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Abstract Anisotropy is one factor that appears to be signif-
icantly important in the studies of relativistic compact stars.
In this paper, we make a generalization of the Buchdahl limit
by incorporating an anisotropic effect for a selected class
of exact solutions describing anisotropic stellar objects. In
the isotropic case of a homogeneous distribution, we regain
the Buchdahl limit 2M/R ≤ 8/9. Our investigation shows
a direct link between the maximum allowed compactness
and pressure anisotropy vi-a-vis geometry of the associated
3-space.

1 Introduction

What is the maximum permissible compactness of a self-
gravitating compact stellar object? This question remains
intriguing in the context of the stability of a stellar config-
uration, in particular. Buchdahl theorem [1] addresses the
question which states that no uniform density stars with radii
smaller than 9/8M can exist. Otherwise, the central pres-
sure diverges. In other words, for a stellar configuration in
equilibrium, the Buchdahl bound implies 2M/R < 8/9. The
interior of the star in this derivation is assumed to be a homo-
geneous distribution of perfect fluid whose exterior region
is described by the Schwarzschild solution. Buchdahl bound
prescribes an absolute constraint of the maximum allowed
mass (M) to radius (R) ratio of a uniform density star as well
as stellar configurations with radially decreasing energy den-
sity. Later on, by considering a variety of matter distributions
in different background spacetimes, numerous studies have
been made to determine the upper bound on the compactness
of a star (for a ready reference, see [2] and references therein).
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Of particular interest is the recent work of Dadhich [2] where
it has been shown that the Buchdahl compactness can be
determined without any reference to the interior matter dis-
tribution. The upper limit in this calculation gets determined
solely in reference to the Schwarzschild exterior solution for
a neutral star and exterior Reissner–Nordström solution for a
charged sphere. The probe also prescribes an upper bound on
the charge to mass ratio Q2/M2 ≤ 9/8. In a recent article, by
developing a model for charged star which was shown to be a
generalization of the uniform density Schwarzschild interior
solution, Sharma et al. [3] regained the charged analogue of
the Buchdahl compactness bound

M

R
= 8/9(

1 +
√

1 − 8α2

9

) ,

where α2 = Q2/M2. Obviously, the bound reduces to
2M/R < 8/9 in the uncharged case.

While numerous charged analogue of the Buchdahl bound
is available in the literature (see, for example, [4–6]), the
study of the maximum mass-radius ratio for compact stars
has been mostly confined to isotropic fluid spheres in which
the tangential pressure (pt ) equals the radial pressure (pr ).
However, theoretical investigations show that anisotropic
stresses might exist beyond a certain density range at the
interior of compact stars [7–9]. In a recent article, it has been
argued that pressure anisotropy cannot be ignored in the stud-
ies of relativistic compact stars as it is expected to develop
quite naturally by the physical processes inside such ultra-
compact stars [10]. Earlier, Heintzmann and Hillebrandt [11]
claimed that no limiting mass could exist for a neutron star
with an anisotropic matter distribution. However, considering
an anisotropic distribution of matter, Guven and Murchadha
[12] determined an upper limit on M/R. The investigation
showed that for a stellar configuration with monotonically
decreasing density profile and having pr ≥ pt , the upper
bound M

R ≤ 8
9 holds if the gravitational mass is replaced by
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the quasi-local mass. However, the bound can not be recov-
ered for configurations with pt ≥ pr . Mak et al. [13] devel-
oped an anisotropic stellar model by assuming the anisotropic
stress to be proportional to r2 and analyzed the subsequent
bound.

The objective of the current investigation is to obtain an
anisotropic generalization of the Buchdahl bound. We plan to
obtain the bound for particular class of solutions describing
the interior of static spherically symmetric anisotropic stars.
In our calculation, we choose two realistic stellar models
developed by Maurya et al. [15] and Das et al. [14]) so as to
get an insight into the effects of anisotropy on the maximum
bound of a star. Our choice of the particular class of solutions
is motivated by the fact that both the solutions have their
respective isotropic limits which enables one to regain the
Buchdahl bound for a constant density star.

The paper is organized as follows: in Sect. 2, we outline
the techniques adopted to generate the stellar models used
in our analysis. In Sect. 3, we make use of the models to
find anisotropic generalizations of the Buchdahl bound. In
Sect. 4, concludes by highlighting the main results of our
investigation. We also outline the scope of a further probe in
this context.

2 Particular class of stellar solutions

To develop the model of a static spherically symmetric star
with anisotropic matter distribution, the line element describ-
ing the interior of the star is assumed to be of the form

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2
(
dθ2 + sin2 θdφ2

)
,

(1)

where, ν(r) and λ(r) are the unknown gravitational poten-
tials. The energy–momentum tensor for the anisotropic fluid
distribution is assumed in the form

Tab = diag(−ρ, pr , pt , pt ), (2)

where ρ, pr and pt are the energy density, radial and tan-
gential pressure, respectively. The comoving fluid velocity is
given by ui = e−ν/2δi0. The Einstein field equations for the
line element (1) and the energy–momentum tensor (2) are
then obtained as

ρ = 1

r2

(
1 − e−λ

) + λ′

r
e−λ, (3)

pr = − 1

r2

(
1 − e−λ

) + ν′

r
e−λ, (4)

pt = e−λ

4

(
2ν′′ + ν′2 − ν′λ′ + 2ν′

r
− 2λ′

r

)
, (5)

where a (′) denotes differentiation with respect to r . Δ =
pt − pr denotes anisotropy in this construction. To close

the system of equations (3)–(5), following techniques are
adopted:

2.1 Solution developed by Das et al. [14]

To solve the system, one introduces the Vaidya and Tikekar
[16] metric ansatz

eλ =
1 − K

(
r2

L2

)

1 − r2

L2

, (6)

where K and L are constant curvature parameters. The
Vaidya and Tikekar metric ansatz is motivated by the obser-
vation that the geometry of the t = constant hypersurface of
the associated spacetime when embedded in a 4-dimensional
Euclidean space is not spherical but spheroidal in nature. The
parameter K in (6) denotes the departure from the sphericity
of associated 3-space. The anstaz has found huge application
for the development and studies of relativistic stellar mod-
els like neutron stars. Earlier, making use of the Vaidya and
Tikekar metric ansatz, Sharma et al. [17] obtained the max-
imum permissible mass and radius of a relativistic compact
star for a given surface density. An upper bound on mass
to radius ratio for an anisotropic stellar model was obtained
by Maurya et al. [18] where the Buchdahl–Vaidya–Tikekar
metric ansatz was utilized.

Since anisotropy provides an additional degrees of free-
dom in this construction, in addition to the Vaidya and
Tikekar ansatz, Das et al. [14] also utilized the Kar-
markar’s embedding condition of class-I [19] to determine
the unknown metric potential eν(r). The procedure yields

eν =
[
C + D

√
(K − 1)

(
r2 − L2

)]2

. (7)

where C and D are constants to be determined from the
boundary conditions. Subsequently, physical quantities are
obtained as

ρ = (K − 1)
(
Kr2 − 3L2

)
(
L2 − Kr2

)2 , (8)

pr =
(K − 1)

[
D(K − 3)

√
r2 − L2 + C

√
K − 1

]
(
L2 − Kr2

) [
D(K − 1)

√
r2 − L2 + C

√
K − 1

] ,

(9)

pt = (K − 1)(
L2 − Kr2

)2
[
D(K − 1)

√
r2 − L2 + C

√
K − 1

]

+
[
D(K − 3)L2

√
r2 − L2 + DKr2

√
r2 − L2

+CL2
√
K − 1

]
, (10)
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Δ =
(K − 1)Kr2

[
D(K − 2)

√
r2 − L2 + C

√
K − 1

]
(
L2 − Kr2

)2
[
D(K − 1)

√
r2 − L2 + C

√
K − 1

] .

(11)

The mass contained within a radius r is obtained as

m(r) = (K − 1)r3

2
(
L2 − Kr2

) . (12)

Equation (11) shows that that while K denotes deviation from
sphericity of the associated 3-space, the parameter also turns
out to be a measure of anisotropy in this formulation. Most
importantly, the K = 0 case suggests spherical homogeneous
distribution with zero anisotropy and in that case the solution
reduces to

ds2 = −
⎡
⎣C − DL

√
1 − r2

L2

⎤
⎦

2

dt2 + 1

1 − r2

L2

dr2

×r2
(
dθ2 + sin2 θdφ2

)
, (13)

which is the Schwarzschild interior solution for an incom-
pressible fluid.

For a given K , the constants of the model, namely C , D
and L do get fixed by (i) matching the interior solution to the
Schwarzschild exterior metric across the boundary (R) and
(i i) by imposing the condition that the radial pressure should
vanish at a finite boundary i.e., pr (r = R) = 0. In terms of
total mass M and radius R, the constants are obtained as

L = R

√
R + 2KM − K R

2M
, (14)

C = (R − 2M)(3 − K )

√
R(1 − K )

8M
(
L2 − R2

) , (15)

D = −
√

M

2R3 . (16)

2.2 Solution developed by Maurya et al. [18]

Maurya et al. [15] assumed a specific form of the metric
potential grr

eλ = 1 + (a − b)r2

1 + br2 , (17)

where a and b are constants with a �= b. Using (17) and
Karmarkar’s embedding condition, it is possible to find a
closed form solution for the system (3)–(5) in the form

eν =
[
Ab + B

√
(a − b)

√
(1 + br2)

b

]2

, (18)

where A and B are constants to be determined from the
boundary conditions. Subsequently, one obtains

ρ = (a − b)

[
(3 + ar2)

(1 + ar2)2

]
, (19)

pr = (a − b)

⎡
⎣ −Ab + B(3b − a)

√
(1+br2)
(a−b)

(1 + ar2)[Ab + B
√

(a − b)(1 + br2)]

⎤
⎦ ,

(20)

pt =
√

(a − b)

(1 + ar2)2[Ab + B
√

(a − b)(1 + br2)]

×
⎡
⎣ − Ab

√
(a − b)

+ B√(
1 + br2

)
(

3b − a + ab2r4
)⎤
⎦ . (21)

The anisotropy factor is obtained in the form

Δ = ar2
√

(a − b)

×
⎡
⎣ Ab

√
(a − b) + B√

(1+br2)
(a − 2b)

(1 + ar2)2[Ab + B
√

(a − b)(1 + br2)]

⎤
⎦ ,

(22)

which shows that the anisotropy vanishes for a = 0.
The boundary conditions mentioned above determine the

unknown constants as

A = (3b − a)

2b

√[
1 + bR2

1 + aR2

]
, (23)

B = 1

2

√
a − b

1 + aR2 . (24)

The total mass M within a radius R is obtained as

M = R

2

[
1 − 1 + bR2

1 + aR2

]
. (25)

Note that the solution contains four constantsa, b, A, B. For
given values of M and R, three of the constants do get fixed
while one parameter remains free. In our analysis, we assume
the free parameter to be a. It is noteworthy that b �= 0 in this
model as A becomes infinite for b = 0. For a = 0, equation
(25) suggests that we must have b < 0. Most importantly, by
setting a = 0 in Eq. (17) and setting b = − 1

L2 , we regain the
Schwarzschild incompressible fluid solution.
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Thus, we have two sets of anisotropic stellar solu-
tions, both having the Schwarzschild interior solution as an
isotropic limiting case. It can be shown that both the solutions
satisfy the energy conditions and other physical requirements
of a realistic star. In the following section, making use of the
anisotropic solutions, we intend to obtain an anisotropic gen-
eralization of the Buchdahl bound.

3 Anisotropic generalization of Buchdahl bound

It is noteworthy that the solutions to be utilized to find a new
bound should fulfil the physical requirements that density
and pressure should be non-negative (ρ, p ≥ 0) and density
should be a decreasing function of radial distance ( dρdr > 0).
The generalized bound in the presence of anisotropic stress
is deduced by demanding that the pressure must not diverge
at the centre (note that at r = 0, pr = pt ). In the following
sub-sections, we derive two separate bounds on the mass to
radius ratio.

3.1 Generalized Buchdahl bound utilizing the solution
obtained in (2.1)

In Eq. (9), the condition that central pressure must not diverge
implies that we must have[
C

√
1 − K − DL(1 − K )

]
≥ 0. (L �= 0) (26)

To find the bound on M/R, we substitute the values of C , D
and L in eq. (26) and consider the extreme case (i.e., equate
the left hand side to zero) which yields

(R − 2M)(3 + K 2 − 4K )

(K − 1)
√

(R + 2KM − K R)(R + 2KM − K R − 2M)
= 1.

(27)

We rewrite (27) as

(9 − 5K )y2 + (9K − 17)y + (8 − 4K ) = 0, (28)

where y = 2M

R
. Solution of Eq. (28) eventually leads to the

following inequality

y = 2M

R
≤ 4(K − 2)

(5K − 9)
. (29)

Since the parameter K can be linked to anisotropy in this
model, Eq. (29) can be treated as a generalization of the
Buchdahl bound for an anisotropic stellar configuration. In
Fig. 1, the bound on M/R against K is shown. The plot indi-
cates that as anisotropy increases, the upper bound decreases.
Since K is also a measure of departure from homogeneous
isotropic spherical distribution, the result also shows that a
departure from spherical geometry reduces the upper bound

Fig. 1 Upper bound on M/R plotted against the anisotropic parameter
K

on compactness. Setting K = 0, we regain the bound
2M/R ≤ 8/9.

3.2 Generalized Buchdahl bound utilizing the solution
obtained in (2.2)

We utilize the solution obtained by Maurya et al. and follow
the same technique to make an anisotropic generalization of
the Buchdahl bound. In this case, applying the condition that
central pressure must not diverge in Eq. (20), we obtain the
following constraint

Ab + B
√

(a − b) ≥ 0. (30)

We substitute the values of A and B in (30) and in the extreme
case obtain the following relation

1 − 2M

R
=

( a − b

3b − a

)2 1

1 + aR2 , (31)

which eventually leads to the following bound

2M

R
≤ 4

( a
b

)2 − 12
( a
b

) + 8

5
( a
b

)2 − 14
( a
b

) + 9
, (32)

where we have substituted

R2 = 4a − 8b

(3b − a)2 . (33)

Equation (32) is an anisotropic generalization of the Buch-
dahl bound. Setting a = 0 in Eq. (32), we regain the bound
2M/R ≤ 8/9. In Fig. 2, the variation of the maximum bound
on compactness with respect to the dimensionless anisotropic
factor a/b is shown. It is interesting to note that the maximum
bound decreases with the increase of anisotropy. In fact, both
the models, exhibit identical behaviour.
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Fig. 2 Upper bound on M/R plotted against the anisotropic parameter
a/b

4 Discussion

The key results of our investigation are outlined below:

– Making use of particular anisotropic stellar models, we
have obtained anisotropic generalizations of the Buch-
dahl bound. In the isotropic case, both the solutions cor-
respond to the Schwarzschild incompressible fluid solu-
tion, and consequently, the Buchdahl bound M/R ≤ 4/9
is regained once the anisotropy is switched off. For any
physically reasonable stellar configuration, the general-
ized bound is obtained by demanding that the central
pressure must not be infinite.

– Even though we have considered two different class of
solutions, the impact of anisotropy is similar in both
cases. Anisotropy reduces the upper bound on com-
pactness, and it never exceeds the value of 2M/R =
8/9.

It remains to be seen whether the effects of anisotropy
remain identical in all kinds of anisotropic stellar models.
It should be stressed here that we have considered mod-
els where pt > pr . It remains to be seen whether a sim-
ilar outcome would follow for stellar configurations hav-
ing pr > pt . It is also a matter of further probe whether
the technique adopted in this paper provides the most strin-
gent bound on compactness. All these issues are beyond
the scope of the current investigation and will be taken up
elsewhere.
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