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Abstract: First-principles calculations were used to estimate the anisotropic elastic and thermal
properties of Ti2lnX (X = C, N) and Zr2lnX (X = C, N) M2AX phases. The crystals’ elastic properties
were computed using the Voigt-Reuss-Hill approximation. Firstly, the material’s elastic anisotropy
was explored, and its mechanical stability was assessed. According to the findings, Ti2lnC, Ti2lnN,
Zr2lnC, and Zr2lnN are all brittle materials. Secondly, the elasticity of Ti2lnX (X = C, N) and Zr2lnX
(X = C, N) M2AX phase are anisotropic, and the elasticity of Ti2lnX (X = C, N) and Zr2lnX (X = C, N)
systems are different; the order of anisotropy is Ti2lnN > Ti2lnC, Zr2lnN > Zr2lnC. Finally, the elastic
constants and moduli were used to determine the Debye temperature and sound velocity. Ti2lnC has
the maximum Debye temperature and sound velocity, and Zr2lnN had the lowest Debye temperature
and sound velocity. At the same time, Ti2lnC had the highest thermal conductivity.
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1. Introduction

The ternary layered compound MAX phase has the common characteristics of ceramics
and metals, and has become a research hotspot in the field of structural ceramics for more
than 20 years. High damage tolerance and high fracture toughness are essential characteris-
tics that distinguish it from traditional ceramics [1–6]. This type of material has a similar
nano-layered crystal structure (space group P63/mmc), which is named the “Mn+1AXn”
phase, referred to as MAX phase, where M is a transition metal element, A is a IIIA or IVA
group element, and X is C or N, (n = 1~3) [7–9]. MAX phase compounds can be regarded
as the formation of a layer of main group atoms inserted into the binary carbon/nitride
lattice. Characterization shows the extraordinary properties of MAX phase materials. They
have many excellent properties, such as high damage tolerance, high fracture toughness,
low hardness, machinability, thermal shock resistance, high damping, high stiffness, and
good electrical and thermal conductivity [10,11], etc. Among them, 211-type MAX phase
compounds also have similar properties. This extraordinary performance quickly attracted
widespread attention in the field of ceramics.

At present, Z. J. Yang et al. have carried out many theoretical studies on the novel
hysteresis behavior of Zr2InC based on plane-wave pseudopotential (PW-PP) density func-
tional theory (DFT) calculations, and the mechanical and electronic properties of Zr2InC
under pressure were investigated using first principles [12]. A.D. Bortolozo et al. investi-
gated the Ti2InN phase by X-ray diffraction and magnetic and resistivity measurements,
and the results clearly showed that Ti2InN is the first nitride superconductor belonging to
the Mn+1AXn family [13]. Sun et al. investigated the relationship between chemical bonds
and the elastic properties of M2AN (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and W, A = Al, Ga
and Ge) by calculation [14]. The study showed that with the increase of valence electron
concentration, the bulk modulus of M2AN increases by a factor of 1.8, and the coupling
between the MN layer and the A layer weakens. Despite these studies, theoretical studies
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of the M2lnX phase are not sufficient. Previously, MAX carbides have received the greatest
attention, while MAX nitrides have received less. In general, the nitride phase and the
carbide phase are very similar. Therefore, first-principles calculations are employed to inves-
tigate the structure, elastic anisotropy, and thermodynamic properties of Ti2lnX (X = C, N)
and Zr2lnX (X = C, N) M2AX phase ceramics, providing a comprehensive complement to
previously unexplored areas.

2. Methods

In this work, M2InX (M = Ti, Zr and X = C, N) MAX phases were analyzed using
the Cambridge Sequential Total Energy Package (CASTEP) [15,16] of Density Functional
Theory (DFT) [17]. The interactions between electrons and ionic nuclei were calculated
using on-the-fly generation (OTFG), ultrasoft pseudopotentials (USPPs), and the Perdew–
Wang generalized-gradient approximation (PW91) [18–21] method in generalized gradient
approximation (GGA) was utilized to model exchange correlation potential. In this work,
the geometric optimization tolerance was set to 5 × 10−6 eV/atom of total energy differ-
ence, the maximum ionic Hellmann–Feynman force was 0.01 eV/atom, the maximum ion
displacement was 5 × 10−4, and the maximum stress was 0.02 GPa; the M2InX phases plan-
wave cutoff energy was set to 450 eV and the k-point in the first irreducible Brillouin zone
was selected as 10 × 10 × 2. In this calculation, we conducted relevant tests on 1 × 1 × 1,
1 × 1 × 2, 1 × 2 × 2, and 2 × 2 × 2 supercells, and found that when using 1 × 1 × 2,
1 × 2× 2, 2 × 2 × 2 supercells, the resulting energy change was about 1 meV/atom. The
total number of atoms in 1 × 1 × 1, 1 × 1 × 2, 1 × 2 × 2, and 2 × 2 × 2 supercells were 8,
16, 32, and 64, respectively. Considering the computational cost and time, this study finally
decided to use a 1 × 1 × 2 supercell for the calculation.

3. Results and Discussion
3.1. Single-Crystal Structural Properties

Firstly, the most stable hexagonal M2InX (M = Ti, Zr and X = C, N) MAX phase
crystal structure was determined, as shown in Figure 1. Fully relaxing atomic locations
and lattice parameters yielded a crystal structure in equilibrium. Table 1 displays the
computed lattice parameters a and c, as well as their volumes and formation enthalpies.
The calculated structural parameters of the M2InX phase are in agreement with other
experimental results [12,22]. This demonstrates the dependability and precision of the
simulations presented in this study, and provided us with the confidence to continue
investigating the characteristics of Ti2lnX (X = C, N) and Zr2lnX (X = C, N) ceramics. Ti2lnX
(X = C, N) and Zr2lnX (X = C, N) crystallize in the P63/mmc-space group with the Wyckoff
positions of 4f (1/3, 2/3, ZZr/Ti) for Zr/Ti atoms, 2d (1/3, 2/3, 3/4) for In atoms, and
2a (0, 0, 0) for N/C atoms, and the unit cell was made up of 8 atoms, including 2X, 4M, and
2ln atoms. The atoms were aligned along the c-axis in the order X-ln-M-X, as shown in
Figure 1.
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Table 1. The lattice parameters, cohesive energy Ec (in eV/atom), and formation enthalpy ∆Hf (in
eV/atom) of M2InX (M = Ti, Zr and X = C, N) MAX phases.

Lattice Parameters (Å)
V (Å3) Ec ∆Hf Ref.

a c

Ti2lnC 3.15 14.18 121.67 −7.81 −0.665 This work
3.14 14.17 120.74 −0.669 Exp. [22]

Ti2lnN 3.10 14.05 116.76 −8.02 −0.667 This work
−8.01 Exp. [13]

Zr2lnC 3.36 15.04 147.47 −8.30 −0.690 This work
3.35 15.04 146.62 Theo. [12]

3.349 14.91 144.8 Theo. [12]
3.358 15.09 147.437 Theo. [12]

Zr2AlC −0.40 Theo. [24]
Zr2BiC −4.17 Theo. [24]
Zr2lnN 3.31 14.92 141.25 −8.51 −0.751 This work

−8.12 Theo. [23]

The computed lattice parameters a and c, their volumes, the formation enthalpy, and
cohesive energy are listed in Table 1. As we all know, thermodynamic stability can be
understood to some extent as the concept of minimal energy, which states the lower the
energy, the greater the system’s thermodynamic stability. As a result, thermodynamic
stability is described using quantities such as formation enthalpy ∆Hf, and cohesive energy
Ec. When the formation enthalpy and cohesive energy are both negative, the structure is
stable. Therefore, the greater the negative value, the greater the substance’s stability. The
calculation is as follows:

Ec(M2lnX) =
1
8
[E(M2lnX)−4Eiso(M)−2Eiso(ln)−2Eiso(X)] (1)

∆H f (M2lnX) =
1
8
[E(M2lnX)−4Ebulk(M)−2Ebulk(ln)−2Ebulk(X)] (2)

Here, E is the total energy of M2lnX. Ebulk(M), Ebulk(ln) and Ebulk(X) represent the
energies of single M, ln, and X atoms in a stable state, respectively. Eiso(M), Eiso(ln), and
Eiso(X) are the energies of isolated M, ln, and X atoms, respectively.

Table 1 and Figure 2 show the computed cohesive energy Ec and formation enthalpy
∆Hf of Ti2lnC, Ti2lnN, Zr2lnC, and Zr2lnN, as well as other experimental data for related
compounds [12,13,22–24]. The predicted Ec and ∆Hf values for the compounds in Table 1
are negative, indicating that Ti2lnC, Ti2lnN, Zr2lnC, and Zr2lnN are thermodynamically
stable and have stronger bond strengths. Furthermore, the sequence of Ec and ∆Hf values
is Ti2lnC > Ti2lnN and Zr2lnC > Zr2lnN. Therefore, the order of thermodynamic stability is
Ti2lnN > Ti2lnC and Zr2lnN > Zr2lnC. The comprehensive comparison shows that Zr2lnN
and Ti2lnN have the highest thermodynamic stability. If Zr2lnN and Ti2lnN continue to
be compared, it can be seen that Zr2lnN has the highest thermodynamic stability, which is
shown in Figure 2.

3.2. Elastic Properties

This work is based on the stress-strain approach of Hooke’s law to analyze mechanical
stability, and the elastic constants were determined by applying normal stress, shear stress,
and six different deformations. Table 2 shows the calculated elastic constants Cij and elastic
compliance constants Sij of Ti2lnC, Ti2lnN, Zr2lnC, and Zr2lnN. Only five elastic constants
(C11, C12, C13, C33, C44) are independent for hexagonal crystals [25]. The mechanical stability
criteria for hexagonal crystals are given by the following equation [26–28]:

C11 − C12 > 0; C44 > 0; C11 + C12 − 2C13
2/C33 > 0 (3)
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Table 2. The elastic constants Cij (in GPa) of M2InX (M = Ti, Zr and X = C, N) MAX phases.

C11 C33 C44 C66 C12 C13 Ref.

Ti2lnC 286 244 90 112 64 53 This work
285 243 83 111 64 52 Theo. [22]

Ti2lnN 249 228 87 87 54 99 This work
Zr2lnC 256 241 82 96 64 96 This work

258 237 83 64 88 Theo. [12]
Zr2lnN 242 225 89 83 57 88 This work

237 199 76 55 82 Theo. [23]

Combining the elastic constants calculated in Table 2 and Figure 3, it is not difficult to
see that these constants satisfy all the above conditions, proving that Ti2lnC, Ti2lnN, Zr2lnC,
and Zr2lnN are mechanically stable. Usually, the elastic constant represents some important
physical meaning, for example, C11 and C33 correspond to the linear compression resistance
of the a and c axes, respectively. Table 2 reflects that the C33 value of M2lnX is significantly
smaller than the C11 value, indicating that M2lnX has a high compressibility along the
c-axis. To begin with, for the Ti2lnX (X = C, N) system, Ti2lnC has the highest C11 value
(286 GPa) and C33 value (244 GPa), while Ti2lnN has the lowest C11 value (229 GPa) and
C33 value (228 GPa), suggesting that Ti2lnC is the least compressible along the a-axes and
c-axes, while Ti2lnN is the most compressible along the a-axes and c-axes. This is consistent
with Ti2lnC having the strongest chemical bond and Ti2lnN having the weakest chemical
bond [13,22]. It can also be seen that for the system of Zr2lnX (X = C, N), Zr2lnC is the
most incompressible along the a- and c-axes, while Zr2lnN is the most compressible along
the a- and c-axes. From the comparison of the above two systems, it can be understood
that Ti2lnC and Zr2lnC are the most incompressible of the two systems, respectively. If the
values of C11 and C33 are continuously compared in the M2lnC (M = Ti, Zr) system, it can
be seen that Ti2lnC > Zr2lnC, and therefore the compressibility of Ti2lnC along the a-axis
and c-axis is the smallest, which also confirms that Ti2lnC has a great elasticity constant.

It is well-known that C12, C44, and C66 are related to shear modulus, and larger values
of C12, C44, and C66 correspond to larger shear modulus. For Ti2lnX (X = C, N) the order of
C12, C44, and C66 is Ti2lnC > Ti2lnN, while for Zr2lnX (X = C, N) the order of C12, C44, and
C66 is Zr2lnC > Zr2lnN. Therefore, Ti2lnC and Zr2lnC should have the highest shear moduli.
Similarly, by comparing the values of C12, C44, and C66 in the M2lnC (M = Ti, Zr) system, it
can be seen that Ti2lnC > Zr2lnC, which proves that Ti2lnC has the highest shear modulus.
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3.3. Elastic Moduli

In general, using elastic modulus as a parameter to measure the mechanical properties
of polycrystals is more convincing than using the elastic constant. In practice, because most
materials are polycrystalline, the applied elastic modulus can more accurately describe the
anisotropy of the material than the elastic constant. The Reuss-Hill-Voigt approximation
is generally used to obtain the elastic modulus for M2InX phase, which contains Young’s
modulus E, bulk modulus B, and shear modulus G [24,29,30]. The following are the specific
expressions of BH, EH, and GH:

GH =
(GV + GR)

2
(4)

BH =
(BR + BV)

2
(5)

E =
9GHBH

(3BH + GH)
(6)

Bulk modulus can be specifically divided into lower bulk modulus (BV) and upper
bulk modulus (BR). Likewise, the shear modulus has a lower shear modulus (GV) and an
upper shear modulus (GR).

Table 3 shows the estimated and reference data for the elastic modulus M2lnX com-
pound [12,13,23,31]. The results of this computation are obviously close to the findings
stated in the reference. Bulk moduli are frequently used to define a material’s compress-
ibility under hydrostatic pressure. A higher bulk modulus indicates less compressibility.
To put it another way, the higher the bulk modulus, the stiffer the material. It can be
seen from Table 3 that for Ti2lnX (X = C, N), the BH value of Ti2lnC is greater than that of
Ti2lnN, indicating that Ti2lnC has higher incompressibility. For Zr2lnX (X = C, N), Zr2lnC
has higher incompressibility. It is well-known that the larger bulk modulus in compounds
originates from the strong hybridization between orbitals. Therefore, Ti2lnC and Zr2lnC
should have the strongest orbital hybridization.

Furthermore, the stiffness of a material can be defined by its Young’s modulus; the
greater the Young’s modulus, the greater the stiffness of the material. Table 3 shows
that Ti2lnC and Zr2lnC have the maximum stiffness in the Ti2lnX (X = C, N) and Zr2lnX
(X = C, N) systems, respectively. Ti2lnC has the highest stiffness in the M2lnC (M = Ti, Zr)
system, because its Young’s modulus is greater than that of Zr2lnC. Additionally, the shear
modulus can be used to forecast the hardness of a material. In general, the shear modulus
characterizes the degree to which the shape of the material is affected by the shear force
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acting on it. The larger the shear modulus, the greater the corresponding deformation
resistance. Therefore, the greater the shear modulus, the higher the hardness and strength of
the material. From the conclusion drawn from the elastic constants in the previous section,
it can be seen that Ti2lnC and Zr2lnC have the highest shear moduli, so the hardness of
both Ti2lnC and Zr2lnC is highest. Further comparison of the M2lnC (M = Ti, Zr) system
shows that Ti2lnC has the largest shear modulus, so the deformation resistance of Ti2lnC is
the largest. Finally, Figure 4a shows the comparison between B, G, and E. Generally, the
plastic properties of materials can be characterized by B/G. Judging whether the material
is ductile or brittle depends on the value of B/G. If B/G > 1.75, the material is plastic; if
the contrary, the material is brittle. In addition, it is straightforward to see from the ratios
in Table 3 that all four materials are brittle, as these values are all less than the critical
value (1.75). In addition, Poisson’s ratio (ν) can also be used to measure the brittleness
and toughness of materials. When ν < 1/3, it is a brittle material; in addition, the material
exhibits toughness. Table 3 shows that the Poisson’s ratio of all four materials is less than
0.33. Likewise, Figure 4b can also prove that all four materials are brittle.

Table 3. Calculated bulk modulus B (in GPa), shear modulus G (in Gpa), Poisson’s ratio ν, and
Young’s modulus E (in GPa) of M2InX (M = Ti, Zr and X = C, N) MAX phases.

BV BR BH GV GR GH BH/GH E ν Ref.

Ti2lnC

128.2 127.2 127.7 101.4 100.5 100.9 1.26 239.5 0.187 This work
Ti2lnN
Zr2lnC
Zr2lnN

127 232.04 0.176 Theo. [31]
Ti2lnN

123.4 122.7 123.1 78.6 77.8 82.7 1.5 198.1 0.226 This work
Ti2lnN
Zr2lnC
Zr2lnN

121.78 Theo. [13]
Zr2lnC

137.4 137.3 137.4 89.5 88.5 89 1.54 216.1 0.217 This work
Ti2lnN
Zr2lnC
Zr2lnN

126.03 Exp. [12]
Zr2lnN

134.8 134.8 134.8 82.9 82.2 82.5 1.63 205.7 0.245 This work
Ti2lnN
Zr2lnC
Zr2lnN

134 79 196 Theo. [23]
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Figure 4. (a) Correlations between bulk modulus B (shear modulus G) and Young’s modulus (E) of
M2InX (M = Ti, Zr and X = C, N) MAX phases; (b) Variations of GH/BH and ν of M2InX (M = Ti, Zr
and X = C, N) MAX phases. In graph (a), the values of bulk modulus and shear modulus are
multiplied by the factor of 2 for a better comparison with Young’s modulus.
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3.4. Anisotropy in Elastic Moduli

Elastic anisotropy is commonly responsible for the formation and development of
microcracks in materials. As a result, the elastic anisotropy of solids must be discussed,
and this anisotropy is best defined by three indicators: the anisotropy index AU [32],
the percentage of compression anisotropy Acomp, and the percentage of shear anisotropy
Ashear [33–35]. The calculation formula is as follows:

AU = 5
GV
GR

+
BV
BR

− 6 (7)

Acomp =
BV − BR
BV + BR

× 100% (8)

Ashear =
GV − GR
GV + GR

× 100% (9)

A1 =
4C44

C11+C33−2C13
(10)

A2 =
4C55

C22+C33−2C23
(11)

A3 =
4C66

C11+C22−2C12
(12)

Table 4 shows the anisotropy indices of the obtained ceramics of M2InX phases.
Figure 5 depicts the variation of AU with Ashear. From Table 4, it can be seen that for Ti2lnX
(X = C, N), the AU value of Ti2lnC (0.063) is smaller than that of Ti2lnN (0.042). For Zr2lnX
(X = C, N), the AU value of Zr2lnC is smaller than that of Zr2lnN. Because the AU value
is proportional to the elastic anisotropy, the order of elastic anisotropy is Ti2lnN > Ti2lnC
and Zr2lnN > Zr2lnC. It shows that Ti2lnC and Zr2lnC have better performance and lower
possibility of microcracks.

Table 4. Calculated elastic anisotropic indexes (AU, Acomp, Ashear, A1, A2, A3) of M2InX (M = Ti, Zr
and X = C, N) of MAX phases.

AU Acomp (%) Ashear (%) A1 A2 A3

Ti2lnC
Ti2lnN
Zr2lnC
Zr2lnN

0.053 0.004 0.005 0.851 0.851 1.000

Ti2lnN
Ti2lnN
Zr2lnC
Zr2lnN

0.059 0.003 0.006 1.622 1.622 1.000

Zr2lnC
Ti2lnN
Zr2lnC
Zr2lnN

0.034 0.001 0.004 1.072 1.072 1.000

Zr2lnN
Ti2lnN
Zr2lnC
Zr2lnN

0.043 0.001 0.006 1.225 1.225 1.000
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Acomp is used to reflect the compressible anisotropy of the material. From the data
in Table 4, it can be seen that the Acomp value of Ti2lnC is the largest (0.004%), indicating
that it has the strongest elastic anisotropy. In addition, it can be seen from Ashear that
Ti2lnN (0.006) and Zr2lnN (0.006) have the highest shear elastic anisotropy. Meanwhile,
from the Ashear value, Ti2lnC (0.005) and Zr2lnC (0.004) have the lowest anisotropy of
shear modulus. A1 denotes shear anisotropy in the (100) plane, A2 shear anisotropy in the
(010) plane, and A3 shear anisotropy in the (001) plane. Table 4 shows the |A1 − 1| values
of Ti2lnX (X = C, N) and Zr2lnX (X = C, N). Ti2lnN and Zr2lnN have the highest absolute
values, respectively, indicating that the shear anisotropy is high. On the other hand, Ti2lnC
and Zr2lnC have the lowest shear anisotropy on the (100) and (010) planes, respectively.
The shear anisotropy results for A1 agree with those of Ashear. Therefore, the order of
shear anisotropy is consistent with the order of elastic anisotropy. To sum up, the elastic
anisotropy order of the M2InX system is Ti2InX > Zr2InX (X = C, N) and M2InN > M2InC
(M = Ti, Zr).

Crystal orientation, or the arrangement of crystal atoms in distinct crystal planes
and orientations, can also influence elastic anisotropy. As a result, the elastic modulus
anisotropy of the M2InX phase is represented by the 3D surface structure using the follow-
ing formula [36–38]:

1
B

= (S11+S12+S13)−(S 11+S12−S13−S33)l
2
3 (13)

1
G
= S44 +

[
(S11−S12)−

1
2

S44

](
1 − l2

3

)
+2(S11+S33−2S13−S44)l2

3(1 − l 2
3

)
(14)

1
E
= S11 (1 − l 2

3

)2
+S33l4

3+(2S 13+S44)l
2
3(1 − l 2

3

)
(15)

In this case, l3 represents the direction cosine.
Figures 6 and 7 display the 3D surface structures of Ti2lnC, Ti2lnN, Zr2lnC, and

Zr2lnN in terms of E, B, and G. Elastic isotropy may be described if the spherical 3D surface
structure does not stray significantly from the sphere. Otherwise, it is anisotropic.
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As can be seen from Figures 6 and 7, for bulk modulus, the 3D views of Ti2lnC and
Zr2lnC show significant compression along the c-axis, while the 3D views of Ti2lnN and
Zr2lnN show significant compression along the a- and b-axes. Combined with the data
analysis in Table 5, the B[100]/B[1] values of Ti2lnC, Zr2lnC, Ti2lnN, and Zr2lnN have a
large deviation from 1, which can also indicate that the materials are anisotropic.
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Table 5. Calculated uniaxial elastic moduli in the [100], [10] and [1] directions (in GPa) of M2InX
(M = Ti, Zr and X = C, N) MAX phases.

Ti2lnC Ti2lnN Zr2lnC Zr2lnN

E

[1] 304 205 211 174
[10] 309 216 215 174

[100] 309 216 215 180
[100]/[1] 1.02 1.05 1.02 1.04

B

[1] 160 86 156 163
[10] 172 163 160 170

[100] 172 163 160 170
[100]/[1] 1.08 1.90 1.03 1.04

G

[1] 122 118 112 80
[10] 125 122 115 84

[100] 125 122 115 84
[100]/[1] 1.02 1.03 1.03 1.05
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When the shear moduli of Ti2lnN and Zr2lnN are compared to those of a spherical
shape, it is obvious that their shapes are considerably different. As a result, Ti2lnN and
Zr2lnN shear moduli are anisotropic. Ti2lnN and Zr2lnN shear moduli also are anisotropic,
and the anisotropy order is Ti2lnN > Ti2lnC and Zr2lnC > Zr2lnN. Ti2lnN has a substan-
tially higher degree of shear anisotropy than Zr2lnN. At the same time, this conclusion is
compatible with the previously reported order of percent shear anisotropy. When com-
pared to bulk and shear modulus, Young’s modulus E considers both bulk modulus B
and shear modulus G. The 3D plots of the Young’s modulus of M2InX (M = Ti, Zr and
X = C, N) MAX phases are more compressible along the a- and b-axes than the c-axis, as
shown in Figures 6 and 7. Ti2lnN is more anisotropic than Ti2lnC, whereas Zr2lnN is more
anisotropic than Zr2lnN.

The three-dimensional elastic modulus graph shows that Ti2lnN and Zr2lnN are
elastically anisotropic, with Ti2lnN having more elastic anisotropy than Zr2lnN. This is
consistent with the AU value results presented above.

To further illustrate the elastic anisotropy of M2InX (M = Ti, Zr and X = C, N) MAX
phases, Figure 8 plots the 2D projections of the elastic modulus of the M2InX system on
crystal planes (001) and (100), respectively. Based on Figure 8, Table 5 shows the elastic
modulus of the M2InX phases. As can be shown in Table 5, the G[100]/G[1] values of
Ti2lnC and Ti2lnN are 1.02 and 1.03, respectively, indicating that there is a divergence
between G[100]/G[1] and 1, indicating that the material has a greater shear modulus and
anisotropy. As a result, Ti2lnN has the largest shear modulus anisotropy, followed by
Ti2lnC, showing that the order of anisotropy of G is Ti2lnN > Ti2lnC. Zr2lnC and Zr2lnN
have G[100]/G[1] values of 1.03 and 1.05, respectively, showing that the anisotropic order
of G is Zr2lnN > Zr2lnC. This is consistent with the results of A1 above.
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The E[100]/E[1] values of Ti2lnC and Ti2lnN are 1.02 and 1.05, respectively, as shown
in Table 5. Zr2lnC and Zr2lnN have E[100]/E[1] values of 1.02 and 1.04, respectively. As
a result, the anisotropic order of E is Ti2lnN > Ti2lnC, Zr2lnN > Zr2lnC. This is consistent
with the AU results.

The expected values of the bulk modulus along the [100] and [10] directions are
significantly larger than those along the [1] direction. As shown in Table 5, the B[100]/B[1]
values of Ti2lnC and Ti2lnN are 1.08 and 1.90, respectively. The B[100]/B[1] values of
Zr2lnC and Zr2lnN are 1.03 and 1.04, respectively. It can be seen that Ti2lnN has the
largest anisotropy, which can be clearly perceived in combination with the 2D diagram,
showing that the compression ratio along the c-axis is smaller than the a-axis and b-axis
compression [39,40].

3.5. Debye Temperatures and Anisotropy of Sound Velocities

The Debye temperature (θD) is a fundamental thermodynamic property of a solid.
The Debye temperature is commonly used to characterize a material’s thermal properties,
which may be computed using the single crystal elastic constant [41]:

θD =
h
kB

[
3n
4π

(
NAρ

Mc

)] 1
3
vm (16)

NA stands for Avogadro’s constant, kB is Boltzmann’s constant, and h is Planck’s
constant. the total number of atoms in the unit cell is represented by n. M stands for
molecular weight, ρ is density, and vm represents the average sound velocity, which is
determined by the longitudinal and transverse sound velocities, as shown in the following
equation [42,43]:

vl =

[(
B+

4G
3

)
/ρ

] 1
2

(17)

vt =

(
G
ρ

) 1
2

(18)

vm =

[
1
3

(
2
v3

t
+

1
v3

l

)]− 1
3

(19)

Table 6 shows the calculated values of vl, vt, vm, and θD for the compounds. In general,
the greater the density, the slower the sound speed. Due to the higher densities of Ti2lnN
and Zr2lnN (6.389 g/cm3 for Ti2lnN and 7.302 g/cm3 for Zr2lnN), their sound velocities
are relatively slow in Table 6.

Table 6. The density ρ, sound velocities (longitudinal νl, transverse νt, and mean νm), and Debye
temperature θD of M2InX (M = Ti, Zr and X = C, N) MAX phases.

TM5Al3C ρ (g/cm3) vl(km/s) vt (km/s) vm(km/s) θD (K) Ref.

Ti2lnC 6.079 6.738 4.271 4.697 564 This work
Ti2lnN 6.389 6.013 3.555 3.938 480 This work
Zr2lnC 6.949 6.066 3.573 3.960 446 This work
Zr2lnN 7.302 5.791 3.362 3.731 426 This work

5.770 3.297 423 Theo. [23]

Figure 9a shows the variation in different sound velocities. Ti2lnC has the highest
Debye temperature due to its low density and high elastic modulus, and Zr2lnN has the
lowest Debye temperature due to its high density and low elastic modulus. As we all know,
the Debye temperature is commonly employed to reflect the strength of chemical bonds
and the hardness of materials. As a result, the higher the Debye temperature, the stronger
the chemical bond and the harder the solid.
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It can be shown that Ti2lnC has the highest Debye temperature (564 K), suggesting
that its chemical bond is the strongest, while Zr2lnN has the lowest (426 K), showing that
its chemical bond is the weakest. At the same time, it can be demonstrated that Ti2lnC
has the highest hardness and Zr2lnN has the lowest. This confirms the previous section’s
conclusion about the materials’ strength and hardness based on the elastic constant.

In addition, there is a certain proportional relationship between Debye temperature
and thermal conductivity, so the higher the Debye temperature of the material, the greater
the thermal conductivity, which is consistent with the literature [44–46]. Therefore, Ti2lnC
has the largest Debye temperature and thus exhibits the largest thermal conductivity.

The transverse sound velocity has two modes: vt1 (first transverse mode) and vt2
(second transverse mode). The directional sound velocity calculation results of M2InX
phases are shown in Table 7. Table 7 shows that the first transverse sound velocity ([10]vt1) of
the M2InX system along the [100] direction is the greatest, followed by the first longitudinal
sound velocity ([1]vl). The directional sound velocity is well-known to be related to the
elastic constants (C11, C33, C44). As a result, Figure 9b shows the relationship between
the elastic constants of sound velocity in different directions for the M2InX phases. All
sound speeds are obviously anisotropic in both Ti2lnX (X = C, N) and Zr2lnX (X = C, N)
systems due to the shift in sound speed direction. It is also demonstrated that the link
between sound speed and elastic constant is consistent. For example, the initial transverse
sound velocity ([10]vt1) along the [100] direction is related to C11, for which the order is
Ti2lnC > Zr2lnC > Ti2lnN > Zr2lnN. Similarly, the change trend of [1]v1 matches that of C33,
and the change trend of [1]vt2, [100]vt1, and [10]vt2 matches that of C44. [100]vl is associated
with C11-C12. Therefore, Figure 9b plots the relationship between different sound velocities
for M2InX phases.

Table 7. Anisotropic sound velocities (m/s) of M2InX (M = Ti, Zr and X = C, N) MAX phases.

[100] [1]

[100]vl [10]vt1 [1]vt2 [1]vl [100]vt1 [10]vt2

Ti2lnC 4289 6858 3846 6331 3846 3846
Ti2lnN 3906 5985 3683 5974 3683 3683
Zr2lnC 3715 6070 3431 5888 3431 3431
Zr2lnN 3564 5760 3295 5555 3295 3295

3.6. Thermal Properties

Generally speaking, the thermal properties of materials are usually characterized by
thermal conductivity, heat capacity, and thermal expansion coefficient. Thermal conductiv-
ity is a measure of the thermal conductivity of a substance. The lattice thermal conductivity
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kph is one of the most important indicators to describe the thermal behavior of solids.
Therefore, according to Slack’s model [47], the lattice thermal conductivity of M2InX phases
can be calculated with the following empirical formula:

kph= A
Mavδθ3

D

γ2Tn2/3 (20)

Here, the volume of each atom is denoted by δ3. The average atomic mass of each
atom is denoted by Mav, T is the temperature, and n is the number of atoms in the unit cell.
γ is the Grüneisen parameter that can be obtained from Poisson’s ratio v, while Aγ is the
component associated with γ, and the formulas are as follows [48]:

γ =
3(1 + v)

2(2 − 3v)
(21)

Aγ =
5.720 × 107 × 0.849

2 ×
(

1 − 0.154
γ + 0.228

γ2

) (22)

The lattice thermal conductivities of Ti2lnC, Ti2lnN, Zr2lnC, and Zr2lnN at two tem-
peratures (300 K and 1300 K) are shown in Table 8. The results show that most of the M2AX
phases have thermal conductivities ranging from 12 to 60 W·m−1 [49]. The calculation
result is within this range. The lattice thermal conductivities of Ti2lnC, Ti2lnN, Zr2lnC,
and Zr2lnN at room temperature (300 K) are 51.48, 20.43, 23.59, and 19.42 W·m−1·K−1,
respectively. Therefore, Ti2lnC, Ti2lnN, Zr2lnC, and Zr2lnN can serve as potential thermal
conductive materials at room temperature. As shown in Figure 10, as the temperature
increases, kph decreases rapidly and then tends to a limit value. In the temperature range of
300 K–1300 K, the order of kph is Ti2lnC > Zr2lnC > Ti2lnN > Zr2lnN.

Table 8. Calculated δ (in Å), Mav (in kg/mol), Grüneisen parameter γ, Aγ (×10−8), and lattice
thermal conductivities kph (in W·m−1·K−1) of M2InX (M = Ti, Zr and X = C, N) MAX phases.

δ Mav γ n Aγ kph (300 K) kph (1300 K) kmin

Ti2lnC 2.48 55.66 1.16 8.00 3.34 51.48 11.88 1.23
Ti2lnN 2.44 56.16 1.41 8.00 3.24 20.43 4.72 1.12
Zr2lnC 2.60 77.31 1.43 8.00 3.23 23.59 5.44 0.96
Zr2lnN 2.64 77.81 1.48 8.00 3.21 19.42 4.48 0.94
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The thermal conductivity is mainly derived from the lattice thermal conductivity at the
ground state temperature. Therefore, the thermal conductivity reflection of ceramics can be
characterized as the minimum thermal conductivity [50]. Consequently, the Clark model is
used here to calculate the minimum thermal conductivity kmin of the M2InX system, and
the expression is as follows:

kmin = KBVm

(
nρNA

M

) 2
3

(23)

Table 8 shows the calculated minimum lattice thermal conductivities for the M2InX
system. It can be seen from Table 8 that the kmin of M2InX are 1.23, 1.12, 0.96, and
0.94 W·m−1·K−1, respectively. The difference between the lattice thermal conductivity
and θD is that the higher Debye temperature has a larger lattice thermal conductivity,
so Ti2lnC has the largest thermal conductivity, which corresponds to the highest De-
bye temperature (564 K) of Ti2lnC. Furthermore, the calculated order of minimum ther-
mal conductivity is Ti2lnC > Ti2lnN > Zr2lnC > Zr2lnN. As is known, M2InX phases are
not potential high-temperature thermal barrier coatings when compared with Ln2Zr2O7
(1.2~1.4 W·m−1·K−1) [51]. The thermal conductivity of new ceramic materials is between
1.2 W·m−1·K−1–1.6 W·m−1·K−1. Among these compounds, the thermal conductivity of
Ti2lnC is within this range, so Ti2lnC may become a potential insulating material [52].

3.7. Electronic Properties

The electronic properties (density of states) of M2InX (M = Ti, Zr and X = C, N) MAX
phases were studied to better understand chemical bonding and bond behaviors. Figure 11
depicts the M2InX phases’ total density of states (TDOS) and partial density of states
(PDOS). To begin, it is clear that DOS has a significant finite value at the Fermi level,
indicating that these compounds exhibit metallic conductivity. Figure 11 shows that the
total density of states (Ef) value of Ti2InN and Zr2lnN is greater than that of Ti2InC and
Zr2lnC, indicating that Ti2InN and Zr2lnN are more conductive than Ti2InC and Zr2lnC.
Secondly, the peak topologies and relative heights of the peaks around Ef in the TDOS
plot are highly comparable, indicating the presence of similar chemical bonds in Zr2AN.
The time difference around the Fermi level is mostly made up of ln-p and M-d states. The
time difference below the Fermi energy is caused mostly by the X-s, M-s, and M-p states,
whereas the time difference above the Fermi energy is caused primarily by the ln-s and X-p
states. As shown in Figure 11, the ln-p, M-d, and X-p states exhibit substantial hybridization,
allowing M-C and M-N chemical bonds to form, resulting in the high elastic modulus of
M2InX. PDOS exhibits multiple hybridizations of the electronic states M, ln, and X. The
valence band of M2InX in Figure 11 displays substantial hybridization of the M-d and X-p
states, as predicted for covalent compounds. The d-p hybrid state corresponding to the
M-ln bond was discovered to be in a greater energy range than the M-X bond. As a result,
the M-X d-p hybridization helps to maintain the crystal structure. Finally, it is demonstrated
that M’s electronic charge density almost overlaps that of ln, indicating that the bonding
between M and ln is quite weak. These findings are consistent with the observation that
the biggest phase features very strong M-X bonds and very weak M-ln bonds.

As can be seen from Table 9, the M atom loses electrons, while the ln and X atoms
gain electrons. Among them, for the Ti2InX system, the Ti-C bond has the largest BP value,
indicating that the Ti-C bond has a strong chemical bond. Therefore, it is proved that Ti2lnC
has the strongest chemical bond and Ti2lnN has the weakest chemical bond. For the Zr2InX
system, it can also be stated that Zr2InC has the strongest chemical bond and Zr2InN has
the weakest chemical bond. The M and X atoms form a strongly directed M-X covalent
bond originating from the hybrid M d-X p state. These results are also consistent with the
finding that the largest phase typically has very strong M-X bonds and relatively weak
M-A bonds.



Metals 2022, 12, 1111 16 of 19
Metals 2022, 12, x FOR PEER REVIEW 17 of 20 
 

 

 

Figure 11. The calculated total and partial density of states for (a) Ti2InC, (b) Ti2InN, (c) Zr 2InC, and 

(d) Zr 2InN. 

  

Figure 11. The calculated total and partial density of states for (a) Ti2InC, (b) Ti2InN, (c) Zr 2InC, and
(d) Zr 2InN.



Metals 2022, 12, 1111 17 of 19

Table 9. Calculated Mulliken charge and bond population (BP) analysis of M2InX (M = Ti, Zr and
X = C, N) MAX phases.

Atom
Charge Number

Charge Bond BP Length(Å)
s p d f Total

Ti2lnC Ti 2.18 6.79 2.66 0.00 11.62 0.38 Ti-C 1.04 2.12
In 1.11 1.94 9.97 0.00 13.02 −0.02
C 1.46 3.27 0.00 0.00 4.73 −0.73

Ti2lnN Ti 2.19 6.77 2.69 0.00 11.65 0.35 Ti-N 0.76 2.10
In 1.05 1.97 9.97 0.00 12.99 0.01
N 1.68 4.04 0.00 0.00 5.71 −0.71

Zr2lnC Zr 2.28 6.63 2.68 0.00 11.59 0.41 Zr-C 1.06 2.30
In 1.11 1.93 9.98 0.00 13.02 −0.02
C 1.49 3.31 0.00 0.00 4.80 −0.80

Zr2lnN Zr 2.30 6.63 2.72 0.00 11.65 0.35 Zr-N 0.69 2.27
In 1.03 1.92 9.97 0.00 12.92 0.08
N 1.70 4.07 0.00 0.00 5.77 −0.77

4. Conclusions

In summary, this work uses first-principles calculations to estimate the anisotropic
elastic and thermal properties of M2InX (M = Ti, Zr and X = C, N) MAX phases. The
structural properties and elastic constants of the obtained M2InX phases are in agreement
with the results reported in the literature, the obtained data are quite reliable, and the
M2InX phase’s mechanical stability has been studied. According to the elastic constants,
Ti2lnC and Zr2lnC are more incompressible along the a- and b-axes, while Ti2lnN and
Zr2lnN are more compressible along the a- and b-axes. For all M2InX phase materials, shear
modulus is a better measure of hardness than bulk modulus. Therefore, Ti2lnC has high
hardness and can be used to make superhard materials. The anisotropic elasticity of the
M2InX phase is Ti2lnN > Ti2lnC, Zr2lnN > Zr2lnC, based on AU, Acomp, and Ashear values,
3D graphs, and 2D projection analysis. In addition, Ti2lnC has the highest speed of sound
(4.697) and Debye temperature (564 K), while Zr2lnN has the lowest speed of sound (3.731)
and Debye temperature (426 K). Meanwhile, Ti2lnC may become a potential insulation
material. The electronic properties of the M2InX phase were investigated, and the presence
of strong M-X d-p hybridization helps to maintain the crystal structure.
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