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Abstract We obtain a new anisotropic solution for spher-
ically symmetric spacetimes by analyzing the Karmarkar
embedding condition. For this purpose we construct a suit-
able form of one of the gravitational potentials to obtain
a closed form solution. This form of the remaining grav-
itational potential allows us to solve the embedding equa-
tion and integrate the field equations. The resulting new
anisotropic solution is well behaved, which can be utilized to
construct realistic static fluid spheres. Also we estimated the
masses and radii of fluid spheres for LMC X-4, EXO 1785-
248, PSR J1903+327 and 4U 1820-30 by using observational
data set values. The masses and radii obtained show that
our anisotropic solution can represent fluid spheres to a very
good degree of accuracy. The physical validity of the solu-
tion depends on the parameter values of a, b and c. The solu-
tion is well behaved for the wide range of parameters values
0.00393 ≤ a ≤ 0.0055, 0.0002 ≤ b ≤ 0.0025 and 0.0107 ≤
c ≤ 0.0155. The range of corresponding physical parameters
for the different compact stars are 0.3266 ≤ vr0 ≤ 0.3708,
0.1583 ≤ vt0 ≤ 0.2558, 0.3256 ≤ zs ≤ 0.4450 and
4.3587 ≤ �0 ≤ 5.6462.

1 Introduction

The presence of nonzero anisotropy, in which the radial pres-
sure differs from the tangential pressure, is an important com-
ponent in modelling relativistic stellar systems in the absence
of an electric field. The pioneering paper by Bowers and
Liang [1] introduced anisotropic spheres in general relativ-
ity. Subsequently there has been extensive research in study-
ing the physics related to anisotropic pressures. It was shown
by Dev and Gleiser [2,3] that pressure anisotropy influences
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the mass, structure and physical properties of highly com-
pact spheres. It is important to observe that the mass of the
object and the redshift both change with different values of
the magnitude of the anisotropy. In recent times there has
been made a considerable effort in modelling observed astro-
physical objects in the presence of anisotropy. Some recent
research papers addressing this physical feature include the
work of Sharma and Ratanpal [4], Ngubelanga et al. [5,6],
Sunzu et al. [7,8], Murad and Fatema [9,10] and Murad
[11], and the references therein. The physical analyses con-
tained in these treatments confirm the importance of includ-
ing nonzero anisotropy in modelling astrophysical objects.
It should be noted that the presence of anisotropic pressures
leads to values of observed compactness parameters for sev-
eral astrophysical bodies including Her X-1, PSR 0943+10,
4U 1820-30, SAX J 1808.4-3658, and 4U 1728-34. It is there-
fore important to generate analytical models of the Einstein
field equations, with a matter tensor containing anisotropy,
which are consistent with physical requirements for astro-
physical applications.

To generate a physically consistent model we need to find
an analytical solution of the general relativistic field equa-
tions. This is achieved by restricting the spacetime geome-
try, the matter content or specifying an equation of state. A
rather different approach is to use the embedding of a four-
dimensional differentiable manifold into a higher dimen-
sional Euclidean space. Embedding of curved spacetimes
into spacetimes of higher flat dimensions has assisted in gen-
erating several new exact models in cosmology and relativis-
tic astrophysics [12]. The embedding condition gives an addi-
tional differential equation, the so-called Karmarkar condi-
tion [13], in static spherical spacetimes relating the two grav-
itational potentials. A solution of the Karmarkar condition
then helps to solve the Einstein field equations. This method
has proved to be a fruitful mechanism to find new relativistic
astrophysical models in recent investigations. Bhar et al. [14–
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16], Maurya et al. [17–20] and Newton Singh et al. [21–23]
have generated different families of physically acceptable
Karmarkar spacetimes that describe the interior regions of
acceptable stars. In these analyses a particular form of one of
the potentials is made, which solves the Karmarkar condition,
giving the second potential, eventually leading to an astro-
physical model. In our treatment we show that a very general
form of the chosen potential, including hyperbolic functions,
leads to an astrophysical model with desirable physical fea-
tures. This shows that the Karmarkar condition allows for
more complicated (and acceptable) physical behaviour than
the earlier simpler forms used for the gravitational potentials.

In this paper we present a new interior anisotropic model
for astrophysical compact stars by solving the embedding
condition in static spherical spacetimes. We show that the
resulting exact solutions can be used to describe a physi-
cally reasonable astrophysical matter distribution. The exte-
rior region is characterized by the Schwarzschild vacuum
metric. We discuss the Einstein field equations in Sect. 2 and
present the Karmakar embedding condition. In Sect. 3, we
generate an exact solution to the embedding condition and
show how this leads to an exact solution of the field equa-
tions. In Sect. 4 we present the matching conditions between
interior and exterior spacetimes regions; we also demonstrate
that the parameters arising are bounded. A detailed physical
analysis is undertaken in Sect. 5. In particular the stability,
cracking and energy conditions of the relativistic sphere are
studied. We also investigate the physical features of the model
in connection with the objects LMC X-4, EXO 1785-248,
PSR J1903+327 and 4U 1820-30; the results are presented
in the form of tables and graphs. We discuss the significance
of the results obtained in this paper in Sect. 6.

2 Field equations and the Karmarkar condition

We assume that the interior matter of the star is locally
anisotropic which is given by the following line element (by
taking c = 1)

ds2 = −eλ(r)dr2 − r2(dθ2 + sin2 θ dφ2) + eν(r) dt2, (1)

where eλ(r) and eν(r) represent the gravitational potentials of
stellar structure. The Einstein field equations corresponding
to an anisotropic fluid distribution is given by (assume G =
c = 1)

− 8π T i
j = Ri

j − 1

2
R gij , (2)

where T i
j and Ri

j represent the energy-momentum tensor and
contracted Ricci tensor, respectively, while R is the scalar
curvature tensor. The energy tensor for the anisotropic matter
distribution can be defined as

T i
j = (ρ + pt ) vi v j − pt g

i
j + (pr − pt ) u

i u j , (3)

where the contravariant quantity vi is the four-velocity vector
and ui is the unit spacelike vector in the radial direction. Here
pr , pt and ρ denote the radial pressure, tangential pressure
and matter density for anisotropic matter.

In view of line element (1), the Einstein field equa-
tions (2) provide the following differential equations for the
anisotropic star:

ρ = e−λ

8π

[
r λ′ + eλ − 1

r2

]
, (4)

pr = e−λ

8π

[
r v′ − eλ + 1

r2

]
, (5)

pt = e−λ

8π

[
2r v′′ − r λ′v′ + r v′2 + 2 v′ − 2 λ′

4r2

]
. (6)

Here primes denote the derivative with respect to the radial
coordinate r . The value of the velocity of light (c) and the
gravitational constant (G) are taken to be unity in the above
coupled differential equations. Furthermore we obtain the
anisotropic factor by using the pressure isotropy condition
with Eqs. (5) and (6) as

	 = pt − pr = e−λ

8π

[
2r v′′ − r λ′v′+r v′2 − 2v′ − 2λ′

4r

]

−e−λ − 1

r2 . (7)

2.1 Karmarkar condition

It is well known that the spherical symmetric line element (1)
can always be embedded in six dimensional flat spacetime
which implies that the spherical symmetric line element is
of embedding class two in general. On the other hand we
can also embed the spherical line element into five dimen-
sional flat spacetime if it satisfies the Karmarkar condition
[13]. Then it represents the spacetime of embedding class
one. However, it is a necessary and sufficient condition for
the spherically symmetric spacetime to be of class one. The
Karmarkar condition is given in terms of the curvature com-
ponents by

�1414 = �1212 �3434 + �1224 �1334

�2323
, (8)

with �2323 �= 0 [24]. The nonzero components of the Rie-
mann curvature tensor �hi jk for the metric (1) are given by

�2323 = sin2 θ (eλ − 1) r2

eλ
, �1212 = λ′ r

2
,

�2424 = ν′ r eν−λ

2
, �1224 = 0,

�1414 = eν

4
[2 ν′′ + ν′2 − λ′ ν′], �3434 = sin2 θ �2424.
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By plugging these components of �hi jk in Eq. (8) we get the
following differential equation:

ν′′

ν′ + ν′

2
= λ′ eλ

2 (eλ − 1)
. (9)

On solving the differential equation (9) we obtain the poten-
tial,

eν =
[
C + D

∫ √
(eλ(r) − 1)dr

]2

, (10)

whereC and D are nonzero arbitrary constants of integration.

2.2 Tolman–Oppenheimer–Volkoff equation

Now to derive the Tolman–Oppenheimer–Volkoff (TOV)
equation we evaluate pr + ρ from Eqs. (4) and (5) to get

ρ + pr = (λ′ + ν′) e−λ

8 π r
. (11)

The derivative of the radial pressure is

dpr
dr

=
[
r ν′′ − r ν′ λ′ − ν′ − λ′

8 π r2

]
e−λ + 2(1 − e−λ)

8 π r3 .

(12)

Then using Eqs. (7), (11) and (12) we get

2

r
(pt − pr ) − dpr

dr
− 1

2
ν′ (ρ + pr ) = 0. (13)

If the gravitational mass within a compact star of radius r
is denoted MG(r), then it is given by the Tolman–Whittaker
formula [25]:

MG(r) = 1

2
r2e

ν−λ
2 ν′

. (14)

Then from Eqs. (13) and (14), we obtain

2

r
(pt − pr ) = dpr

dr
+ MG(r) (ρ + pr )

r2 eλ−ν . (15)

The above equation (15) represents the well known general-
ized Tolman–Oppenheimer–Volkoff (TOV) equation which
provides the equilibrium condition for anisotropic stellar
matter distribution.

3 Anisotropic solution of embedding class one

Equations (4)–(5) have five unknowns, namely ν, λ, ρ, pr
and pt . However, the Karmarkar condition provides a rela-
tion between ν and λ, which implies that we have four con-

ditions (including three equations) to solve this system of
equations. For this paper we consider a totally new expres-
sion for gravitational potential eλ, which has not been used
before. We take

eλ = 1 + 2cr2 + cosh[2(ar2 + b)]
1 + cosh[2(ar2 + b)] , (16)

where a, b and c are nonzero constants, The units of the
constants a and c are length−2. We need to check whether
the given expression for λ is physically valid. For this purpose
we obtain eλ at the centre and plot Fig. 1. We observe that it is
increasing monotonically away from the centre and eλ = 1 at
the centre. This behaviour of eλ indicates that it is physically
acceptable.

By plugging the value of λ into Eq. (10), we obtain

eν = A2
[
B + tan−1 sinh(ar2 + b)

]2
, (17)

where A = D
√
c

2 a and B = 2 a C√
c D

. The function eν = A2 [B+
tan−1 sinh b]2 is finite and positive at the centre. Also we
may observe from Fig. 1 that the gravitational potential eν is
increasing with r throughout the star. This implies that the
above expression of ν may be suitable to obtain a physically
valid anisotropic solution according to Lake [26].

The expressions for the matter density, radial and tan-
gential pressures are obtained (by taking ψ = a r2 + b,
�(r) = B + tan−1 sinh ψ):

ρ = 2 c (2 + 3 c r2 + 3 cosh 2ψ − 4 a r2 sinh 2ψ)

8π (1 + 2 c r2 + cosh 2ψ)2 , (18)

pr = 2 [−c B − c tan−1 sinh ψ + 4a cosh ψ]
8π (B + tan−1 sinh ψ) (1 + 2 c r2 + cosh 2ψ)

, (19)

pt = 4 cosh ψ[2a (1 + cr2 + cosh 2ψ + c r2 �(r) sinh ψ − a r2 sinh 2ψ) − c�(r) cosh ψ]
8π (B + tan−1 sinh ψ) (1 + 2 c r2 + cosh 2ψ)2

. (20)

We plot the variation of matter density, radial and tangen-
tial pressures in Fig. 2. We can see the density is maximum
at the centre and the minimum occurs on the boundary of the
star. The radial and tangential pressures are both monotoni-
cally decreasing away from the centre. However, pr becomes
zero at the boundary of the star, which gives the radius of the
star. Note that pt is nonzero and positive. It is worth pointing
out here that the central density is of the order of 1015 g/cm3,
which indicates that the nuclear matter is more appropriate
for the anisotropic fluid distribution. The expression for the
anisotropic factor is given by

	 = 4 r2 (c�(r) − 2 a cosh ψ)(c + a sinh 2ψ)

8π (B + tan−1 sinh ψ) (1 + 2 c r2 + cosh 2ψ)2
. (21)

The pressure anisotropy of the matter plays an important role
in determining the stability of the model. Since the force due
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Fig. 1 Behaviour of gravitational potential eν (left panel) and eλ (right
panel) vs. fractional radius r/R for LMC X-4, EXO 1785-248, PSR
J1903+327 and 4U 1820-30. For plotting this figure the numerical val-
ues of physical parameters and constants are as follows: (i) a = 0.004,
b = 0.0021, c = 0.0107, A = 0.4806, B = 1.2607, M = 1.29M�,
and R = 8.831 km for LMC X-4, (ii) a = 0.00393, b = 0.0025,

c = 0.01074, A = 0.4905, B = 1.2293, M = 1.3M� and R =
8.849 km for EXO 1785-248, (iii)a = 0.005,b = 0.0004, c = 0.01481,
A = 0.4654, B = 1.0551, M = 1.667M� and R = 9.438 km for PSR
J1903+327, (iv) a = 0.0055, b = 0.0002, c = 0.0155, A = 0.44506,
B = 1.1286, M = 1.58M� and R = 9.1 km for 4U 1820-30. These
numerical values are given in Table 1
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Fig. 2 Behaviour of energy density ρ (left panel), and radial pressure,
pr dotted line, tangential pressure, pt solid line (right panel) vs. frac-
tional radius r/R for LMC X-4, EXO 1785-248, PSR J1903+327 and

4U 1820-30. For plotting this figure we have employed data set values
of physical parameters and constants as used in Fig. 1

to anisotropy can be defined as F = 2 	
r , which implies

if 	 is positive then the direction of the force is outward;
however, the force will be directed inward if 	 is negative.
But the existence of a repulsive force (in the case in which
tangential pressure is higher than radial pressure i.e. pt > pr )
allows the construction of more compact star models when
using an anisotropic fluid than when using an isotropic fluid

[27]. From Fig. 3, we can see that 	 is positive and finite
throughout inside the star. Also it is zero at the centre and
attains a maximum at the boundary of the star.

The gradients of pressure and density are given by

dpr
dr

= 2 r [ p1 p2 (a + 2 p3 �(r) cosh ψ) + a pr2 p4 �(r) ]

8π a cosh ψ (B + tan−1 sinh ψ)2 (1 + 2 c r2 + cosh 2ψ)2
,

(22)

dpt
dr

= 2 r [ a p2 p5 − a p2 p5 �(r) + 4 p3 p5 �(r) cosh ψ − a p2 (p6 + p7)�(r) ]

8π a (B + tan−1 sinh ψ)2 (1 + 2 c r2 + cosh 2ψ)3
, (23)

dρ

dr
= 4 c r [ 2 ρ1 ( c�(r) − 4 a cosh ψ ) − 4 ρ2 (c + a sinh 2ψ)]

8π (1 + 2 c r2 + cosh 2ψ)3 .

(24)
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Fig. 3 Behaviour of anisotropy factor 	 vs. fractional radius r/R for
LMC X-4, EXO 1785-248, PSR J1903+327 and 4U 1820-30. For plot-
ting this figure we have employed data set values of physical parameters
and constants as used in Figs. 1 and 2

In the above we have set

p1 = [ c�(r)−4 a cosh ψ ], p2 =[ 1+2 c r2+cosh 2ψ ],
p3 = [ c + a sinh 2ψ ], p4 = [ −c + 2 a sinh 2ψ ],
p5 = [ c�(r) cosh ψ − 2a (1 + c r2

+ cosh 2ψ + c r2 �(r) sinh ψ − a r2 sinh 2ψ) ],
p6 =

[
a c r2 �(r) + (c − 2 a2 r2) cosh ψ

+a c r2 �(r) cosh 2ψ + 2 a2 r2 cosh 3ψ
]
,

p7 =
[
−a sinh ψ − a sinh ψ − 2 a c r2

sinh ψ − c�(r) sinh ψ cosh ψ − a sinh 3ψ ] ,

ρ1 = [ c − 4a2 r2 cosh 2ψ + a sinh 2ψ ],
ρ2 = [ 3 + 2 c r2 + 3 cosh 2ψ − 4 a r2 sinh 2ψ ].

4 Bounds on the parameters and matching conditions

4.1 Bounds on the parameters

Since the radial pressure pr and the tangential pressure pt are
positive and finite inside the star we obtain the upper bound
of B as

B <

(
4 a cosh(b)

c
− tan−1 sinh(b)

)
. (25)

Also the fluid model must satisfy the Zeldovich condition i.e.
pr/ρ < 1 and pt/ρ < 1 everywhere inside the star, which
gives the lower bound of B:

(
a cosh(b)

c
− tan−1 sinh(b)

)
< B. (26)
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Fig. 4 Behaviour of pressure–density ratio pi/ρ vs. fractional radius
r/R for LMC X-4, EXO 1785-248, PSR J1903+327 and 4U 1820-30.
For plotting this figure the numerical values of physical parameters and
constants are as follows: (i) a = 0.004, b = 0.0021, c = 0.0107,
A = 0.4806, B = 1.2607, M = 1.29M�, and R = 8.831 km for
LMC X-4, (ii) a = 0.00393, b = 0.0025, c = 0.01074, A = 0.4905,
B = 1.2293, M = 1.3M� and R = 8.849 km for EXO 1785-248, (iii)
a = 0.005, b = 0.0004, c = 0.01481, A = 0.4654, B = 1.0551, M =
1.667M� and R = 9.438 km for PSR J1903+327, (iv) a = 0.0055,
b = 0.0002, c = 0.0155, A = 0.44506, B = 1.1286, M = 1.58M�
and R = 9.1 km for 4U 1820-30

From Eq. (25) and Eq. (26), we get the following inequality:[
a cosh(b)

c
− tan−1 sinh(b)

]

< B <

[
4 a cosh(b)

c
− tan−1 sinh(b)

]
. (27)

The behaviour of pr/ρ and pt/ρ is shown in Fig. 4. From
this figure it is clear that both pr/ρ and pt/ρ are less than 1
everywhere inside the anisotropic star, which shows that our
fluid model satisfies the Zeldovich condition.

4.2 Matching conditions

To find the arbitrary constants A and B, we must match our
interior solution to the exterior Schwarzschild solution at
the boundary of the star. The line element of the exterior
Schwarzschild solution is given by

ds2 =
(

1 − 2M

r

)
dt2 − r2(dθ2 + sin2 θ dφ2)

−
(

1 − 2M

r

)−1

dr2, (28)

where the constant mass M provides the total mass of the
anisotropic star within r = R. By matching of eν and eλ at
the surface of the star (r = R) (continuity of first fundamental
form) we get

A2
[
B + tan−1 sinh(a R2 + b)

]2 = eνR = 1 − 2M

R
, (29)
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1 + cosh[2(aR2 + b)]
1 + 2cR2 + cosh[2(aR2 + b)] = e−λR = 1 − 2M

R
. (30)

For fixing the arbitrary constants, the second fundamental
form (∂g44/∂r ) also has to be matched at the boundary r = R.
By matching of ∂g44/∂r at the surface of the star we get a
zero radial pressure at the boundary [28]. Then pr = 0 at
r = R provides the value of the arbitrary constant,

B = −c tan−1 sinh(aR2 + b) + 4 a cosh(aR2 + b)

c
. (31)

Then using Eqs. (29) and (30) together with Eq. (31), we
obtain the values of constant A and total mass M :

A= cosh(a R2+b)√
cosh2(aR2+b)+c R2 [ B+tan−1 sinh(aR2 + b) ]

,

(32)

M = c R3

1 + 2c R2 + cosh(2aR2 + 2b)
. (33)

5 Salient features of anisotropic models

5.1 Well-behaved property of the solution

For a well-behaved nature of the solution, the velocity
of sound must be less than the velocity of light, and it
should decrease monotonically throughout the anisotropic
star (Fig. 5). For this purpose we have to calculate the radial
and tangential speed of sound as

vr =
√

dpr
dρ

=
√

dpr/dr

dρ/dr
, (34)
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Fig. 5 Behaviour of radial velocity, vr , (dotted line) and tangential
velocity, vt , (solid line) vs. fractional radius r/R for LMC X-4, EXO
1785-248, PSR J1903+327 and 4U 1820-30. For plotting this figure
we have employed data set values of physical parameters and constants
which are the same as used in Fig. 4

vt =
√

dpt
dρ

=
√

dpt/dr

dρ/dr
. (35)

5.2 Dominant energy conditions

For a physically reasonable anisotropic solution the energy
momentum tensor has to obey the following dominant energy
conditions:

(i) The null energy condition (NEC) implies that local
mass-energy density must not be negative: ρ ≥ 0,

(ii) The weak dominant energy condition (WDEC) implies
that the flow of energy inside star must not be faster than
the velocity of light: ρ − pr ≥ 0, ρ − pt ≥ 0,

(iii) The strong dominant energy condition (SDEC) implies
that the flow of energy inside the star must not be faster
than one-third of the light velocity: ρ − 3pr ≥ 0, ρ −
3pt ≥ 0.

From Fig. 6 it is clear that all energy conditions are satisfied
within the compact star.

5.3 Mass–radius relation

For any physical valid star model according to Buchdahl [29]
the mass to radius ratio for a perfect fluid model should be
2M/R < 8/9. Later on Mak and Harko [31] have proposed
this relation in a more generalized form which can be written

Meff = κ

2

∫ R

0
ρ r2dr = c R3

1 + 2c R2 + cosh(2aR2 + 2b)
.

(36)

In this connection we would like to compare our proposed
compact star model with the observed data of different realis-
tic objects. For this purpose we have calculated the physical
parameters for the models (see Tables 1, 2) by taking the
mass of the compact stars LMC X-4, EXO 1785-248, PSR
J1903+327 and 4U 1820-30. The obtained radii of the dif-
ferent compact stars are given in Table 1, which are in good
agreement with the proposed values of Gangopadhyay et al.
[30].

5.4 Surface redshift

As is well known the compactification parameter of the com-
pact star is given by

u(R) = m(R)

R
= c R3

1 + 2c R2 + cosh(2aR2 + 2b)
. (37)

Then in connection with the above compactification param-
eter the surface redshift (zs) can be obtained directly by
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Fig. 6 Behaviour of dominant energy conditions vs. fractional radius
r/R for LMC X-4 (top left), EXO 1785-248 (top right), PSR J1903+327
(bottom left) and 4U 1820-30 (bottom right). For plotting this fig-
ure the numerical values of physical parameters and constants are as
follows: (i) a = 0.004, b = 0.0021, c = 0.0107, A = 0.4806,
B = 1.2607, M = 1.29M�, and R = 8.831km for LMC X-4, (ii)

a = 0.00393, b = 0.0025, c = 0.01074, A = 0.4905, B = 1.2293,
M = 1.3M� and R = 8.849 km for EXO 1785-248, (iii) a = 0.005,
b = 0.0004, c = 0.01481, A = 0.4654, B = 1.0551, M = 1.667M�
and R = 9.438 km for PSR J1903+327, (iv) a = 0.0055, b = 0.0002,
c = 0.0155, A = 0.44506, B = 1.1286, M = 1.58M� and
R = 9.1 km for 4U 1820-30

Table 1 Numerical values of
physical parameters a, b, c, R
(km), M (M�) for different
values of n [30]

Compact stars R (km) M (M�) a(km−2) b c (km−2) A B

LMC X-4 8.831 1.29 0.004 0.0021 0.0107 0.4806 1.2607

EXO 1785-248 8.849 1.3 0.00393 0.0025 0.01074 0.4905 1.2293

PSR J1903+327 9.438 1.667 0.005 0.0004 0.01481 0.4654 1.0551

4U 1820-30 9.1 1.58 0.0055 0.0002 0.0155 0.44506 1.1286

Table 2 The central density,
surface density, central pressure
and mass–radius ratio for
compact star candidates

Compact star Central density Surface density Central pressure M/R

Candidates (g/cm3) (g/cm3) (dyne/cm2)

LMC X-4 1.7238 × 1015 5.7038 × 1014 9.526 × 1034 0.2155

EXO 1785-248 1.7302 × 1015 5.7172 × 1014 9.773 × 1034 0.2167

PSR J1903+327 2.3859 × 1015 5.0291 × 1014 2.0001 × 1035 0.2605

4U 1820-30 2.4970 × 1015 5.3029 × 1014 1.9286 × 1035 0.2561
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Fig. 7 Variation of redshift (Z ) with the fractional coordinate r/R.
For plotting this figure the numerical values of the physical parameters
and constants are as follows: (i) a = 0.004, b = 0.0021, c = 0.0107,
A = 0.4806, B = 1.2607, M = 1.29M�, and R = 8.831 km for
LMC X-4, (ii) a = 0.00393, b = 0.0025, c = 0.01074, A = 0.4905,
B = 1.2293, M = 1.3M� and R = 8.849 km for EXO 1785-248, (iii)
a = 0.005, b = 0.0004, c = 0.01481, A = 0.4654, B = 1.0551, M =
1.667M� and R = 9.438 km for PSR J1903+327, (iv) a = 0.0055,
b = 0.0002, c = 0.0155, A = 0.44506, B = 1.1286, M = 1.58M�
and R = 9.1 km for 4U 1820-30

zs = 1−[1−2u] 1
2

[1−2u] 1
2

=
√

1+2cR2 + cosh[2(aR2 + b)]
1 + cosh[2(aR2 + b)] − 1.

(38)

From Eq. (38) we can see that the surface redshift cannot be
arbitrarily large as it depends upon the compactness param-
eter u = m/R. The behaviour of the redshift inside the star
can be seen in Fig. 7, which can be obtained by the formula
z = e−ν/2 − 1.

5.5 Stability of the solution

5.5.1 Stability of anisotropic models via cracking

In our anisotropic fluid model, to verify stability we plot the
radial (vr = √

dpr/dρ) and transverse (vt = √
dpt/dρ)

sound speeds in Fig. 5. It can be observed that both veloc-
ities satisfy the inequalities 0 < v2

r < 1 and 0 < v2
t < 1

everywhere within the stellar object (Fig. 8), which obeys the
anisotropic fluid models [32,33].

To check whether the local anisotropic matter distribution
is stable or not, we use the proposal of Herrera [32], known
as the criterion of cracking (or overturning) of the star. This
indicates that the region is potentially stable where the radial
velocity of sound is greater than the transverse velocity of
sound. We can easily say that 0 < v2

r − v2
t < 1 (dotted line)

and −1 < v2
t − v2

r < 0 (solid line) as can be seen in Fig. 9.
Hence, we conclude that our compact star model provides a
stable configuration.
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Fig. 8 Behaviour of square of radial velocity, v2
r , (dotted line) and

tangential velocity, v2
t , (solid line) vs. fractional radius r/R for LMC

X-4, EXO 1785-248, PSR J1903+327 and 4U 1820-30. For plotting
this figure the numerical values of physical parameters and constants
are as follows: (i) a = 0.004, b = 0.0021, c = 0.0107, A = 0.4806,
B = 1.2607, M = 1.29M�, and R = 8.831km for LMC X-4, (ii)
a = 0.00393, b = 0.0025, c = 0.01074, A = 0.4905, B = 1.2293,
M = 1.3M� and R = 8.849 km for EXO 1785-248, (iii) a = 0.005,
b = 0.0004, c = 0.01481, A = 0.4654, B = 1.0551, M = 1.667M�
and R = 9.438 km for PSR J1903+327, (iv) a = 0.0055, b = 0.0002,
c = 0.0155, A = 0.44506, B = 1.1286, M = 1.58M� and R =
9.1 km for 4U 1820-30
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Fig. 9 Behaviour of v2
r − v2

t (dotted line) and v2
t − v2

r (solid line) vs.
fractional radius r/R for LMC X-4, EXO 1785-248, PSR J1903+327
and 4U 1820-30. For plotting of this figure we have employed data set
values of the physical parameters and constants which are the same as
used in Fig. 8

5.5.2 Stability via adiabatic index

The stability of the relativistic anisotropic star also depends
upon the adiabatic index �. Heintzmann and Hillebrandt [34]
proposed that neutron star models with anisotropic equation
of state are stable if γ > 4/3. However, according to New-
ton’s theory of gravitation the isotropic neutron star model
has no upper mass limit for the adiabatic index γ > 4/3 [35].
The adiabatic index � is defined by
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Fig. 10 Behaviour of adiabatic index �r vs. fractional radius r/R for
LMC X-4, EXO 1785-248, PSR J1903+327 and 4U 1820-30. For plot-
ting this figure we have employed data set values of physical parameters
and constants which are the same as used in Figs. 8 and 9

� = pr + ρ

pr

dpr
dρ

. (39)

For a relativistic anisotropic fluid sphere the stability condi-
tion is given by

� >
4

3

[
1 + 3π

ρ0 pr0

|p′
r0|

r + (pt0 − pr0)

|p′
r0|r

]
, (40)

where pr0, pt0, and ρ0 denote the initial radial pressure, tan-
gential pressure and energy density, respectively, in the static
equilibrium condition which satisfies the TOV equation (15).
However, the second and last terms inside the square brack-
ets correspond to the anisotropic and relativistic corrections
(being positive quantities), which increase the instability

range of the adiabatic index. For this purpose we have plot-
ted � vs. r/R. The behaviour of the adiabatic index is shown
in Fig. 10, which shows that � > 4

3 everywhere inside the
compact star model.

5.5.3 Stable equilibrium condition via TOV equation

The Tolman–Oppenheimer–Volkoff (TOV) equation
describes the interior structure of the compact star which
is a relationship between two physical quantities, the radial
pressure and the density. Using the TOV equation we want
to examine whether our present model is in a stable equi-
librium stage under the three forces, viz. anisotropic force
(Fa = 2(pt − pr )/r ), hydrostatics force (Fh = −dpr/dr )
and gravitational force (Fg = −ν′ (ρ + pr )/r ). This implies

that the sum of three different forces becomes zero:

Fa + Fh + Fg = 0. (41)

The explicit form of the above three different forces for this
solution is given by

Fa = 8 r (c�(r) − 2 a cosh ψ)(c + a sinh 2ψ)

8 π (B + tan−1 sinh ψ) (1 + 2 c r2 + cosh 2ψ)2
,

(42)

Fh = −dpr
dr

, (43)

Fg =−16 a r
[
c�(r) cosh ψ+a p2−2 a c r2 �(r) sinh ψ

]
8 π (B+tan−1 sinh ψ)2 (1+2 c r2 + cosh 2ψ)2

.

(44)

The behavior of above forces can see in Fig. 11.

5.5.4 Harrison–Zeldovich–Novikov stability criterion:

Recently, Singh et al. [40] have employed the Harrison–
Zeldovich–Novikov [41,42] criterion for investigating the
stability of the anisotropic compact star models (Fig. 12).
This criterion is that the configuration is stable only if the
mass of the compact star is increasing with central density
i.e. dM/dρ0 > 0; however, it is unstable if dM/dρ0 < 0.

Let us define the mass function of our static anisotropic
fluid solution in terms of the central density by

M = 4 π ρ0 R3 (1 + cosh 2b)2

2 + 3 cosh 2b + 8 π ρ0 (1 + cosh 2b)2 + cosh(2aR2 + 2b)
.

(45)

The derivative of Eq. (45) with respect to ρ0 gives

dM

dρ0
= 16πR3(cosh b)4 [2 + 3 cosh 2b + cosh 2(aR2 + b)]

[2 + 12 ρ π + (3 + 16ρ π) cosh 2b + 4ρ π cosh 4b + cosh 2(b + aR2)]2 . (46)

From Fig. 12, it is clear that our anisotropic models are
stable according to the Harrison–Zeldovich–Novikov stabil-
ity criterion. It is noted that the stability of our configurations
is increased with increasing radii and there is no change after
attaining a maximum value for the respective central den-
sities. It important to note that the curve starts leaving off,
i.e. dM/dρ0 = 0, after reaching its maximum value, which
indicates that the configuration is rendered unstable.

5.6 Herrera’s generating functions for the present
embedding class one solution:

The algorithm for all possible anisotropic fluid solution via
generating functions for the Einstein field equations is given
by Herrera et al. [43],
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Fig. 11 Behaviour of different forces vs. fractional radius r/R for
LMC X-4 (top left), EXO 1785-248 (top right), PSR J1903+327 (bot-
tom left) and 4U 1820-30 (bottom right). For plotting this figure the
numerical values of physical parameters and constants are as follows:
(i) a = 0.004, b = 0.0021, c = 0.0107, A = 0.4806, B = 1.2607,
M = 1.29M�, and R = 8.831km for LMC X-4, (ii) a = 0.00393,

b = 0.0025, c = 0.01074, A = 0.4905, B = 1.2293, M = 1.3M� and
R = 8.849 km for EXO 1785-248, (iii) a = 0.005, b = 0.0004,
c = 0.01481, A = 0.4654, B = 1.0551, M = 1.667M� and
R = 9.438 km for PSR J1903+327, (iv) a = 0.0055, b = 0.0002,
c = 0.0155, A = 0.44506, B = 1.1286, M = 1.58M� and
R = 9.1 km for 4U 1820-30
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Fig. 12 Behaviour of mass (M�) vs. central density ρ0(0 − 2.6993 ×
1015 g/cm3) for the different compact stars

eλ(r) = z2 e
∫ [

4
r2z(r)

+2 z(r)
]
dr

r6

⎡
⎣−2

∫ z(r)(1+�(r) r2)e

∫ [
4

r2z(r)
+2 z(r)

]
dr

r8 dr + E

⎤
⎦
(47)

where E is arbitrary constants of integration; then the corre-
sponding generating functions are

z(r) =
[
ν′

2
+ 1

r

]
, � = 8π (pr − pt ).

Using the above algorithm the generating functions for the
present embedding class one solution (using Eq. (10)):
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z(r) = D
√
eλ(r) − 1

C + D
∫ √

eλ(r) − 1 dr
+ 1

r
, (48)

� = D
√
eλ(r) − 1

2 eλ

[ √
eλ(r) − 1

B r
− 1

C + D
∫ √

eλ(r) − 1dr

]

×
(

λ′

eλ − 1
− 2

r

)
. (49)

By plugging Eq. (16) into Eqs. (48) and (49) we get the
following generating functions z(r) and �:

z(r) = 2 a r

[ B + tan−1 sinh(ar2 + b) ] cosh(ar2 + b)
+ 1

r
,

(50)

� = 4 r2 [c (B + tan−1 sinh ψ) − 2 a cosh ψ] (c + a sinh 2ψ)

8π (B + tan−1 sinh ψ) (1 + 2 c r2 + cosh 2ψ)2
.

(51)

It is clear that the present system can be completely deter-
mined by one generating function through eλ(r) and an addi-
tional ansatz in the form of a class one condition.

6 Physical analysis and discussion

In the present paper we have investigated the nature of
anisotropic fluid spheres, by utilizing the Karmarkar con-
dition, which are also known as spacetimes of embedding
class one. To outline this investigation we have considered
the following assumption for the gravitational potential: λ =
ln[1+2 cr2 +cosh(2 ar2 +2 b)]− ln[1+cosh(2 ar2 +2 b)],
where a and c are nonzero positive parameters. The choices
ofa and c are as follows: (i). If c = 0 then we have a flat space-
time. (ii). If a = 0 then there is no pressure-free boundary
unless c = 0. Under the above restrictions, we have obtained
new anisotropic fluid spheres for a �= 0 and c �= 0.

The main physical features of the present solution can
be used to explore the nature of anisotropic fluid spheres as
follows:

(i) Firstly we have developed a relation between the grav-
itational potentials eν and eλ for the spherically sym-
metric line element by using the Karmarkar condi-
tion. Due to this relation, we can convert all the
differential equations in terms of one of the metric
coefficients (the full details can be seen in the ref-
erences by Maurya et al. [36,37]). For this purpose
we have assumed a totally new metric potential eλ =
[1 + 2c r2 + cosh 2(ar2+b)]/[1 + cosh 2(ar2+b)]
to find the anisotropic solution for realistic fluid
spheres. The variation of eν and eλ can be seen in
Fig. 1.

(ii) The fluid spheres are purely anisotropic because
embedding class one solutions can give only two types
of perfect fluid solutions which are namely the Kohlar–
Chao or Schwarzschild solutions; otherwise the metric
turns out to be flat. As we can see the radial pressure
pr is zero at the boundary but the tangential pressure
pt does not vanish at r = R; however, both are equal
at the centre of the fluid sphere (Fig. 2). Also the pres-
sure anisotropy vanishes everywhere inside the fluid
sphere if and only if c = 0. In this situation the pres-
sures and density become zero and the metric turns
out to be flat. As we can see in Fig. 3 the anisotropy
is increasing throughout, while it is zero at the centre,
which implies that pr and pt are not equal except at
the centre of the fluid sphere.

(iv) Since pr/ρ and pt/ρ lie between 0 and 1 everywhere
within the sphere, our fluid sphere satisfies the Zel-
dovich condition. Moreover, pr/ρ and pt/ρ are mono-
tonically decreasing throughout the inside the sphere
(Fig. 4).

(v) For the well behaved nature of the solution the veloc-
ity of sound should be decreasing throughout the fluid
sphere and must be less than the velocity of light. From
Fig. 5, it is clear that both vr and vt are decreasing and
less than 1, which shows that our anisotropic solution
is well behaved. Also all dominant energy conditions
are satisfied, a necessary physical requirement every-
where inside the fluid sphere (Fig. 6).

(vi) The surface redshift is also determined by using the
compactness factor for the fluid sphere. For the fluid
sphere PSR J1903+327, the surface redshift turns out
to be zs = 0.44505, which is a maximum. The red-
shift without cosmological constant for isotropic fluid
spheres is bound by zs ≤ 2 [29,38,39]. However, in
the presence of the cosmological constant Bohmer and
Harko [39] argued that the surface redshift must sat-
isfy the restriction zs ≤ 5 for anisotropic fluid spheres.
Therefore the value of the surface redshift for our
anisotropic spheres seems to be compatible with real-
istic compact objects. Moreover, the surface redshift
cannot be arbitrarily large because it depends on the
compactness factor u = M/R.

(vii) We have also discussed the stability of the fluid sphere
(which is the most vital physical requirement) by using
the following facts: (a) the cracking concept proposed
by Herrera [32], (b) the variation of the adiabatic index
inside the fluid spheres, (c) the stable equilibrium con-
dition by using the TOV equation and (d) the Harrison–
Zeldovich–Novikov stability criterion. The results are
as follows. It can be observed in Fig. 8 that the velocity
v2
r and v2

t lie in the ranges: (i) 0.053 ≤ v2
r ≤ 0.107,
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0.017 ≤ v2
t ≤ 0.025 for LMC X-4, (ii) 0.056 ≤ v2

r ≤
0.11, 0.019 ≤ v2

t ≤ 0.027 for EXO 1785-248, (iii)
0.04274 ≤ v2

r ≤ 0.1375, 0.0419 ≤ v2
t ≤ 0.0654

for PSR J1903+327 and (iv) 0.0338 ≤ v2
r ≤ 0.1305,

0.0328 ≤ v2
t ≤ 0.0562 for 4U 1820-30. Also the

radial velocity (vr ) is always greater than the tangen-
tial velocity (vt ) everywhere inside the fluid sphere
(Fig. 5). We plot the figure for v2

r − v2
t and v2

t − v2
r

to apply the Herrera cracking concept, observing that
there is no change in sign of v2

r − v2
t and v2

t − v2
r

(Fig. 9). This implies that our anisotropic fluid models
are stable. The variation of the adiabatic index is given
in Fig. 10, which shows that the value of � is more
than 4/3 within the fluid models. We discuss the equi-
librium condition for the anisotropic fluid model by
using the Tolman–Oppenheimer–Volkoff (TOV) equa-
tion. For this purpose we plot figures for the TOV
equation in terms of different forces. From Fig. 11,
we can observe the gravitational force Fg is counter-
balanced by the joint action of hydrostatic force Fg and
anisotropic force Fa for all stars LMC X-4, EXO 1785-
248, PSR J1903+327 and 4U 1820-30. Finally, in this
subsection we also checked the stability of the models
via the Harrison–Zeldovich–Novikov stability crite-
rion, which states that any configuration is stable so
long as dM/dρ0 > 0, or the mass increases with cen-
tral density ρ0, and unstable when as dM/dρ0 < 0, or
the mass decreases with the increase of central density
ρ0. From Fig. 12 it is clear that the mass is increasing
with central density ρ0, which shows that the present
anisotropic configuration is stable.

(viii) Finally, we proposed the generating functions for all
the spherically symmetric anisotropic solutions of Ein-
stein’s field equations which were discovered by Her-
rera et al. [43], being generated from two very primi-
tive functions.

The overall final comment is that the Karmarkar embed-
ding condition describes a rich class of anisotropic com-
pact spheres which are physically viable in relativistic astro-
physics.
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