

To illustrate how the result of anisotropic PDE methods depends on the direc-

tion in which they smooth, let us recall the example of mean curvature motion (cf.

1.6.1):

∂tu = uξξ = |∇u| curv(u) (5.13)

with ξ being the direction perpendicular to ∇u. Since MCM smoothes by prop-

agating level lines in inner normal direction we recognize that its smoothing di-

2Evidently, filters of this type are not regularizations of the Perona–Malik process: the limit

σ → 0, ρ → 0 leads to a linear diffusion process with constant diffusivity α.
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Figure 5.12: Scale-space behaviour of coherence-enhancing diffusion

(σ = 0.5, ρ = 2). (a) Top Left: Original fabric image, Ω = (0, 257)2.

(b) Top Right: t = 20. (c) Bottom Left: t = 120. (d) Bottom

Right: t = 640.

rection depends exclusively on ∇u. Thus, although this method is in a complete

anisotropic spirit, we should not expect it to be capable of closing interrupted

line-like structures. The results in Fig. 5.11(a) confirm this impression.

The proposed anisotropic diffusion filter, however, biases the diffusive flux to-

wards the coherence orientation v2 and is therefore well-suited for closing inter-

rupted lines in coherent flow-like textures, see Fig. 5.11(b). Due to its reduced

diffusivity at noncoherent structures, the locations of the semantically important

singularities in the fingerprint remain the same. This is an important prerequisite

that any image processing method has to satisfy if it is to be applied to fingerprint

analysis.
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Figure 5.13: (a) Top: High resolution slipring CT scan of a femural bone,

Ω = (0, 300) × (0, 186). (b) Bottom Left: Filtered by coherence-enhancing

anisotropic diffusion, σ = 0.5, ρ = 6, t = 16. (c) Bottom Right: Dito with

t=128.

Figure 5.12 depicts the scale-space behaviour of coherence-enhancing aniso-

tropic diffusion applied to the fabric image from Fig. 5.7. The temporal behaviour

of this diffusion filter seems to be appropriate for visualizing coherent fibre agglom-

erations (stripes) at different scales, a difficult problem for the automatic grading

of nonwovens [299].

Figure 5.13 illustrates the potential of CED for medical applications. It depicts

a human bone. Its internal structure has a distinctive texture through the presence

of tiny elongated bony structural elements, the trabeculae. There is evidence that

the trabecular formation is for a great deal determined by the external load. For

this reason the trabecular structure constitutes an important clinical parameter in

orthopedics. Examples are the control of recovery after surgical procedures, such

as the placement or removal of metal implants, quantifying the rate of progression

of rheumatism and osteoporosis, the determination of left-right deviations of sym-

metry in the load or establishing optimal load corrections by physiotherapy. From

Figure 5.13(b),(c) we observe that CED is capable of enhancing the trabecular

structures in order to ease their subsequent orientation analysis.
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Figure 5.14: Image restoration using coherence-enhancing anisotropic

diffusion. (a) Left: “Selfportrait” by van Gogh (Saint-Rémy, 1889;

Paris, Museé d’Orsay), Ω = (0, 215) × (0, 275). (b) Right: Filtered,

σ = 0.5, ρ = 4, t = 6.

Let us now investigate the impact of coherence-enhancing diffusion on images,

which are not typical texture images, but still reveal a flow-like character. To this

end, we shall process impressionistic paintings by Vincent van Gogh.

Fig. 5.14 shows the restoration properties of coherence-enhancing anisotropic

diffusion when being applied to a selfportrait of the artist [161]. We observe that

the diffusion filter can close interrupted lines and enhance the flow-like character

which is typical for van Gogh paintings.

The next painting we are concerned with is called “Road with Cypress and

Star” [162, 429]. It is depicted in Fig. 5.15. In order to demonstrate the influence

of the integration scale ρ, all filter parameters are fixed except for ρ. Fig. 5.15(b)

shows that a value for ρ which is too small does not lead to the visually dominant

coherence orientation and creates structures with a lot of undesired fluctuations.

Increasing the value for ρ improves the image significantly (Fig. 5.15(c)). Interest-

ingly, a further increasing of ρ does hardly alter this result (Fig. 5.15(d)), which

indicates that this van Gogh painting possesses a uniform “texture scale” reflecting

the characteristic painting style of the artist.

In a last example the temporal evolution of flow-like images is illustrated by

virtue of the “Starry Night” painting in Fig. 5.16 [160, 419]. Due to the established



5.2. COHERENCE-ENHANCING DIFFUSION 133

Figure 5.15: Impact of the integration scale on coherence-enhancing

anisotropic diffusion (σ = 0.5, t = 8). (a) Top Left: “Road with

Cypress and Star” by van Gogh (Auvers-sur-Oise, 1890; Otterlo, Ri-

jksmuseum Kröller–Müller), Ω = (0, 203)× (0, 290). (b) Top Right:

Filtered with ρ = 1. (c) Bottom Left: ρ = 4. (d) Bottom Right:

ρ = 6.
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Figure 5.16: Scale-space properties of coherence-enhancing anisotropic diffusion

(σ = 0.5, ρ = 4). (a) Top Left: “Starry Night” by van Gogh (Saint-Rémy,

1889; New York, The Museum of Modern Art), Ω = (0, 255) × (0, 199). (b) Top

Right: t = 8. (c) Bottom Left: t = 64. (d) Bottom Right: t = 512.

scale-space properties, the image becomes gradually simpler in many aspects, be-

fore it finally will tend to its simplest representation, a constant image with the

same average grey value as the original one. The flow-like character, however, is

maintained for a very long time.3

3Results for AMSS filtering of this image can be found in [305].
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Conclusions and perspectives

While Chapter 1 has given a general overview of PDE-based smoothing and restora-

tion methods, the goal of Chapters 2–5 has been to present a scale-space framework

for nonlinear diffusion filtering which does not require any monotony assump-

tion (comparison principle). We have seen that, besides the fact that many global

smoothing scale-space properties are maintained, new possibilities with respect to

image restoration appear.

Rather than deducing a unique equation from first principles we have ana-

lysed well-posedness and scale-space properties of a general family of regularized

anisotropic diffusion filters. Existence and uniqueness results, continuous depen-

dence of the solution on the initial image, maximum–minimum principles, invari-

ances, Lyapunov functionals, and convergence to a constant steady-state have been

established.

The large class of Lyapunov functionals permits to regard these filters in many

ways as simplifying, information-reducing transformations. These global smooth-

ing properties do not contradict seemingly opposite local effects such as edge en-

hancement. For this reason it is possible to design scale-spaces with restoration

properties giving segmentation-like results.

Prerequisites have been stated under which one can prove well-posedness and

scale-space results in the continuous, semidiscrete and discrete setting. Each of

these frameworks is self-contained and does not require the others. On the other

hand, the prerequisites in all three settings reveal many similarities and, as a

consequence, representatives of the semidiscrete class can be obtained by suitable

spatial discretizations of the continuous class, while representatives of the discrete

class may arise from time discretizations of semidiscrete filters.

The degree of freedom within the proposed class of filters can be used to tailor

the filters towards specific restoration tasks. Therefore, these scale-spaces do not

need to be uncommitted; they give the user the liberty to incorporate a-priori

knowledge, for instance concerning size and contrast of especially interesting fea-

tures.

135
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The analysed class comprises linear diffusion filtering and the nonlinear iso-

tropic model of Catté et al. [81] and Whitaker and Pizer [438], but also novel ap-

proaches have been proposed: The use of diffusion tensors instead of scalar-valued

diffusivities puts us in a position to design real anisotropic diffusion processes

which may reveal advantages at noisy edges. Last but not least, the fact that these

filters are steered by the structure tensor instead of the regularized gradient allows

to adapt them to more sophisticated tasks such as the enhancement of coherent

flow-like structures.

In view of these results, anisotropic diffusion deserves to be regarded as much

more than an ad-hoc strategy for transforming a degraded image into a more

pleasant looking one. It is a flexible and mathematically sound class of methods

which ties the advantages of two worlds: scale-space analysis and image restoration.

It is clear, however, that nonlinear diffusion filtering is a young field which has

certainly not reached its final state yet. Thus, we can expect a lot of new results

in the near future. Some of its future developments, however, are likely to consist

of straightforward extensions of topics presented in this text:

• While the theory and the examples in the present book focus on 2-D grey-

scale images, it is evident that most of its results can easily be generalized to

higher dimensions and vector-valued images. The need for such extensions

grows with the rapid progress in the development of faster computers, the

general availability of affordable colour scanners and printers, and the wish

to integrate information from different channels. Some of the references in

Chapter 1 point in directions how this can be accomplished.

• The various possibilities to include semilocal or global information constitute

another future perspective. This could lead to specifically tuned filters for

topics such as perceptual grouping. Coherence-enhancing anisotropic diffu-

sion is only a first step in this direction. New filter models might arise using

other structure descriptors than the (regularized) gradient or the structure

tensor. Interesting candidates could be wavelets, Gabor filters, or steerable

filters.

• In contrast to the linear diffusion case, the relation between structures at

different scales has rarely been exploited in the nonlinear context. Although

this problem is less severe, since the avoidance of correspondence problems

was one of the key motivations to study nonlinear scale-spaces, it would cer-

tainly be useful to better understand the deep structure in nonlinear diffusion

processes. The scale-space stack of these filters appears to be well-suited to

extract semantically important information with respect to a specified task.

This field offers a lot of challenging mathematical questions.
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• Most people working in computer vision do not have a specific knowledge

on numerical methods for PDEs. As a consequence, the most widely-used

numerical methods for nonlinear diffusion filtering are still the simple, but

inefficient explicit (Euler forward) schemes. Novel, more time-critical appli-

cation areas could be explored by applying implicit schemes, splitting and

multigrid techniques, or grid adaptation strategies. In this context it would be

helpful to have software packages, where different nonlinear diffusion filters

are implemented in an efficient way, and which are easy to use for everyone.

• The price one has to pay for the flexibility of nonlinear diffusion filtering is

the specification of some parameters. Since these parameters have a rather

natural meaning, this is not a very difficult problem for someone with ex-

perience in computer vision. Somebody with another primary interest, for

instance a physician who wants to denoise ultrasound images, may be fright-

ened by this perspective. Thus, more research on finding some guidelines

for automatic parameter determination for a task at hand would encourage

also people without a specific image processing background to apply nonlin-

ear diffusion filters. Several useful suggestions for parameter adaptation can

already be found in [328, 36, 431, 270, 444].

• There are not yet many studies which explore the potential of nonlinear dif-

fusion filtering when being combined with other image processing techniques.

Especially combinations with concepts such as data compression, segmenta-

tion algorithms, tomographic reconstruction techniques, or neural networks

for learning a-priori information might lead to novel application areas for

these techniques.

Thus, there still remains a lot of work to be done. It would be nice if this book has

inspired its readers to contribute to the solution of some of the remaining open

problems.
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