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Anisotropic failure of Fourier theory in time-domain
thermoreflectance experiments
R.B. Wilson1 & David G. Cahill1

The applicability of Fourier’s law to heat transfer problems relies on the assumption that heat

carriers have mean free paths smaller than important length scales of the temperature profile.

This assumption is not generally valid in nanoscale thermal transport problems where spacing

between boundaries is small (o1 mm), and temperature gradients vary rapidly in space. Here

we study the limits to Fourier theory for analysing three-dimensional heat transfer problems

in systems with an interface. We characterize the relationship between the failure of Fourier

theory, phonon mean free paths, important length scales of the temperature profile and

interfacial-phonon scattering by time-domain thermoreflectance experiments on Si,

Si0.99Ge0.01, boron-doped Si and MgO crystals. The failure of Fourier theory causes aniso-

tropic thermal transport. In situations where Fourier theory fails, a simple radiative boundary

condition on the heat diffusion equation cannot adequately describe interfacial thermal

transport.
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W
hen heat carriers have mean free paths (MFP) shorter
than important length scales of the temperature
profile, heat transport is diffusive. When heat carriers

have MFPs comparable to, or larger than, important length scales
of the temperature profile, heat transport is ballistic. In
nonmetals, the dominant heat carriers are phonons that have a
broad spectrum of MFPs and frequencies1,2. As a result, no single
length scale describes the transition from diffusive to ballistic
thermal transport. Instead, as length scales in a thermal transport
problem decrease, Fourier theory has diminishing predictive
power3–7.

The breakdown of Fourier theory at small length scales
has implications for nanoelectronics8 and nanostructured
thermoelectric devices9 and has received a great deal of recent
attention1–7,10–14. For example, deviations between Fourier
theory predictions and experimental data have been reported to
depend on (1) the width of the nickel heater lines in
nanofabricated Ni/sapphire samples7, (2) the diameter of the
heating pump laser beam, 2w0, in time-domain thermoreflectance
(TDTR) measurements of bulk Si between 30 and 100K (ref. 4),
(3) the spatial frequency of heating in thermal grating
measurements of 400 nm thick Si membranes at 300K (ref. 10)
and (4) the frequency of periodic heating, f, in TDTR
measurements of semiconductor alloys and some types of
amorphous silicon between 80 and 420K (refs 6,15). In TDTR,
and the related technique of frequency-domain thermoreflectance
(FDTR), f sets the time interval over which heat travels and,
therefore, controls an important length scale of the temperature
profile. When heat flow is diffusive, this length scale is known as
the thermal penetration depth, dp¼ (L/pCf)1/2, where L is the
thermal conductivity and C is the volumetric heat capacity.

These experiments have greatly advanced understanding of
thermal transport on nanometer to micron length scales.
However, unresolved issues preclude a complete picture of when
and how Fourier theory will fail in a nanoscale thermal transport
problem. For example, why do deviations between TDTR data
and Fourier theory predictions sometimes depend on f but not w0

(ref. 6), and other times on w0 but not on f (ref. 4)?
All prior TDTR and FDTR studies have interpreted data that

deviates from Fourier theory predictions as phenomena intrinsic
to the phonon dynamics of the material being studied and have
neglected the role of the interface. TDTR and FDTR experiments
require samples to be coated with a thin metal film to serve as an
optical transducer, introducing a metal/sample interface to the
heat transfer problem. The interface causes a thermal resistance
due to the reflection/transmission of phonons, that is, interfacial-
phonon scattering16. This thermal resistance is typically described
with a radiative boundary condition on the heat diffusion
equation, known as the interfacial thermal conductance17. This
description implicitly assumes the temperature is well defined at
each side of the interface and that all phonons in the solid are in
equilibrium with each other at all distances from the interface.
Whether this assumption is justified in nanoscale thermal
transport problems has long been controversial18, but it is
particularly suspect in experiments where a significant fraction of
heat-carrying phonons are ballistic. Despite this, experiments that
cannot be explained using a radiative boundary condition for heat
transfer at the interface are rare5.

Here, we report the results of three sets of experiments that
examine how the failure of Fourier theory in TDTR experiments
relates to the MFP distributions in solids and the transport
properties of the metal/sample interface. In our first set of
experiments, we perform TDTR measurements of Si at room
temperature with offset pump and probe beams, allowing for
the independent determination of the through-plane and in-plane
thermal conductivities19. The beam-offset measurements

demonstrate that varying w0 in a TDTR experiment more
strongly affects the applicability of Fourier theory in the in-plane
direction. In our second set of experiments, we perform TDTR
measurements of Si, Si0.99Ge0.01 and Si heavily doped with boron
(Si:B) as a function of w0, f and temperature. The Ge in
Si0.99Ge0.01 preferentially scatters high-frequency phonons due to
mass disorder20, while the boron in Si:B preferentially scatters
low-frequency phonons due to hole/phonon scattering21. As a
result, the MFP distributions are systematically different in Si,
Si0.99Ge0.01 and Si:B, allowing us to relate differences in the
phonon dynamics to differences in how Fourier theory fails. We
posit that the thermal diffusivity of high-wavevector phonons
determines whether a failure of Fourier theory is observable in
TDTR experiments as a function of f or w0. In materials whose
high-wavevector phonons have a low thermal diffusivity, Fourier
theory fails more readily as a function of f than w0. In materials
whose high-wavevector phonons have high thermal diffusivity,
Fourier theory fails as a function of w0. In our third set of
experiments, we show treating interface transport with a radiative
boundary condition on the heat diffusion equation can be an
inadequate description when length scales of the temperature
profile are comparable to phonon MFPs.

A secondary goal of our work is to describe a ballistic/diffusive
thermal model capable of explaining (1) why the failure of
Fourier theory is anisotropic and (2) how interfacial-phonon
scattering impacts the accuracy of Fourier theory predictions.
Fourier theory fails in TDTR experiments because Fourier’s law is
unable to predict the heat current, J, due to long MFP phonons
near temperature-profile minima and maxima (extrema).
Fourier’s law fails near temperature-profile extrema because it
uses a first-order Taylor-series approximation for the temperature
profile that is particularly inaccurate in proximity to locations
where rT changes sign.

Results
Anisotropic failure of Fourier theory in Si. For TDTR mea-
surements of Si at room temperature with w0o5 mm, we observe
discrepancies between Fourier theory predictions and experi-
mental data22, see Fig. 1. From our TDTR data, we derive an
apparent thermal conductivity, LA, and an apparent interface
conductance, GA, for each measurement by fitting the data with
an isotropic diffusive model19,23 that treats the L of Si, and
interfacial thermal conductance between Al and Si, G, as fitting
parameters. GA is the value for G that produces the best fit to the
shape of decay of Tin with pump-probe delay time, tD. LA is the
value for L that produces the best fit to the out-of-phase
temperature response, Tout.

Beam-offset measurements, see Fig. 1b, suggest that Fourier
theory over-predicts the thermal response of Si for a measure-
ment with w0E1.05 mm and f¼ 9.8MHz because Fourier theory
over-predicts the in-plane component of the heat current, Jr.
In other words, the solution of the heat diffusion equation with
an isotropic thermal conductivity of LA¼ 105Wm� 1 K� 1

over-predicts the amplitude of the thermal response away
from the centre of the pump beam. If we instead fit the
data with an anisotropic model19 that treats the through-plane
and in-plane thermal conductivities, Lz and Lr, as inde-
pendent fitting parameters, we find LzE140Wm� 1 K� 1 and
LrE80Wm� 1 K� 1. The heat current has two directional
components, through-plane and in-plane; therefore, we can
only define apparent thermal conductivities for these directions.
Adding additional fitting parameters cannot improve the fit
because the fit is already excellent.

That Fourier theory fails anisotropically helps resolve how
prior TDTR studies of Fourier theory failure relate to each other.
Prior studies that observed a dependence of LA on f studied low
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L materials, such as semiconductor alloys and a-Si (refs 6,15).
These TDTR measurements observed a failure of Fourier theory
in the through-plane direction because dpoow0, meaning the in-
plane heat current was negligible. On the other hand, the
observation of Minnich et al.4 that LA of Si depends on w0 below
100K was related to a failure of Fourier theory in the in-plane
direction. That Fourier theory fails anisotropically has direct
implications for the interpretations of prior experiments that
assumed Fourier theory failed isotropically in three-dimensional
heat-transfer problems1,4,7,24, see Supplementary Note 1 and
Supplementary Figs 1 and 2.

Failure of fourier theory in Si, Si:B and Si0.99Ge0.01. Compar-
isons between measurements of Si, Si:B and Si0.99Ge0.01 allows us
to study how Fourier theory failure in TDTR experiments relate
to differences in MFP distributions because hole/phonon and
point-defect/phonon scattering produce controlled differences in
the MFP distributions of these materials21. We quantify the
impact of hole/phonon and point-defect/phonon scattering on
the L of Si with thermal conductivity relaxation time
approximation (RTA) models for Si, Si:B and Si0.99Ge0.01 (see
Supplementary Methods).25 By RTA, we mean that we assume all
scattering can be combined into a single frequency-dependent
relaxation-time using Matthiessen’s rule, ignoring that normal
phonon/phonon scattering is not resistive in isolation from
other scattering mechanisms26. Our RTA models compare
favourably to first-principles calculations20,27,28, see Fig. 2 and
Supplementary Fig. 3.

The RTA model results for Si, Si:B and Si0.99Ge0.01 are shown
in Fig. 2 three ways: the thermal conductivity accumulation
function, the heat capacity spectral distribution and the thermal
conductivity spectral distribution. The thermal conductivity
accumulation function is the cumulative contribution to the heat
current from phonons with a MFP less than L (ref. 2),

a Lð Þ ¼ 1
LB

X
j

ZL

0

d‘
1
3
cj ‘ð Þvj ‘ð Þ‘; ð1Þ

where j sums over all three polarization branches, LB is the bulk
thermal conductivity, c is the MFP and v is the group velocity.
The heat-capacity spectral distribution is

c qð Þdq ¼ kBD qð Þ dn qð Þ
dT

v qð Þdq; ð2Þ

where kB is Boltzmann’s constant, D(q) is the density of states and
n(q) is the occupation number. The thermal conductivity spectral
distribution, l(q), quantifies the heat carried by phonons with
wavevector q,

l qð Þdq ¼
X
j

dq
1
3
cj qð Þvj qð Þ2tjðqÞ; ð3Þ

where t(q) is the relaxation time.
In our discussion below, we refer to differences in l(q) for

high- and low-wavevector phonons in different materials. We
define high-/low-wavevector phonons as those with a q larger/
smaller than q0E0.4qmax in Si and Si:B and q0E0.25qmax in
Si0.99Ge0.01. This definition of q0 is chosen so that c(q0) at room
temperature is less than dp(20MHz)/5 so that all high-wavevector
phonons have MFPs much shorter than the minimum length
scales of the temperature profile. This definition for high-/low-
wavevector phonons leaves the majority of the total heat capacity
(490%) with high-wavevector diffusive phonons (Fig. 2b),
meaning the mean occupation of the high-wavevector phonons
defines the temperature profile of the solid. We choose to frame
our discussion in terms of high-/low-wavevector phonons instead
of short/long MFPs because several of our conclusions are based
on comparing results for materials with controlled differences in
l(qoq0) and l(q4q0).

At room temperature, Fourier theory accurately predicts the
thermal response of Si and Si:B up to f¼ 17.6MHz, but
inaccurately predicts the thermal response of Si0.99Ge0.01, see
Fig. 3a. (Fig. 3a also includes measurements of LA(f) for Si0.2Ge0.8
and Ge that are relevant to results presented in the next section
but are not discussed here.) Phonons with c4dp (17.6MHz)
carry 50Wm� 1 K� 1 of heat in Si and 30Wm� 1 K� 1 in
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Figure 1 | Anisotropic failure of Fourier theory. (a) Amplitude of measured in-phase and out-of-phase temperature response of 80 nm Al/Si at room

temperature as a function of pump/probe delay time with w0¼ 1.05 and 10.3mm (circles), and the prediction of an isotropic diffusive model with bulk

thermal properties for Si and an Al/Si interface conductance of GA¼ 250MWm� 2 K� 1 (lines). Bulk thermal properties for Si cannot explain the

magnitude of Tout at w0¼ 1.05mm; a thermal conductivity of LA¼ 105Wm� 1 K� 1 is required to explain the data with an isotropic diffusive model (b)

Amplitude of the measured out-of-phase temperature response at � 100 ps delay time and w0¼ 1.05mm, as function of offset distance between pump and

probe beam centres. An anisotropic diffusive thermal model with Lr¼80 and Lz¼ 140Wm� 1 K� 1 (red curve) is in good agreement with the data, while

an isotropic value of LA¼ 105Wm� 1 K� 1 (blue curve) over-predicts the amplitude of temperature oscillations away from the centre of the pump beam.
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Si0.99Ge0.01 (Fig. 2a), making it difficult to explain the different
behaviours for LA(f) as only a length-scale effect. The most
significant difference between Si and Si0.99Ge0.01 is l(q) for q4q0
(Fig. 2c). Therefore, we suggest a second important factor in
observing a failure of Fourier theory in the through-plane
direction, aside from low-wavevector phonons with MFPs longer
than experimental length scales, is for high-wavevector phonons
to have a small thermal conductivity, L0 ¼

R qmax

q0
l qð Þdq, and

therefore small thermal diffusivity.
Prior experimental studies that observed a dependence of LA

on f emphasized the importance of temperature profile length
scales being comparable to MFPs1,6,24. As we demonstrate in
more detail in subsequent sections, another factor causing LA to
deviate from LB in the through-plane direction is interfacial-
phonon scattering. The interfacial-phonon scattering of long
MFP phonons reduces the effective thermal conductivity,
Kz(z)¼ |Jz(z)/rzT(z)|, of the sample near the interface,
analogous to how boundary scattering reduces L of
nanostructured materials2. (Here, we use a different symbol for
thermal conductivity, K instead of L, to distinguish this effective
property from the apparent values defined earlier.) The
dependence of LA on f is evidence that the interfacial thermal
resistance is not isolated to the interface at z¼ 0 as is assumed in
standard analysis of TDTR and FDTR experiments.

An equivalent way to consider the effect of the interface is as a
boundary condition on the heat current. The spectral distribution
of the heat current across the interface is proportional to v(q)c(q)
(ref. 17), while the spectral distribution of the heat current in the
solid is l(q). This creates a spatial mismatch in the spectral
distribution of the heat current, resulting in a nonequilibrium
between high- and low-wavevector phonons near z¼ 0. We label
this effect as an interfacial nonequilibrium thermal resistance,
GNE

� 1. GNE
� 1 quantifies the resistance between the high-wavevector

phonons that carry the heat across the interface and the
low-wavector phonons that carry the heat in the solid.

In this context, the thermal diffusivity of high-wavevector
phonons affects LA(f) two ways. A small value for L0 ¼R qmax

q0
l qð Þdq corresponds to a larger GNE

� 1 (ref. 3). In addition, a
small thermal diffusivity increases the measurement sensitivity to
Kz near z ¼ 0, where the high- and low-wavevector phonons are
not in equilibrium. The dependence of LA on f occurs because the
sensitivity to GNE

� 1, which is localized near z¼ 0, increases with
increasing f and shorter dp. The predictions of a ballistic/diffusive
model (described in Methods) that accounts for both shortened
length scales and interfacial-phonon scattering is in reasonable
agreement with our data (solid lines in Fig. 3a). In our ballistic/
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diffusive model, the heat current from low-wavevector phonons is
calculated with a nonlocal expression that reduces to Fourier’s
law if MFPs are shorter than the temperature profile length scales.
The model makes no assumptions regarding how low-wavector
phonon MFPs compare with temperature profile length scales.
Supplementary Figure 4 shows how interfacial/phonon scattering
and f control the Kz(z) predicted by our ballistic/diffusive model.

At room temperature, Fourier theory does not accurately
predict the thermal response of Si and Si:B for spot sizes
below 5 mm, see Fig. 3b. Beam-offset measurements of Si:B
and Si at f¼ 9.8MHz yield LrE74±10Wm� 1 K� 1 and
LrE84±10Wm� 1 K� 1 at w0¼ 1mm, respectively. Alterna-
tively, we can resolve no dependence of LA on w0 in Si0.99Ge0.01,
despite E25Wm� 1 K� 1 of heat being carried by phonons with
c4w0 (Fig. 2a). For comparison, Si and Si:B have E50 and
25Wm� 1 K� 1 of heat carried by phonons with c4w0.

The lack of a spot-size dependence for LA of Si0.99Ge0.01
suggests a second condition for an observable failure of Fourier
theory in the in-plane direction, aside from low-wavevector
phonons having c4w0, is for high-wavevector phonons to have a
large L0 and therefore high thermal diffusivity. TDTR measure-
ments are more sensitive to Kr(rEw0)¼ |Jr(rEw0)/rrT(rEw0)|
in high thermal diffusivity materials where the following
condition is met: the magnitude of Jr(rEw0) is comparable to
the average magnitude of Jz across 0ozodp. Making w0 small
enough to meet this condition in low thermal diffusivity materials
is challenging given diffraction constraints on w0, but we expect
that LA for Si0.99Ge0.01 would be reduced at smaller spot size. The
predictions of our ballistic/diffusive model are in reasonable
agreement with our data (solid lines Fig. 3b).

The temperature dependence of l(q) in Si, Si:B and Si0.99Ge0.01
are systematically different. Therefore, varying the ambient
temperature offers another avenue for relating Fourier theory
failure in TDTR experiments to l(q). In Si, both l(q4q0) and
c(qoq0) increase rapidly with decreasing temperature. In
Si0.99Ge0.01, mass disorder prevents a large increase in l(q4q0)
with decreasing temperature. In Si:B, hole-phonon scattering
prevents a large increase in c(qoq0) with decreasing temperature.

Figure 4 shows measurements of LA(w0) for Si, Si:B and
Si0.99Ge0.01 between 40 and 300K. In Si, the spot-size dependence
of LA is large, but the frequency dependence between 1 and
10MHz is insignificant. We credit the increase in the spot-size
dependence of LA as temperature decreases to large increases in
both the thermal diffusivity of high-wavevector phonons and the
MFPs of low-wavevector phonons. The longer MFPs of low-
wavevector phonons increases the percentage of ballistic
phonons. The increase in thermal diffusivity increases measure-
ment sensitivity to Jr and decreases measurement sensitivity to Kz

near the interface. In Si:B, LA is weakly dependent on w0 and has
no observable f dependence because hole-phonon scattering
prevents a rapid increase in c(qoq0). The similarity in the
temperature dependence of LA for Si versus Si:B supports the
hypothesis that when w0 is small, Fourier theory is over
predicting the heat current from long MFP phonons, as Minnich
et al.4 posited.

In Si0.99Ge0.01, LA below 100K does not approach the pre-
diction of the RTA model for LB at any w0 or f, indicating that
Fourier theory is grossly inaccurate for this heat transfer problem
because the majority of heat-carrying phonons have MFPs longer
than temperature profile length scales. We attribute the increase
in spot-size dependence of LA for Si0.99Ge0.01 with decreasing
temperature to a rapid increase of c(qoq0), along with the more
slowly increasing thermal diffusivity of low-wavevector phonons.

Beam-offset measurements confirm the failure of Fourier
theory is anisotropic at low temperatures. For example, fitting
beam-offset data for Si at 77K, 9.8MHz and w0¼ 4.7 mm yields

Lz E900 and Lr E300Wm� 1 K� 1. Similarly, fitting beam-
offset data for Si0.99Ge0.01 at 120K, 1.1MHz and w0¼ 5 mm yields
LzE50 and LrE30Wm� 1 K� 1.

Our results for LA of Si agree with ref. 4 if compared as a
function of the root mean square of the pump and probe spot
sizes, but not if compared as a function of only pump spot size.
(Our pump and probe spot sizes are equal, but ref. 4 used
different pump and probe spot sizes.) In a linear heat transfer
problem, an exchange symmetry exists between thermometers
and heaters. Therefore, the TDTR measured thermal response
must by symmetric to the exchange of the pump and probe
beams. The exchange symmetry between thermometers and
heaters exists because a linear problem can be solved with a
Green’s function solution, g(r,t;r0t0), where r demarks position,
and Green’s functions possess the following symmetry:
g(r,t;r0t0)¼ g(r0,� t0;r,� t) (ref. 29). That the length scale that
governs LA includes the probe spot size is an important result, as
any theoretical effort to derive MFP distributions from LA(w0)
ignoring probe spot size is incomplete.

In addition to the experiments described above, we collected
FDTR data for Si at room temperature between 1.1 and 17.6MHz
with w0¼ 2.55 and 4.7 mm. Our FDTR data agree with the
predictions of a thermal model using the LAand GA derived from
TDTR data collected at the same w0 (see Supplementary Fig. 5).
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Our FDTR results therefore strongly disagree with BB-FDTR
measurements of a Au/Cr/Si sample in the same frequency
range1. We attribute the discrepancy to ref. 1 neglecting weak
Au electron–phonon coupling in their data analysis, see
Supplementary Note 2 and Supplementary Fig. 6.

Role of the interface. Standard analysis of TDTR and FDTR data
treats interfacial transport with a radiative boundary condition on
the heat diffusion equation, Jz(z¼ 0)¼G0DT(z¼ 0), where G0 is
the interface conductance of diffusive phonons17,

G0 ¼
1
4

X
j

Z
dq 1�Rj qð Þ
� �

Cj qð Þvj qð Þ: ð4Þ

Here, Rj is the probability that a phonon with polarization j
impinging on the interface from the sample side reflects and is
believed to be determined by interfacial bonding strength,
interface disorder and morphology and the vibrational
properties of both the sample and metal transducer16,30. Using
equation (4) assumes that the thermal resistance from interfacial/
phonon scattering is localized to z¼ 0, not spread across a finite
length scale determined by phonon MFPs. This assumption is
overly simplistic; interfacial/phonon scattering should affect the
heat current over a length scale comparable to the MFPs of the
heat-carrying phonons.

Measurements of GA for Si, Si0.99Ge0.01, Si0.2Ge0.8 and Ge
crystals coated with Al after native oxide removal demonstrate
that equation (4) is an inadequate description of interface
transport for Al/Si0.99Ge0.01 and Al/Si0.2Ge0.8. The measurement
results, shown in Fig. 5, have two features inconsistent with the
description offered by equation (4): the dependence of GA on f
and the significant differences between GA of Si versus Si0.99Ge0.01
and of Si0.2Ge0.8 versus Ge.

The dependence of GA on f for Si0.99Ge0.01 and Si0.2Ge0.8 is
consistent with a reduced effective thermal conductivity of the
sample, Kz¼ |Jz/rzT|, near the interface due to an interfacial
nonequilibrium thermal resistance, GNE

� 1. For each TDTR
measurement, we have two pieces of data that determine GA

and LA: the shape of decay of Tin(tD) and the magnitude of the
out-of-phase thermal response, Tout (Fig. 1). The shape of the
decay of Tin(tD) depends on G and KzðzodÞ. Here, d is
the distance heat travels in 3.5 ns, the maximum delay time. Tout,

which determines LA, depends on the average value of Kz over
the distance heat travels in 1/f, KzðzodpÞ. As f increases, Tout
becomes more sensitive to KzðzodÞ because dp decreases, and
therefore LA decreases (Fig. 3). In the thermal model we use to
derive LA and GA (ref. 23), we assume solid L is homogenous,
that is, that KzðzodpÞ¼KzðzodÞ¼LA. If this is false, the only
way the diffusive thermal model can still fit the frequency-
independent shape of Tin(tD), which it must to fit the data, is for
GA to depend on f. Therefore, the dependence of GA on frequency
suggests an inhomogenous Kz(z). GA and LA that increase and
decrease, respectively, with increasing frequency suggests
Kz(zod)oLA and G04GA, consistent with the ballistic/
diffusive model predictions (Supplementary Fig. 4).

The large differences in the magnitude of GA for Si, Si0.99Ge0.01,
Si0.2Ge0.8 and Ge are consistent with our hypothesis that a GNE

� 1 is
related to observations of Fourier theory failure in the through-
plane direction3. In most TDTR experiments, dp is much larger
than the length scale of the nonequilibrium near the interface3,
and therefore GNE

� 1 causes a reduced value of GA in addition to
any reduced value of LA. Our ballistic/diffusive model predicts
GNE

� 1 is largest, and therefore GA will be smallest, for materials
whose high-wavevector phonons have small L0. This is consistent
with our results: GA for Si0.2Ge0.8 is smaller than GA for either Ge
or Si, GA for Si0.99Ge0.01 is smaller than GA for Si.

To summarize, we explain the difference in magnitude and
convergence/divergence of GA(f) for Si versus Si0.99Ge0.01 and Ge
versus Si0.2Ge0.8 with a GNE

� 1 whose length scale and magnitude
are largely independent of f. What changes with f is measurement
sensitivity. The magnitude of GNE

� 1 is included in the value of GA

of the alloys at low f (Fig. 5), but moves to LA at high f (Fig. 3)
because dp becomes comparable to the length scale of
nonequilibrium.

Thus far, we have posited that interfacial-phonon scattering is
related to observations of Fourier theory failure in the through-
plane direction based on results for LA and GA of SiGe alloys.
Now, we present another set of experiments that supports this
hypothesis: measurements of LA for Si and MgO at low
temperature with different metal transducers and interface
conditions.

In Fig. 6, we show the impact of the interface on LA of Si at
300K and w0¼ 10.3 mm. For w0¼ 10.3 mm, JrooJz, and therefore
LAELz. TDTR measurements of Al/11 nm SiO2/Si and Ta/2 nm
SiO2/Si show LA values that deviate outside our error bars from
the bulk thermal conductivity value for Si of 142Wm� 1 K� 1

(refs 22,31).
In Fig. 7, we compare the effect of the interface and spot size

for Si and MgO at 48, 83 and 144K. The magnitude of transducer
dependence of LA for both Si and MgO at these temperatures is
on the order of 100Wm� 1 K� 1. In MgO, this is an B30%
change, comparable to the effect of changing from a 25 to 5mm
spot size. The large transducer dependence in MgO is evidence
that significant heat is carried by non-diffusive phonons, and that
Ta serves as a better thermal sink for these phonons than Al does
(see Supplementary Note 3).

Importance of temperature-profile extrema. Here, we use our
ballistic/diffusive model, described in equations (5)–(10) of
Methods, to gain insight into the anisotropic failure of Fourier
theory in TDTR measurements. The predictions of the ballistic/
diffusive model support our conclusions that (1) the Fourier
theory failure in TDTR experiments at small spot sizes is due to
an inability of Fourier’s law to accurately predict Jr and (2) Kz is
lowered near the interface because of interfacial-phonon
scattering.

A simple approach for determining whether Fourier theory is
accurate for a given heat transfer problem is to compare the
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Figure 5 | Effect of mass disorder on apparent interface conductance.

Apparent interface conductance of Si (black squares), Si0.99Ge0.01 (red

circles), Si0.2Ge0.8 (green circles) and Ge (orange squares) along with the

predictions of a ballistic/diffusive model (solid lines). The value of GA for Si

shown here differs from the value reported in Fig. 1 because the data in Fig. 1

is for a sample that did not have the native oxide removed before Al

deposition. The low thermal diffusivity of Si0.99Ge0.01 and Si0.2Ge0.8 results

in a large interfacial nonequilibrium thermal resistance that effects the value

of GA at low f, resulting in a lower value of GA than is observed for Si or Ge.
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predictions of ballistic and diffusive expressions for the heat
current. In Fig. 8, we compare the predictions of diffusive and
ballistic expressions for the heat current (Fourier’s law and
equation (9) in Methods) for the measurement of Al/Si shown in
Fig. 1. For these calculations, we approximate the temperature
profile by solving the heat diffusion equation using an Al/Si
interface conductance of G0¼ 250MWm� 2 K� 1 and thermal
conductivity of Si of LB¼ 142Wm� 1 K� 1. This represents
the expected temperature profile if Fourier theory did not fail at
small w0.

Fourier’s law fails most significantly near temperature-profile
extrema for three types of long MFP subpopulations of the Si
phonons (Fig. 8a–d): (1) phonons travelling in opposite directions
in the in-plane direction across r¼ 0, (2) phonons travelling in
opposite directions in the through-plane direction that reflect at
the interface at z¼ 0 and (3) phonons travelling in opposite
directions in the through-plane direction that transmit across the
interface at z¼ 0. The first-order Taylor series approximation of
the temperature-profile Fourier’s law uses is grossly inadequate
for cases (1) and (2) due to the sign change of dT/dr at r¼ 0 and
dT/dz at z¼ 0. (The plane of z¼ 0 is a virtual extrema in the
through-plane direction because reflected phonons see a mirror
image of the temperature profile.) As a result, Fourier’s law over
predicts the heat current from phonons described by cases

(1) and (2). Fourier’s law is also inaccurate for phonons travelling
in the through-plane direction that transmit at the interface, case
(3). However, the under-prediction of the heat current is less than
in cases (2) and (3), because this group of phonons still see a
significant temperature difference, DT . While Fig. 8b–d only
illustrates the failure of Fourier’s law for phonons with a MFP of
2 mm at two specific positions, the illustrations in Fig. 8b–d are
representative of why Fourier theory fails near temperature-
profile extrema.

The illustrations in Fig. 8 qualitatively explain why the failure
of Fourier theory is anisotropic in TDTR measurements of Si
even when w0 and dp are comparable. The majority of phonons
with MFPs longer than the in-plane length scale traverse the hot
region without scattering (Fig. 8b), meaning these phonons won’t
carry significant heat. In contrast, a significant percentage of long
MFP phonons, 1�R, travelling in the through-plane direction
are emitted from or absorbed in the hot metal film, (Fig. 8d), and
will therefore carry significant heat.

Because Fourier’s law over-predicts Jr near r¼ 0 (Fig. 8b), and
over-predicts Jz near z¼ 0 for phonons that reflect from the
interface (Fig. 8c), the failure of Fourier theory is anisotropic,
spatially inhomogeneous, and depends on the probability of
phonons reflecting from the interface. We show this in Fig. 8e–h
by comparing the average heat current magnitude from phonons
with a 1 mm MFP predicted by Fourier’s law to the predictions of
our ballistic/diffusive model in the adiabatic (R¼ 1) and radiative
(R¼ 0) limits. In Supplementary Note 4, we discuss how altering
w0 and f has the dual effect of changing length scales and
measurement sensitivity to nonequilibrium near extrema.

Discussion
Our ballistic/diffusive model predicts that the spectral distribu-
tion of heat carried by low-wavevector ballistic phonons, |JNL|, is
not equal to l(qoq0) within a length scale of the interface
comparable to c because of interfacial-phonon scattering. For
sufficiently short through-plane length scales of the temperature
profile, TDTR is sensitive to this region where the spectral
distribution of JNL is not equal to l(qoq0), explaining the
dependence of LA on f in alloys.

Prior TDTR and FDTR studies have explained deviations
between LA and LB by assuming phonons with MFPs longer than
some experimental length scale are ballistic and do not contribute
to LA (refs 1,6,11). This is equivalent to the explanation offered
by our ballistic/diffusive model in the limit that TDTR is
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measuring Kz(zoc), that is, the through-plane temperature
profile length scale is less than c, and the heat carried by
diffusive phonons is much greater than the heat carried by
ballistic phonons, |L0rT|c|JNL|, where L0 is the thermal
conductivity of the high-wavevector diffusive phonons.

Whether the condition that |L0rT|c|JNL| is met depends on
the phonon dynamics of the material being studied. The amount
of heat carried by ballistic phonons in the through-plane
direction near the interface, |JNL (0ozoc)|, depends on the
spectral distribution of c(q)v(q) for low-wavevector ballistic-
phonons (see equations (9) and (10) in Methods), while L0

depends on l(q) for high-wavevector diffusive phonons. For
materials like Si0.2Ge0.8, where only phonons with qo0.1qmax

have MFPS longer than the length scales of the temperature
profile, the assumption that |L0rT|c|JNL| is reasonable since
phonons with qo0.1qmax have little heat capacity (Fig. 2b). In

materials such as Si, Si0.99Ge0.01 and MgO, where the majority of
heat is carried by phonons with qo0.1qmax, significant deviation
from Fourier theory implies phonons with a non-negligible
c(q)v(q) are ballistic. Therefore, JNL may or may not be negligible
depending on L0 and R.

Our results are relevant for efforts to use TDTR and FDTR as a
MFP spectroscopy technique1,4,24. Observations of Fourier theory
failure in the through-plane and in-plane direction are both
sensitive to the MFP distribution of solids (Fig. 8h). In materials
where a measurement of Lr is possible with laser spot sizes on the
order of microns, for example, materials with a high thermal
diffusivity, it will be simpler to extract information concerning
MFP distributions from measurements of Lr(w0) rather than
measurements of Lz because Jr is less sensitive to interface effects
than Jz. That Jr is less sensitive to R than Jz can be seen in
Fig. 8f–h. For example, the difference between the adiabatic and
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radiative limits for Jz in Fig. 8h is much larger than for Jr. That
interfacial-phonon scattering impacts Jr less than Jz is analogous
to boundary scattering having less impact on the in-plane L of a
thin film than on the through-plane L2.

Our study provides insight into a long standing issue regarding
the definition of temperature and phonon mediated heat transfer
across interfaces18. The concept of an interfacial thermal
conductance implies an abrupt temperature drop at crystal
boundaries, which is consistent with molecular dynamics
simulations that define the temperature of individual atoms
with their kinetic energy. However, whether an equilibrium
concept such as temperature can be rigorously defined on length
scales shorter than the MFPs of heat-carrying phonons has long
been controversial18. Our ballistic/diffusive framework offers
insight into this dilemma. High-wavevector phonons are in
thermal equilibrium with each other on short length scales, and it
is primarily the occupation of high-wavevector phonons that
determine the kinetic energy of atoms (Fig. 2b). Molecular
dynamics simulations are measuring Geff¼ |Jz/DT|z¼ 0, which is
different from GA when GA includes a significant interfacial
nonequilibrium thermal resistance, GNE

� 1, as is the case for SiGe
alloys.

In conclusion, we performed TDTR experiments on Si,
Si0.99Ge0.01, Si:B and MgO as a function of w0, f and temperature.
These experiments provide three insights into how Fourier theory
fails in TDTR experiments. First, in measurements with small w0,
the primary effect of the small spot size is to cause a failure of
Fourier theory in the in-plane direction. Second, the thermal
diffusivity of high-wavevector phonons determines whether
measurements can resolve a failure of Fourier theory in the in-
plane or through-plane directions for fo20MHz and w041 mm
at room temperature. Third, an interfacial thermal conductance is
not adequate in a ballistic/diffusive heat transfer problem. To
accurately describe the effect of the interface on ballistic/diffusive
heat transfer problems, it is necessary to consider how the
reflection and transmission of phonons prevents thermal
equilibrium between heat-carrying phonons near the boundary
(Fig. 8c,d).

While this paper was under review, a paper was published by
Ding et al.32 theoretically examining three-dimensional heat-
transfer in an Al/Si sample on timescales between 1 ps and 1 ns
using the Boltzmann transport equation. Their model indicates
that only Jr, and not Jz, is affected by a reduced spot size,
consistent with our beam-offset measurements (Fig. 1); however,
their model’s prediction that interfacial scattering does not affect
Jz appears inconsistent with our experimental observations that
the interface plays an important role in through-plane transport
(Figs 5–7).

Methods
Experiment. In TDTR, the thermal response of a sample to a train of pump pulses
periodically modulated at frequency f is characterized by measuring temperature-
induced changes in the intensity of a reflected probe beam23. The experimental
data consists of the in-phase and out-of-phase voltages recorded by a Si photodiode
connected to an RF lock-in that picks out the signal components at the pump
modulation frequency f. In our implementation of TDTR, the pump and probe
spot sizes are equal. Temperature oscillations that are in-phase with the pump
beam, Tin, are to a good approximation the time-domain response to pulsed
heating. Temperature oscillations that are out-of-phase with the pump beam, Tout,
are, to a good approximation, the out-of-phase thermal response of the sample at
frequency f. Since most of the sensitivity of a TDTR measurement to the thermal
properties of a sample comes from Tout, 1/f is the most important timescale in our
experiment. Example TDTR data is shown in Fig. 1a. The parameters LA and GA

are convenient proxies for our data that represent how much our measurements
deviate from the predictions of Fourier theory (Fig. 1a). We do not view LA and GA

as effective thermal properties when they depend on f or w0. In other words, the
solution to the heat diffusion equation with L¼LA and G¼GA is only an accurate
description of the surface temperature, not the entire temperature profile. Further
details of our technique can be found in refs 19, 23 and 33.

For TDTR measurements with laser beams that have 1/e2 radii less than 5 mm,
in situ measurements of the beam intensity profiles on the sample were necessary
to prevent systematic errors in w0 that can cause result in spot size and frequency-
dependent LA values19.

When performing FDTR measurements, our experimental setup remains nearly
the same as for TDTR measurements; however, the Ti:sapphire oscillator used to
generate the train of pump and probe pulses is dropped out of mode lock, thereby
replacing the train of pulses with a CW beam.

Si and MgO samples were prepared with different surface treatments and
different metal film coatings. The geometry of the samples that were characterized
are Al/2 nm SiO2/Si, Al/11 nm SiO2/ Si, Ta/2 nm SiO2/Si, Ta/Si, Al/3 nm SiO2/
Si0.99Ge0.01, Ta/MgO and Al/MgO. The Si samples with 2–3 nm of SiO2 were
untreated commercial wafers with a native oxide. Thicker layers of thermal oxide
were grown by heating Si wafers in an oven to 950 �C for 5min at a ramp rate
of 5 �C per min. The thickness of SiO2 was measured using variable angle
spectroscopic ellipsometry. The Si substrate for the Ta/Si sample was HF treated to
remove the native oxide and then loaded into a high vacuum sputtering chamber.
The thin metal films were deposited on the Si, Si:B, Si0.99Ge0.01 and MgO substrates
under high vacuum. MgO samples were annealed at E800 �C under high vacuum
for 1 h before Al and Ta deposition. Si samples that were coated with Al films were
heated to E600 �C and then allowed to cool to room temperature before
deposition to provide cleaner interfaces. The Ta was deposited on the MgO
substrate at E700 �C to the form the a (bcc) phase34. On Si, the Ta film was
deposited slightly below 600 �C to prevent the formation of an extensive Ta-Si
silicide layer at the interface. Picosecond acoustics16,35 and Rutherford
backscattering spectroscopy confirmed that TaSi2 or Ta2O5 layers of appreciable
thickness were not formed. For control experiments, Al and Ta films were also
deposited on Si wafers that had 105 nm layers of thermal oxide on the surface, and
Al films were deposited on single crystal Al, Cu, and Ni substrates, see
Supplementary Fig. 7. The boron doping concentration in the Si:B sample was
1.6� 1019 cm� 3, determined by secondary ion mass spectroscopy. We determined
the relative sensitivity factor for boron in our secondary ion mass spectroscopy
measurement by measuring a reference sample of Si with a known concentration
profile of ion implanted boron.

Control TDTR measurements of Al/Ni and Al/SiO2 samples were performed as
a function of w0 and f, see Supplementary Fig. 7. We observed no dependence of
LA on w0 or f outside of our estimated experimental uncertainty of 8%. A radial
thermal conductivity for Ni within 5% of the through-plane value was derived from
beam-offset measurements at w0¼ 1.05 mm and f¼ 1.1 and 10MHz, see
Supplementary Fig. 8. We also performed control measurements to confirm the
temperature reading of our cryostat for low-temperature experiments, see
Supplementary Fig. 9.

In addition to the samples described above, a separate set of Al-coated Si,
Si0.99Ge0.01, Si0.2Ge0.8 and Ge samples were prepared specifically for the apparent
interface conductance measurements shown in Fig. 5. These samples were first HF
treated before being loaded in a high vacuum sputtering chamber to remove as
many extrinsic differences between the interfaces as possible, such as different
thicknesses of native oxide. In addition to the HF dip, the Si and Si0.99Ge0.01
samples were heated to E700 �C and the Si0.2Ge0.8 and Ge samples were heated to
E450 �C in high vacuum for 30minutes and then allowed to cool to room
temperature before Al deposition.

Ballistic/diffusive model for thermal transport. The thermal response measured
in TDTR experiments in heat transfer problems where Fourier theory is invalid can
be understood with a ballistic/diffusive model. By ballistic phonons, we mean
phonons with MFPs that are comparable to, or larger than, the important length
scales of the temperature profile and therefore require a nonlocal expression for the
heat current. By diffusive phonons, we mean phonons whose heat current is well
described by Fourier theory because their MFPs are shorter than the important
length scales of the temperature profile. The new ballistic/diffusive framework we
describe here is based on the derivation presented in Aschroft and Mermin for L of
a Drude metal36, and builds on our prior work in ref. 3. Our ballistic/diffusive
model draws on concepts outlined in two-fluid models for phonon transport
described by Armstrong37 and more recently by Maznev et al.12

High-wavevector phonons (q4q0), which contain the vast majority of the
solid’s heat capacity (Fig. 2b), form a thermal reservoir12,37. In our model, the
phonon wavevector that divides the high- and low-wavevector phonons, q0, must
meet the requirement that c(q0)oow0 and c(q0)oodp so that all high-wavevector
phonons are diffusive and the mean occupation of all high-wavevector phonons at
all positions is well described with a single temperature profile, T(r, z).

The dominant inelastic scattering mechanism for low-wavevector phonons is
three-phonon processes that involve two high-wavevector phonons12,38. Therefore,
we follow Maznev et al. and neglect coupling between low-wavevector phonons
and assume that low-wavevector phonons are only coupled to high-wavevector
phonons. Then, the thermal reservoir transports heat both diffusively and by
radiating and absorbing the lower frequency phonons with qoq0 and the total heat
current at position r due to all phonons is

JðrÞ ¼ �L0rT rð Þþ
X
j

X
qoq0

JNL ‘ðqÞ; rð Þ; ð5Þ
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where j sums over polarizations, L0 is the total thermal conductivity due to
phonons with q4q0 and JNL(c(q)) is the nonlocal heat current due to phonons
with a MFP c being radiated and absorbed from the thermal reservoir. The
nonlocal heat current across a plane, q, in a homogenous solid due to a low-
wavevector phonon excitation is equal to the product of the difference in the
number density of thermally excited phonons travelling in the positive and
negative directions, Dn(q)D(q)/2, the excitation’s group velocity, v(q) and the
difference in energy between excitations travelling in the positive and negative
directions, ‘o(q), that is, JNL¼ ‘oDnD(q)v/2, where n is the Bose–Einstein
occupation number and D is the volumetric density of states. Here, the difference
in thermally occupied states depends on the differences in temperature of the solid
where and when the low-wavevector phonons travelling in the positive and
negative directions last scattered. Because the most important timescale in our
experiment, 1/f, is much longer than phonon lifetimes, we can neglect any temporal
lag when relating Dn to T. Then, for a one-dimensional problem3,

JNLðqÞ ¼
vq
2
C qð ÞD�T qð Þ: ð6Þ

Here, DTðqÞ is the average temperature difference between phonons with MFP
c(q) travelling in the positive and negative direction.

A physically intuitive approximation for DT ; at position r is36

D�Tðr; ‘Þ ¼ T r� ‘ð Þ�T rþ ‘ð Þ; ð7Þ
because, on average, phonons have travelled a distance c since last scattering. A
more general expression for DT that also accounts for the probability of scattering
at an interface is derived in Supplementary Methods. When the temperature profile
near r can be accurately described by a first-order Taylor series36, that is,

D�Tðr; ‘Þ � � 2‘rT; ð8Þ
the nonlocal expression in equation (6) for the heat current reduces to the local
expression known as Fourier’s law. In other words, Fourier’s law will accurately
predict the heat current due to phonon with wavevector q provided equation (8)
is a reasonable approximation.

When the heat transfer problem in a TDTR or FDTR experiment is purely
diffusive, the distance heat can diffuse in one period of oscillation determines the
through-plane length scale of the temperature profile and is known as the thermal
penetration depth, dp¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=pCf

p
. In a ballistic/diffusive transport problem, this

length scale of the temperature profile is decreased because ballistic phonons carry
less heat than Fourier’s law predicts. Therefore, we can bound the through-plane
temperature profile length scale as less than dp but larger than d0p¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L0=pCf

p
,

where L0 is the thermal conductivity of high-wavevector phonons.
When the heat transfer problem is not one-dimensional, we must integrate over

all directions and equation (6) becomes

JNL r; ‘;R; ið Þ ¼
X
j

Cj ‘ð Þ
4p

Zf2

f1

df0
Zy2

y1

dy0 sin y0D�T r;f0; y0; ‘;Rð Þvi;j: ð9Þ

where j labels phonon polarization, y1, y2, f1 and f2 are determined by direction,
i,R is the probability of reflection for a Si phonon impinging on the metal/Si
interface and vi,j is the component of the group velocity of a phonon with
polarization j in direction i. In the radial direction, y1¼ 0, y2¼ p, f1¼ � p/2,
f2¼ p/2 and vi,j¼ vj cos f sin y. In the through-plane direction, y1¼ 0, y2¼ p/2,
f1¼ 0, f2¼ 2p and vi,j¼ vj cos y.

For the group of phonons that satisfy the limit ccdp, equation (9) predicts that
the heat current in through-plane direction is14

JBz ¼ 1�Rð Þ vLCL þ vTCTð Þ
4

TM; ð10Þ

where CL and CT are the collective volumetric heat capacities of longitudinal and
transverse phonons that satisfy ccdp, vL and vT are the average longitudinal and
transverse group velocities of ballistic phonons and TM is the temperature of the
metal transducer. In the r direction, the heat carried by phonons with ccw0 is zero.

Ballistic and diffusive phonons in our model are affected by the presence of a
boundary in different ways. For the diffusive channel, we assume the boundary
condition Jz(z¼ 0)¼G0DTz¼ 0, is an adequate description of the effect of the
interface on diffusive thermal transport. Here, G0 is the diffusive thermal
conductance. For the ballistic channel, the heat current across the interface is given
by equation (9) with the exclusion of phonons travelling toward the metal surface,
and can be viewed in terms of a ballistic conductance, Jz z¼0ð Þ¼GBDT , where
GB¼ (1�R)C(qoq0)v/4 is the conductance of ballistic phonons. In addition, the
presence of a boundary alters the heat carried by long MFP phonons in the
substrate within a distance c of the interface, because the reflection and
transmission of phonons alters DT (Fig. 8). In the main text, we labelled this latter
effect an interfacial nonequilibrium thermal resistance because the interface is
preventing thermal equilibrium between phonons near z¼ 0.

The expression for JNL(c(q)) in equation (9) converges to the Fourier theory
prediction for the heat current when c(q) is much smaller than the length scales of
the temperature profile. Therefore, the total heat current predicted by equation (5)
will not be sensitive to the value of q0 chosen as long as equation (8) is satisfied
for c(q4q0).

Self-consistent criteria for choosing the value of q0 for a given material can now
be outlined. The requirement that equation (8) is valid for c(q0) provides a
restriction on how small q0 can be. A restriction on how large q0 can be is provided
by our two assumptions that low-wavevector phonons have a negligible collective
heat capacity in comparison with high-wavevector phonons, C(qoq0)ooC(q4q0),
and that the dominant scattering mechanism for low-wavevector phonons is
absorption/emission from the thermal reservoir. The criterion that
C(qoq0)ooC(q4q0) will typically provide a stricter limit on the upper bound of q0
than the absorption/emission criterion because the spectral distribution of the heat
capacity only depends on the density of occupied states, while the probability of a
low-wavevector phonon scattering with two other phonons depends on both the
density of occupied states and the three-phonon matrix element, and the three-
phonon matrix element is larger for scattering events that involve high-wavevector
phonons12. We set q0 in all materials so that c(q0)¼ dp (20MHz)/5 for both
longitudinal and transverse phonons, see supplementary Methods. This satisfies the
requirement that the total heat current predicted by equation (5) is insensitive to
q0. In addition, it leaves more than 90% of the total heat capacity with the high-
wavevector phonons in the materials we study here.

To compare with our experimental data, we use our ballistic/diffusive model to
calculate effective thermal conductivities, and then use these effective thermal
conductivities to generate theoretical values of GA and LA as a function of w0 and f
(solid lines in Figs 3, 5 and 6). Further details of our calculation are provided in
Supplementary Methods. Supplementary Fig. 10 compares the assumptions of
specular versus diffuse reflection of phonons from the interface. Supplementary
Figs 11–13 illustrate how with properly defined effective in-plane and through-
plane thermal-conductivities, Kr(z) and Kz(z), the predictions of Fourier’s law and
equation (9) agree.

To summarize how we fixed our model parameters, once q0 is fixed so that all
high wave vector phonons are diffusive, and the RTA models are used to fix the
MFPs and heat capacities of the short wavevector phonons, the only free
parameters in the ballistic/diffusive model are G0 and R. We fixed R¼ 0 for all
samples and calculations with the exception of Figs 6 and 8. Figures 6 and 8 include
both the adiabatic and radiative limits of our model’s predictions, and is
representative of the effect that varying R has on the calculations. We fixed G0 for
Si and Si0.99Ge0.01 based on TDTR measurements of Si. We fixed G0 for Ge and
Si0.2Ge0.8 based on TDTR measurements of Ge. Therefore, our model predictions
for LA of Si, Ge, Si0.99Ge0.01 and Si0.2Ge0.8 involve no fitting parameters. Our model
predictions for GA of Si and Ge involve one fitting parameter (G0) and our model
predictions for GA of Si0.99Ge0.01 and Si0.2Ge0.8 involve no fitting parameters. The
LA predicted by our ballistic/diffusive model is insensitive to q0 and G0; for
example, a 5% change in either results in less than a 0.2% change in LA predicted
for Si0.99Ge0.01 at 10MHz. GA predicted by our model is sensitive to G0; for
example, a 5% change in the value of G0 results in a 3% change in GA predicted for
Si0.99Ge0.01 at 10MHz.

The accuracy of our ballistic/diffusive model predictions depends on four
factors: (1) the accuracy of our RTA model’s predictions for the thermal
conductivity spectral distribution l(q), (2) the accuracy of our assumptions
regarding interfacial-phonon scattering, (3) the accuracy of our assumption that
only diffusive phonons store a significant amount of heat and (4) the accuracy our
nonlocal expression for the heat current equation (9). Therefore, the accuracy of
quantitative predictions could be improved in future work with a more
sophisticated model. For example, our model’s treatment of interfacial transport
assumes, without rigorous justification that low-wavevector phonons impinging on
the interface from the nonmetal side have a constant reflection probability (usually
zero), and that a radiative boundary condition is a valid description of interfacial
transport for high-wavevector phonons. Our model’s requirement that the vast
majority of a solid’s heat capacity is due to phonons with MFPs much shorter then
temperature profile length scales limits its applicability to problems where the vast
majority of thermally excited phonons do not require a nonlocal expression for the
heat current, precluding our ballistic/diffusive model from making predictions at
low temperatures. Our nonlocal expression for the heat current does not
distinguish between elastic and inelastic scattering, which should have different
effects on the nonequilibrium length scale11. Finally, another weakness in our
model predictions is that to predict the thermal response of our samples at 1/f
timescales, we used our ballistic/diffusive model to derive effective thermal
properties, Kz(z) and Kr(z), as inputs for the heat diffusion equation. A fully
rigorous calculation would be self-contained by directly calculating the thermal
response of the solid on 1/f timescales.
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