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Abstract

We report measurements of antiferromagnetic resonances in the van der Waals

easy-axis antiferromagnet CrSBr. The interlayer exchange field and magnetocrystalline

anisotropy fields are comparable to laboratory magnetic fields, allowing a rich variety

of gigahertz-frequency dynamical modes to be accessed. By mapping the resonance

frequencies as a function of the magnitude and angle of applied magnetic field we

identify the different regimes of antiferromagnetic dynamics. The spectra show good

agreement with a Landau-Lifshitz model for two antiferromagnetically-coupled sublat-

tices, accounting for inter-layer exchange and triaxial magnetic anisotropy. Fits allow
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us to quantify the parameters governing the magnetic dynamics: at 5 K, the interlayer

exchange field is µ0HE = 0.395(2) T, and the hard and intermediate-axis anisotropy

parameters are µ0Hc = 1.30(2) T and µ0Ha = 0.383(7) T. The existence of within-

plane anisotropy makes it possible to control the degree of hybridization between the

antiferromagnetic resonances using an in-plane magnetic field.

Keywords: van der Waals magnet, antiferromagnetic resonance, triaxial magnetic

anisotropy, interlayer exchange, microwave absorption spectroscopy

van der Waals (vdW) antiferromagnets (AFs), a new class of exfoliatable magnetic materials,

provide opportunities for future memory, logic, and communications devices because their magnetic

properties are highly tunable, for example by applied electric fields1,2 or strain3, they can possess

long-lived magnons4, and they can be straightforwardly integrated within complex heterostructures

by mechanical assembly5,6. The strength of exchange coupling between vdW layers is typically much

weaker than the direct exchange or superexchange coupling in ordinary 3D-crystal antiferromagnets.

This weak interlayer exchange yields antiferromagnetic resonances in the gigahertz range, rather

than the terahertz range that is more typical for antiferromagnets7–13. The resonance modes

in vdW antiferromagnets can therefore be addressed and controlled with conventional microwave

electronics.

Here, we use antiferromagnetic resonance measurements to map the gigahertz-frequency reso-

nances in the vdW antiferromagnet CrSBr4,14–17. Unlike the only other two vdW antiferromagnets

whose modes have been characterized in detail previously (CrI3
2,18 and CrCl3

19), CrSBr has a

significant triaxial magnetic anisotropy with an easy axis oriented within the vdW plane20. This

anisotropy modifies the form of the antiferromagnetic resonances, and for a sufficiently strong mag-

netic field aligned with the anisotropy axis it induces a discontinuous transition that changes the

mode spectrum abruptly. By measuring the resonances in CrSBr as a function of the angle and

magnitude of applied magnetic field and comparing to a Landau-Lifshitz (L-L) model, we iden-

tify the resonance modes in the frequency range 1 - 40 GHz, make a quantitative determination

of the interlayer exchange and anisotropy fields, and show that the hybridization between modes

can be controlled with an in-plane magnetic field. These measurements provide the foundational
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understanding needed for efforts to utilize these modes within future spintronic devices.

CrSBr is an A-type antiferromagnetic vdW semiconductor with intralayer ferromagnetic cou-

pling and interlayer antiferromagnetic coupling14,17,20. It has a bulk Néel temperature (TN) of 132

K and an intermediate ferromagnetic phase with Curie temperature (TC) in the range of 164 - 185

K as measured using transport and optical methods14,15,17. Each vdW layer consists of two buckled

rectangular planes of Cr and S atoms sandwiched between Br atoms. The layers are stacked along

the c-axis through vdW interactions to form an orthorhombic structure (space group Pmmn) (Fig.

1a and Fig. 1b). In our measurements, we use millimeter-length, flat, needle-like single crystals of

CrSBr grown by a modified chemical vapor transport approach (see growth details in the Methods

section). The long axis of the needle is oriented along the crystallographic a-axis and the flat

face corresponds to the vdW plane (supplementary information, Fig. S1). Previous magnetoresis-

tance studies identified a magnetic easy axis (Néel axis) along the crystallographic b-axis (blue and

green arrows in Fig. 1b and 1c), an intermediate axis along the a-axis, and a hard axis along the

c-axis14,17.

We investigate the antiferromagnetic resonances of CrSBr by placing the crystal on a coplanar

waveguide and measuring the microwave absorption spectrum using a two-port vector network an-

alyzer. For the measurements reported in the main text, we align the crystal with its long axis

(i.e., the a axis) perpendicular to the waveguide, such that the Néel axis N̂ (i.e., the b axis) is

perpendicular to the in-plane RF field (HRF ). An external DC magnetic field is swept in-plane,

either perpendicular (H⊥), parallel (H‖), or at intermediate angles relative to N̂ (Fig. 1c). (See

supplementary information, Section I for spectrum acquisition details.) We use a low microwave

power, -20 dBm, to avoid any significant sample heating and to measure the magnetic resonance

induced microwave absorption in the linear response regime. We verify that the spectra are insensi-

tive to the incident power in this regime (supplementary information, section VIII). Representative

transmission spectra as a function of applied field at 5 K are shown in Fig. 2. Dark green features

represent strong microwave absorption due to resonance modes. We observe two resonance modes

in the H⊥ configuration and show their dependence on magnetic field in Fig. 2a up to the maximum

applied field of ± 0.57 T. Below, we will identify the two resonances in Fig. 2a as acoustic and op-
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Figure 1: Crystal structure and experimental setup for the coplanar waveguide
measurements. (a) Crystal structure of CrSBr as viewed along the out-of-plane c-axis,
with Cr, S and Br atoms represented by blue, yellow and red spheres respectively. (b)
Crystal structure of two CrSBr vdW layers as viewed along the a-axis. Blue and green
arrows indicate the antiferromagnetic in-plane magnetic order with the Néel vector N̂
aligned with the easy magnetic axis, which is the crystal b-axis. (c) Experimental
schematic of a CrSBr crystal mounted on a coplanar waveguide for microwave absorption
measurements (not to scale)21. Here, we show just 3 vdW layers of the bulk crystal for
clarity. The long axis of the crystal (a-axis) is aligned perpendicular to the signal line such
that the microwave magnetic fields are perpendicular to the magnetic easy axis. The
purple and green balls represent Cr atoms in adjacent layers, with magnetization polarized
to the left (blue arrows) or right (green arrow) indicating the Néel order. External fields
can be applied either parallel (H‖) or perpendicular (H⊥) to N̂ .
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tical modes originating from an initial spin-flop configuration in which the two spin sublattices are

canted away from the easy axis. In the H‖ case (Fig. 2b), two resonance features are also observed,

but with opposite signs of concavity (d2f/dH2) compared to Fig. 2a. At approximately H‖ = ±

0.4 T in Fig. 2b there is a sudden transition beyond which only one mode is observed. A previous

study associated a related transport signal as due to a spin-flip transition, in which the external

field overcomes the anisotropy field to abruptly align the two spin sublattices from an antiparallel

to parallel orientation22. We will find that the anisotropy parameter Ha is slightly smaller than the

interlayer exchange field HE , so strictly speaking the discontinuity is likely a spin-flop transition in

which the Néel vector initially reorients by 90◦ and the spin-sublattices tilt to form a canted state

within a narrow window of applied magnetic field, before eventually they saturate to a parallel

alignment as a function of increasing field23.

We can identify the nature of the detected resonance modes by modeling them with two coupled

L-L equations using a macrospin approximation for each spin sublattice. This is a reasonable

approximation since the applied DC and AC magnetic fields, as well as the interlayer exchange, are

small perturbations relative to the intralayer ferromagnetic coupling20, so they should not affect

the net magnetization of individual atomic layers significantly. Denoting the magnetic-moment

direction of the two spin sublattices with the unit vectors m̂1 and m̂2, we model the interlayer

Weiss exchange field acting on m̂1(2) as −HEm̂2(1). The triaxial magnetic anisotropy can be

modelled by including the hard axis and intermediate axis anisotropy fields −Hc(m̂1(2) · ĉ)ĉ and

−Ha(m̂1(2) · â)â, where Hc and Ha are constants and ĉ and â are unit vectors along the crystal’s c

and a axes. The coupled two-lattice L-L equations can then be written as24

dm̂1(2)

dt
=− µ0γm̂1(2) × (H−HEm̂2(1) −Hc(m̂1(2) · ĉ)ĉ−Ha(m̂1(2) · â)â). (1)

Here µ0 is the permeability constant, γ is the gyromagnetic ratio, and H is the externally applied

magnetic field. Since we will focus only on the relationship between the resonance frequency and

applied magnetic field, but not the resonance linewidth, we omit a damping term.

In the H⊥ configuration, since the external field is perpendicular to the Néel axis the initial spin
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Figure 2: Microwave absorption spectra measured at 5 K as a function of
magnetic field applied perpendicular (H⊥) or parallel (H‖) to N̂ . (a) Microwave
transmission (S21) signal as a function of H⊥, magnetic field applied along the crystal a
axis. (b) The corresponding spectra as a function of H‖, magnetic field applied along the
crystal b axis. S21 values are shown relative to a field-independent subtracted background.
Dashed lines show a fit to the results of the L-L model (Eqs. (2)-(8)). Diagrams on the
right illustrate the form of some of the resonant modes.
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configuration (before HRF is applied) is a spin-flop state in which the two spin sublattices rotate

symmetrically towards H⊥ as illustrated in Fig. 2a, with a tilt angle sinχ = H⊥/(2HE+Ha). Upon

excitation by HRF , assuming small damping, the magnetic sub-lattices will oscillate at frequencies

corresponding to the normal modes of the system. Taking terms to the first order in the excitation

amplitudes δm̂1(2), we calculate these frequencies by rewriting Eq. (1) as a 6 × 6 matrix in the

δm
1(2)
b,a,c basis. Solving for the eigenvalues, and taking only the non-trivial positive solutions, we

obtain the following resonance frequencies (details in supplementary information, section II).

ω1,⊥ = µ0γ

√
(H2
⊥(2HE −Ha) +Ha(Ha + 2HE)2)(2HE +Hc)

(Ha + 2HE)2
(2)

ω2,⊥ = µ0γ

√
((Ha + 2HE)2 −H2

⊥)Hc

Ha + 2HE
(3)

These equations should apply up to the field |H⊥| = 2HE+Ha at which point the applied field drives

the spin sublattices fully parallel, which is a field beyond the range of our measurements. When

µ0Ha = 0 T, these modes simplify to the form of acoustic (ω1,⊥) and optical (ω2,⊥) modes previously

reported for easy-plane antiferromagnets19,25. When µ0Ha 6= 0 T, the acoustic mode has a finite

frequency as H⊥ goes to zero, instead of being proportional to H⊥. Even when µ0Ha 6= 0 T, the

sample in this field geometry is symmetric under twofold rotation around the applied field direction

combined with sublattice exchange19. The acoustic and optical modes have opposite parity under

this two-fold rotation, so they remain unhybridized and they cross when they intersect (see the

50 K and 100 K data in Fig. 3a,c), rather than undergoing an avoided crossing (supplementary

information, section IV).

In the H‖ configuration, the applied field is parallel to the Néel axis and for small fields

(|H‖| <
√

(2HE −Ha)Ha if Ha < HE , or |H‖| < HE if Ha > HE) the spin sub-lattices initially stay

antiparallel to each other and aligned along this preferred axis. By a matrix diagonalization proce-

dure similar to the one discussed above, for this antiparallel configuration we obtain the resonance
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frequencies

ω1,‖ = µ0γ

√
H2
‖ +Ha(HE +Hc) +HEHc −

√
H2
‖ (Ha +Hc)(Ha + 4HE +Hc) +H2

E(Ha −Hc)2

(4)

ω2,‖ = µ0γ

√
H2
‖ +Ha(HE +Hc) +HEHc +

√
H2
‖ (Ha +Hc)(Ha + 4HE +Hc) +H2

E(Ha −Hc)2.

(5)

These modes correspond to linear superpositions of the left-handed (LH) and right-handed (RH)

modes previously reported for easy-axis antiferromagnets12,24. Here, the presence of triaxial anisotropy

(Hc 6= Ha) induces an avoided crossing at zero field (Fig. 2b) and causes the eigenmodes at zero

field to be symmetric and antisymmetric combinations of the LH and RH modes26.

If Ha < HE , in this model as a function of increasing H‖ the antiferromagnet undergoes a

spin-flop transition at H‖ =
√

(2HE −Ha)Ha in which case the Néel vector abruptly reorients to

be perpendicular to the applied field and each spin sublattice cants toward the field direction with

a tilt angle sinχ = H‖/(2HE −Ha). For this configuration, we obtain the resonance frequencies

ω1,‖,flop = µ0γ

√
(H2
‖ (2HE +Ha)−Ha(2HE −Ha)2)(2HE +Hc −Ha)

(2HE −Ha)2

ω2,‖,flop = µ0γ

√
((2HE −Ha)2 −H2

‖ )(Hc −Ha)

2HE −Ha
.

(6)

(7)

For this case that Ha < HE , as H‖ is increased further the canting angle of the spin sublattices

in the spin flop state increases continuously, and eventually approaches χ = π/2 reaching the

fully-aligned spin state for H‖ ≥ 2HE − Ha. For the alternative case that Ha > HE , within this

model the spin-flop state is never stabilized, and the antiferromagnet makes a discontinuous spin-

flip transition directly from the anti-aligned state to the fully-parallel state at H‖ = HE . Once the

antiferromagnet is in the fully-parallel state for large H‖, in either case the calculated resonance

frequencies take the form

ω1,‖,FM = µ0γ
√

(H‖ +Ha)(H‖ +Hc) (8)
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ω2,‖,FM = µ0γ
√

(H‖ +Ha − 2HE)(H‖ +Hc − 2HE). (9)

However, we do not expect either ω2,‖,flop or ω2,‖,FM to be detectable in our measurements because

these modes are even as a function of 2-fold rotation about the H‖ axis, and the oscillating RF field

has only odd components for this configuration19.

The dashed lines in Fig. 2a represent fits of the resonant modes for the H⊥ configuration to Eqs.

(2) and (3), and in Fig. 2b we present the analogous fits of the modes for theH‖ configuration to Eqs.

(4)-(6), (8) taking into account the predicted transition fields. The fits provide a good description

of all the observed modes with a common set of fit parameters. The values of the fit parameters

for a simultaneous least-squares fit to the data in Figs. 2a and 2b are an inter-layer exchange field

strength of µ0HE = 0.395(2) T and anisotropy field strengths of µ0Ha = 0.383(7) T along the

in-plane intermediate axis and µ0Hc = 1.30(2) T along the out-of-plane hard axis. As expected the

exchange field is an order of magnitude smaller than the typical exchange in bulk antiferromagnets.

It is larger, however, than the value of 0.1 T measured in CrCl3 using similar techniques19. The

modes that are most prominent in the spectra correspond to the spin-flop configuration for the

H⊥ geometry, the antiparallel spin configuration at low values of H‖, and the fully-parallel spin

alignment at large values of H‖. However, because by our fits Ha is slightly smaller than HE , we do

also anticipate that there could in principle be a very small region corresponding to the spin-flop

state in Fig. 2b.

Next, we investigate the evolution of the resonant modes with temperature. As shown in Figs.

2a,b and Figs. 3a-h, we observe qualitatively similar resonance features over the temperature range

from 5 to 100 K. With increasing temperature, the modes shift to lower frequency and the magnetic

field scales decrease for both the value of H⊥ where the two modes become degenerate and for the

value of H‖ corresponding to the discontinuous transition. These observations can be attributed to

decreasing values of all of the exchange and anisotropy parameters HE , Ha and Hc with increasing

temperature. Figure 4 plots the values of HE , Ha, and Hc extracted from simultaneous fits of

equations (2)−(6) to the H‖ and H⊥ transmission spectra for a series of temperatures from 5 to

128 K. We observe a monotonic decrease in all three parameters.
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Figure 3: Fitted absorption spectra at different temperatures. (a, c, e, g)
Microwave transmission (S21) signals as a function of H⊥, magnetic field applied along the
crystal a axis, for the selected temperatures indicated. (b, d, f, h) S21 signals as a function
of H‖ at the same selected temperatures. Dashed lines are fits to Eqs. (2)-(8) with
parameters HE, Ha, and Hc that are allowed to vary with temperature but are independent
of the applied field magnitude and direction. Red and blue dotted lines represent the
predicted spin-flop and fully-parallel spin alignment transition fields respectively.
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Figure 4: Temperature dependence of the interlayer exchange and the anisotropy
field strengths HE, Ha, and Hc. a) Temperature dependence of the interlayer exchange
HE (blue squares) and the in-plane easy-axis anisotropy parameter Ha (red circles). b)
Temperature dependence of out-of-plane anisotropy parameter Hc. The black dashed lines
indicate the estimated Néel temperature TN ≈ 132 K and the Curie temperature Tc ≈ 160
K, previously measured in magnetometry and magnetotransport measurements14,15,17.
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The anisotropy parameter Ha decreases more quickly with increasing temperature than HE ,

which within our model should open up a larger window of field within which the spin-flop con-

figuration is stabilized in the H‖ geometry. This regime corresponds to the one feature of our

measurement which is not captured well by the fits – see how the field dependence of the mea-

sured frequency deviates from the prediction for the spin-flop state for values of |H‖| just above

the discontinuous jumps for the 50 K and 100 K data in Figs. 3b and 3d. We take this as a hint

that our simple model may not fully capture the angular dependence of the exchange energy or the

magnetic anisotropy for large canting angles within the spin-flop state.

At 140 K (Figs. 3e, f), the resonance spectra become quite different compared to the lower-

temperature measurements, with only a single resonance mode observed, rather than two. The

frequency dependence can be fit well to a ferromagnetic dependence (Eq. (8)) with the in-plane easy-

axis anisotropy persisting to give slightly different frequencies for H‖ vs. H⊥. This measurement

is performed above the Néel temperature of 132 K, so our interpretation is that this spectrum

corresponds to the intermediate ferromagnetic state observed previously by transport and optical

second harmonic generation14,15,17. Finally, by 180 K (Figs. 3g, 3h) the anisotropy is no longer

visible and only a linear electron paramagnetic resonance signal remains, with a slope of 26.6(1)

GHz/T and a very narrow linewidth27.

We have explored in more detail the relationship between the H‖ and H⊥ modes by measuring

the evolution of the modes when the external field is applied at angles φ between the b crystal axis

(easy anisotropy axis) and the a crystal axis (intermediate anisotropy), where φ = 0◦ corresponds

to the H‖ configuration. As shown in Fig. 5a for data measured at 100 K, the convex-shaped

optical and acoustic modes H⊥ modes (φ = 90◦) flatten out and evolve toward the concave-shaped

H‖ modes as φ is decreased. As this happens, the simple crossing between the modes present for

φ = 90◦ evolves into the avoided crossing visible for the 75◦ and 60◦ data. This hybridization in the

modes as φ is decreased from 90◦ is analogous to the opening of an anti-crossing hybridization gap

in CrCl3 due to breaking of 2-fold rotational symmetry by an out-of-plane applied magnetic field19,

but here the in-plane easy axis allows for two-fold rotational symmetry to be broken with an in-plane

field oriented away from the H⊥ direction (see further analysis in the supplementary information,
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section IV and VII). As a function of decreasing φ from 90◦, the discontinuity corresponding to

the spin-flip transition first becomes visible at about φ = 60◦ and is increasingly prominent at

smaller angles. The dashed lines in Fig. 5a represent a global numerical fit to the spectra with the

parameters (appropriate for 100 K) µ0HE = 0.222(2) T, µ0Ha = 0.147(2) T, and µ0Hc = 0.625(7)

T.

Line scans showing the development of the anti-crossing gap in the spectra are shown in Fig.

5b for small angles away from φ = 90◦. We quantify in Fig. 5c the strength of the mode coupling

with the parameter ∆f
2 , half the frequency separation of the coupled resonance mode peaks. The

coupling parameter increases monotonically as the external field is rotated from 90◦ to 55◦. For

φ = 55◦, the coupling strength is ∆f
2 = 4(1) GHz, while the full-width half maxima of the upper

and lower modes are Ku
2π ≈ 1.14 GHz and Kl

2π ≈ 1.6 GHz. This satisfies the condition ∆f
2 > Ku and

∆f
2 > Kl, indicating that the system is in the regime of strong magnon-magnon coupling, as has

previously been observed in other spin-wave systems19,26,28.

In summary, we report measurements of GHz-frequency antiferromagnetic resonance modes in

the van der Waals antiferromagnet CrSBr that are anisotropic with regard to the angle of applied

magnetic field relative to the crystal axes. The modes are well described by two coupled Landau-

Lifshitz equations for modeling the spin sublattices, when one accounts for interlayer exchange and

triaxial magnetic anisotropy present in CrSBr. The interlayer exchange and the anisotropy field

strengths were measured by fitting the resonances for a series of temperatures from 5 to 128 K.

At 5 K we determine an interlayer exchange field HE = 0.395(2) T, and aniosotopy fields Ha =

0.383(7) T and Hc = 1.30(2) T. All three parameters weaken with increasing temperature. As the

angle of an applied magnetic field is changed within the a-b crystal plane, we observe a continuous

evolution from unhybridized acoustic and optical modes with a simple mode crossing (for H parallel

to the crystal a axis) to hybridized superpositions with an avoided crossing that is controllable by

magnetic field (as the angle of H is tuned away from a axis). This evolution of strong magnon-

magnon coupling can be understood as a consequence of breaking a two-fold rotational symmetry

that is present when the applied field is aligned along the crystal a axis. Our characterization of

antiferromagnetic resonances in an easily-accessible frequency range, and the understanding of how
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2
calculated as half

the separation between absorption resonances, as a function of φ.
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the resonances can be tuned between uncoupled and strongly-coupled by adjusting magnetic field,

sets the stage for future experiments regarding manipulation of the modes and the development of

capabilities like antiferromagnetic spin-torque nano-oscillators.

Crystal growth and characterization

CrSBr single crystals were synthesized using a modified chemical vapor transport approach adapted

from the original report by Beck29. Disulfur dibromide and chromium metal were added together

in a 7:13 molar ratio to a fused silica tube approximately 35 cm in length, which was sealed under

vacuum and placed in a three-zone tube furnace. The tube was heated in a temperature gradient

(1223 to 1123 K) for 120 hours. CrSBr grows as black, shiny flat needles. The long axis of bulk

needle crystals of CrSBr has been correlated to the a crystal axis by XRD experiments.

Supporting Information

Experimental methods, calculations of antiferromagnetic resonances from the Landau-Lifshitz equa-

tion, full temperature series, symmetry analyses, data from a second crystal.
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I. ACQUISITION OF THE MICROWAVE ABSORPTION SPECTRA

We couple the CrSBr crystal to a ground-signal-ground coplanar waveguide (CPW) and

perform RF (1 - 40 GHz) transmission measurements. For the data analyzed in the main

text, we aligned the long edge of the crystal (a-axis) perpendicular to the middle signal line

and glued it in place using rubber cement, as shown in Fig. S1(a). We also took special care

to align the vdW plane (CrSBr a-b crystal plane) parallel with the waveguide plane. We

connected the ends of the CPW to ports 1 and 2 of a Keysight 8722ES 40 GHz S-parameter

vector network analyzer (VNA) using coaxial cables. The waveguide was then lowered into

a Janis He vapour flow cryostat and secured onto a brass sample stage containing a sample

thermometer. The temperature was set with a Lakeshore 331 temperature PID controller.

We used a GMW model 5403 electromagnet, mounted on an stepper-motor-controlled in-

plane rotation stage, to sweep the external field Hext parallel (H∥) or perpendicular (H⊥)

with respect to the Néel axis (crystal b-axis), or at angles in between.

We also performed transmission measurements on another crystal, for which we aligned

the long a-axis parallel to the middle signal line of the CPW, rather than perpendicular. We

report results from that sample in Section VI of this supplementary information.

Before acquiring spectra at each temperature, we wait for the temperature to stabilize and

then calibrate the VNA using open, short, and 50 Ω standards to account for temperature-

dependent transmission factors. We measure the magnitude of the S21 transmission vector,

subtract a field-averaged background for each frequency, and perform Fourier Transform

smoothing and interpolation to remove any streak-like artifacts in the spectra. The trans-

mission spectrum before and after the subtraction and smoothing process at 5 K are shown

in Fig. S1(b) and (c).
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FIG. S1: Details of the microwave absorption measurements. a) CrSBr crystal with the a

axis aligned perpendicular to the signal line of a ground-signal-ground coplanar waveguide.

Absorption spectra b) before and c) after the background subtraction and smoothing

procedure. d) Comparison of spectra linecuts at µ0H = 0.1 T with the field-averaged

background. Plots are offset vertically for clarity.

II. CALCULATION OF ANTIFERROMAGNETIC RESONANCES FOR CrSBr

SAMPLES ACCOUNTING FOR TRIAXIAL ANISOTROPY

To model the antiferromagnetic resonance frequencies, we consider the coupled dynamics

of the two spin sublattices, 1 and 2. In the approximation of small-angle precession, we

can write the magnetization orientation of each sublattice as a unit vector consisting of a

4



time-invariant equilibrium position plus a small time-varying part:

m̂1(2) = m̂eq
1(2) + δm̂1(2)e

iωt. (1)

In our analysis, we define the ĉ direction to be perpendicular to the van der Waal layers

and along CrSBr hard axis (c-axis); â to be along the CrSBr intermediate axis (a-axis); and

b̂ to be along the CrSBr easy axis (b-axis). We assume that the exchange interaction felt

by one sublattice imposed by the other sublattice can be written as −HEm̂2(1). Therefore,

the general expression for the total effective magnetic field (including the external field,

exchange, and first-order anisotropy terms) is

H1(2) = Hext
b b̂+ (Hext

a −Ha(m
eq
1(2)a + δm1(2)a)e

iωt)â

+ (Hext
c −Hc(m

eq
1(2)c + δm1(2)c)e

iωt)ĉ−HEm̂2(1),
(2)

where Ha and Hc are anisotropy parameters along the CrSBr intermediate and hard axes

[1, 2].

The general Landau-Lifshitz (L-L) equation without damping is written as:

dm̂1(2)

dt
= −µ0γm̂1(2) ×H1(2). (3)

A. External field applied along the CrSBr intermediate axis (H⊥)

For the case when the extermal field is applied along the a axis, it induces a spin-flop

configuration such that the equilibrium sublattice magnetizations m̂1(2) stay in the b − a

plane and tilt symmetrically toward â, as illustrated in Fig. S2 below. Therefore, m̂eq
1(2) can

be written as (meq
1(2)b, m

eq
1(2)a, m

eq
1(2)c) = (± cosχ, sinχ, 0).

Substituting µ0H
ext
b = µ0H

ext
c = 0 T and µ0H

ext
a = µ0H⊥ into Eq. (2), the total effective

magnetic field can be written as

H1(2) = (H⊥ −Ha(m
eq
1(2)a + δm1(2)a)e

iωt)â−Hc(m
eq
1(2)c + δm1(2)ce

iωt)ĉ−HEm̂2(1). (4)

Substituting in the equilibrium spin-flop configuration m̂eq
1(2) = (± cosχ, sinχ, 0), Eq. (4)
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FIG. S2: Configuration of antiferromagnetic sub-lattices with Hext along the intermediate

axis. This configuration is symmetric upon two-fold rotation about the â-axis and

interchange of the spin sub-lattices.

becomes

H1(2) = (−HE(δm2(1)be
iωt ∓ cosχ))b̂+ (H⊥ −Ha(δm1(2)ae

iωt + sinχ)−HE(δm2(1)ae
iωt + sinχ))â

+ (−Hcδm1(2)ce
iωt −HEδm2(1)ce

iωt)ĉ.

(5)

Therefore, writing the L-L equations (Eq. (3)) in matrix form and ignoring terms higher

than first-order in the precession amplitude:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−iw 0 γ[H⊥ + sinχ(Hc −Ha −HE)] 0 0 γ sinχHE

0 −iw −γ cosχ(Hc +HE) 0 0 −γ cosχHE

γ[−H⊥ + sinχ(Ha +HE)] γ cosχ(Ha +HE) −iw −γ sinχHE γ cosχHE 0

0 0 γ sinχHE −iw 0 γ[H⊥ + sinχ(−Ha +Hc −HE)]

0 0 γ cosχHE 0 −iw γ cosχ(HE +Hc)

−γ sinχHE −γ cosχHE 0 γ[−H⊥ + sinχ(HE +Ha)] γ cosχ(−Ha −HE) −iw

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

(6)

To obtain the equilibrium position, since the moments will remain in the b−a plane, we can

ignore the c-axis anisotropy and write the free energy (per unit sub-lattice magnetization)

as

F = −m̂1 ·Hext − m̂2 ·Hext +HEm̂1 · m̂2 +
1

2
Ha(m̂1 · â)2 +

1

2
Hc(m̂2 · ĉ)2, (7)

and then minimize with respect to χ. For an applied magnetic field perpendicular to the

easy axis, this gives sinχ = H⊥/(2HE +Ha). We substitute this expression into the 6 × 6
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eigenvalue equation (6) and solve it to get 6 eigenvalues. Only two of these are non-trivial

and positive, corresponding to the resonance frequencies ω1(2),⊥:

ω1,⊥ = µ0γ

√
(H2

⊥(2HE −Ha) +Ha(Ha + 2HE)2)(2HE +Hc)

(Ha + 2HE)2
(8)

ω2,⊥ = µ0γ

√
((Ha + 2HE)2 −H2

⊥)Hc

Ha + 2HE

. (9)

These resonance modes are generalizations of the acoustic and optical modes previously

reported for CrCl3 [3]. By considering the two-fold rotational symmetry of the system about

the a axis, we find that the ω1,⊥ mode is odd with respect to this symmetry and so it will

be excited by RF fields that are odd under a 2-fold rotation about â. The ω2,⊥ mode is even

and will be excited by RF fields that have an even component.

At large applied magnetic fields for which the two sublattices are driven completely par-

allel (For H⊥ ≥ 2HE + Ha), m̂
eq
1(2) = (0, 1, 0), χ → π/2, Eqs. (8) and (9) are no longer

applicable, and we get the uniform ferromagnetic resonance mode

ω1,⊥,FM = µ0γ
√
(H⊥ −Ha)(H⊥ −Ha +Hc) (10)

and a lower-frequency mode

ω2,⊥,FM = µ0γ
√
(H⊥ −Ha − 2HE)(H⊥ −Ha +Hc − 2HE) (11)

In the lower-frequency mode, δm̂1 = −δm̂2 so there is no net time-dependent magnetization,

and for this reason we suggest that this mode will not couple to an external RF magnetic

field or produce any signal in a CPW measurement.

B. External field applied along the CrSBr easy axis (H∥)

When an external magnetic field is applied along the CrSBr easy axis (b-axis), there are

three possible equilibrium configurations, depending on the relative values of the H∥ (the

applied field), HE, and Ha. The two spin sublattices may remain antiparallel and aligned

along the easy axis, in which case according to Eq. (7) the energy (per unit sub-lattice

7



magnetization) of the state is FAP = −HE. The Néel vector may rotate perpendicular to

the applied field with the spin sublattices forming a spin-flop state with the canting angle

sinχ = H∥/(2HE − Ha), resulting in the energy Fflop = −H2
∥/(2HE − Ha) − HE + Ha.

Alternatively, the two spin sublattices can be driven parallel to the applied magnetic field,

with the energy FP = HE −2H∥. The equilibrium configuration can be determined based on

which state minimizes the energy. The field values corresponding to the various transitions

are as follows: the spin-flop state becomes lower in energy than the antiparallel state when

H∥ >
√
(2HE −Ha)Ha, the parallel state becomes lower in energy than the antiparallel state

when H∥ > HE, and the canting angle of the spin-flop state goes to π/2 to reach the parallel

state when H∥ > 2HE −Ha. This results in two possible scenarios for the evolution of the

configurations of the antiferromagnet, as pictured in Fig.S3.

a)

F

H
∥
(T)

m
x

H
∥
(T)

𝜇!Ha = 0.05, 𝜇!HE = 0.1, 𝜇!Hc = 0.3 𝜇!Ha = 0.2, 𝜇!HE = 0.15, 𝜇!Hc = 0.3b)

F
m
x

AP flop P AP P
m1x

m2x

m1x

m2x

FIG. S3: Field-induced magnetic phase transitions for scenario (a) weak anisotropy:

spin-flop transition at intermediate applied field H∥ >
√
(2HE −Ha)Ha (dashed red line)

followed by a gradual transition into a parallel state when H∥ > 2HE −Ha (dashed blue

line); and for scenario (b) strong anisotropy: spin-flip transition at H∥ > He (dashed green

line).
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I. If the intermediate-axis anisotropy is relatively weak (Ha < HE), the antiferromag-

net is initially in the antiparallel state at low values of applied field, and as a function

of increasing field it first makes a sudden, discontinuous transition to the spin-flop state at

H∥ =
√
(2HE −Ha)Ha, and then the canting angle grows continuously until the fully-parallel

state is reached for fields H∥ > 2HE −Ha or greater.

II. If Ha > HE, as a function of increasing H∥ there is no value of field for which the

spin-flop state is stable. The antiferromagnet is initially in the antiparallel state for low

values of applied field, but then makes a discontinuous transition to the fully-parallel state

for H∥ > HE.

We will calculate the resonance frequencies expected for all three states (antiparallel,

spin-flop, and fully-parallel), and compare to our measurements. For CrSBr we will find

that Ha is less than HE, but the values at most temperatures are rather close, so there

is only a narrow range of field for which the spin-flop state is stabilized. Therefore the

resonances that are most prominent in the measured spectra correspond to the antiparallel

and fully-parallel states.

The same type of L-L analysis discussed above can be used to obtain analytic solutions for

the resonance modes corresponding to each of the possible equilibrium configurations. Since

here we are considering only applied magnetic fields parallel to b̂, the easy-axis, µ0H
ext
a =

µ0H
ext
c = 0 T and µ0H

ext
b = µ0H∥. The total effective magnetic field given by Eq. (2)

becomes

H1(2) = H∥b̂−Ha(m
eq
1(2)a + δm1(2)a)e

iωt)â−Hc(m
eq
1(2)c + δm1(2)c)e

iωtĉ−HEm̂2(1). (12)

1. Zero to small applied field, before spin-flop or spin-flip transition

Here the equilibrium orientations of both spin sublattices remain aligned with the b̂ easy

axis, so m̂eq
1(2) = (±1, 0, 0). With this, Eq. (12) reduces to

H1(2) = (H∥ −HE)b̂−Haδm1(2)ae
iωtâ−Hcδm1(2)ce

iωtĉ, (13)
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Expanding the L-L equations (Eq. 3) and taking terms to the first order in the precession

amplitude gives the 6 × 6 eigenvalue equation

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−iw 0 0 0 0 0

0 −iw −γ(H∥ +Hc +HE) 0 0 −HEγ

0 γ[H∥ +Ha +HE)] −iw 0 HEγ 0

0 0 0 −iw 0 0

0 0 HEγ 0 −iw γ(−H∥ +Hc +HE)

0 −HEγ 0 0 γ(H∥ −Ha −HE) −iw

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

(14)

Solving this, we again obtain two positive non-trivial resonance frequencies:

ω1,∥ = µ0γ

√
H2

∥ +Ha(HE +Hc) +HEHc −
√

H2
∥ (Ha +Hc)(Ha + 4HE +Hc) +H2

E(Ha −Hc)2

(15)

ω2,∥ = µ0γ

√
H2

∥ +Ha(HE +Hc) +HEHc +
√

H2
∥ (Ha +Hc)(Ha + 4HE +Hc) +H2

E(Ha −Hc)2.

(16)

These modes are linear superpositions of the left-handed (LH) and right-handed (RH) modes

depicted in Fig. 2 in the main text [2, 4] that would exist for an antiferromagnet with purely

uniaxial anisotropy. The broken rotational symmetry about the field axis in a material with

triaxial anisotropy (Hc ̸= Ha) causes the LH and RH modes to be hybridized.

2. Spin-flop configuration

Using the spin-flop configuration m̂eq
1(2) = (sinχ,± cosχ, 0), Eq. (12) can be written as

H1(2) = [H∥ −HE(δm2(1)be
iωt + sinχ)]b̂+ [−Ha(δm1(2)ae

iωt ± cosχ)−HE(δm2(1)ae
iωt ∓ cosχ)]â

+ [−Hcδm1(2)ce
iωt −HEδm2(1)ce

iωt]ĉ

(17)
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Substituting these expressions into the L-L equations (Eq. (3)), removing the equilibrium

terms, and ignoring the higher-order terms in the precession amplitudes gives:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

iw 0 γ cosχ(Hc −Ha +HE) 0 0 γ cosχHE

0 iw −γ[H∥ + sinχ(Hc −HE)] 0 0 −γ sinχHE

γ[cosχ(Ha −HE)] γ[H∥ + sinχ(Ha −HE)] iw −γ cosχHE γ sinχHE 0

0 0 −γ cosχHE iw 0 γ[cosχ(Ha −Hc −HE)]

0 0 −γ sinχHE 0 iw γ[−H∥ + sinχ(HE −Hc)]

γ cosχHE γ sinχHE 0 γ cosχ(HE −Ha) γ[H∥ + sinχ(Ha −HE)] iw

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

(18)

Minimizing free energy (Eq. (7)) with respect to χ gives sinχ = H∥/(2HE−Ha), and solving

for the eigenvalues yields

ω1,∥,flop = µ0γ

√
(H2

∥ (Ha + 2HE)−Ha(Ha − 2HE)2)(2HE +Hc −Ha)

(Ha − 2HE)2
(19)

ω2,∥,flop = µ0γ

√
((2HE −Ha)2 −H2

∥ )(Hc −Ha)

2HE −Ha

. (20)

where ω1,∥,flop corresponds to an acoustic mode and ω2,∥,flop corresponds to an optical

mode.

3. Parallel orientation of the spin sub-lattices

For applied fields H∥ sufficiently strong that the two spin sublattices become parallel to

each other, m̂eq
1(2) = (1, 0, 0), χ → π/2. Analogous to the results in Eqs. (10) and (11), we

get the usual ferromagnetic mode

ω1,∥,FM = µ0γ
√
(H∥ +Ha)(H∥ +Hc) (21)

and a lower frequency mode

ω2,∥,FM = µ0γ
√
(H∥ +Ha − 2HE)(H∥ +Hc − 2HE) (22)
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C. Spectra fitting

To determine the exchange and anisotropy parameters, we fit the measured spectra to

the appropriate piece-wise continuous functions. For magnetic field (H⊥) applied parallel to

the a axis (the intermediate magnetic axis), the fitting function is

f⊥(H⊥) =




(8), (9) for H⊥ < 2HE +Ha

(10) for H⊥ > 2HE +Ha

(23)

For a magnetic field (H∥) applied parallel to the b axis (the easy magnetic axis), if Ha < HE:

f∥(H∥) =





(15), (16) for H∥ <
√
(2HE −Ha)Ha

(19) for
√

(2HE −Ha)Ha < H∥ < 2HE −Ha

(21) for H∥ > 2HE −Ha

(24)

and for the alternative case if Ha > HE:

f∥(H∥) =




(15), (16) for H∥ < HE

(21) for H∥ > HE.
(25)

As shown in Fig. S4, the fit parameters obtained from the piecewise fitting procedure give

Ha < HE for all temperatures, such that in our model the spin-flop configuration should be

stabilized for the field range
√

Ha(2HE −Ha) < H < 2HE−Ha. At the base temperature of

5 K, Ha is only slightly less than HE so that there should be only a very small field window

exhibiting the spin-flop configuration, and the spectra is almost equivalent to that of a spin-

flip transition. With increasing temperature, the anisotropy strength decreases faster than

the exchange strength, resulting in a more prominent spin-flop regime.
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FIG. S4: Spectra from Sample 1 of the main text, with dashed lines representing the fit

functions discussed in the main text and supplementary information, Section II. The

vertical red line represents the predicted spin-flop transition field, and the blue line

represents the field where the canting angle in the spin-flop state should realize χ = π/2 to

achieve fully-parallel spin alignment.

III. EFFECT OF TRIAXIAL ANISOTROPY ON ANTIFERROMAGNETIC RES-

ONANT MODES

Here we analyze in more detail the effects of triaxial magnetic anisotropy on antiferromag-

netic resonance modes, comparing to both the easy-plane anisotropy case and the uniaxial

easy-axis case.
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For an easy-plane antiferromagnet, with external field applied within the easy plane, the

normal modes in the spin-flop configuration can be expressed as [3]

ω1,⊥ = µ0γH⊥

√
1 +

Hc

2HE

(26)

ω2,⊥ = µ0γ

√
(4H2

E −H2
⊥)Hc

2HE

, (27)

where ω1,⊥ corresponds to the acoustic mode and ω2,⊥ the optical mode, e.g., as measured

previously in CrCl3 [3]. These expressions are equivalent to the H⊥ modes given by Eqs.

(8) and (9) when µ0Ha = 0 T. We plot these frequencies as solid lines in Fig. S5(a) using

parameters appriate for CrSBr except that we set µ0Ha = 0 T. With the addition of an

in-plane intermediate anisotropy energy along the a-axis (µ0Ha ̸= 0 T), both acoustic and

optical modes increase in frequency (dashed lines in Fig. S5(a)). The intermediate anisotropy

axis also causes the dispersion of the acoustic mode to deviate from a linear relation with

field and gaps this mode for low applied magnetic fields.

For an antiferromagnet with uniaxial anisotropy and external field along the preferred

axis, the normal modes are [2]

ω1,∥ = µ0γ
√
H2

∥ + 2HcHE +H2
c − 2H∥

√
Hc(2HE +Hc) (28)

ω2,∥ = µ0γ
√
H2

∥ + 2HcHE +H2
c + 2H∥

√
Hc(2HE +Hc) (29)

where ω1,∥ and ω2,∥ correspond to the left-handed (LH) and right-handed (RH) modes, e.g.

as measured previously in Cr2O3 [4]. These frequencies are equivalent to the H∥ modes

given by Eqs. (15) and (16), when Ha = Hc. The two modes described by Eqs. (28), (29) are

degenerate at µ0H∥ = 0 T and disperse linearly at low field (solid lines in Fig. S5(b). Similar

to gadolinium iron garnet [5], the presence of triaxial anisotropy for CrSBr (Ha ̸= Hc),

breaks rotational symmetry about the easy axis and couples the RH and LH modes to

lift the degeneracy at zero applied field (dashed lines fitted to the measured spectrum in

Fig.S5(b)).
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FIG. S5: a) Comparison of resonance frequencies assuming easy-plane anistropy (µ0Ha = 0

T, solid lines) vs. the measured modes in CrSBr for magnetic field applied in-plane

perpendicular to the easy axis at 5 K, along with fits (dashed lines) assuming triaxial

anisotropy. b) Comparison of resonance frequencies assuming uniaxial easy-axis anisotropy

(µ0Ha = µ0Hc = 0.7 T, solid lines) vs. the measured modes in CrSBr for applied magnetic

field parallel to the easy axis at 5 K, along with fits (dashed lines) assuming triaxial

anisotropy. The fit parameters are µ0Ha = 0.383(7) T, µ0HE = 0.395(2) T, and µ0Hc =

1.30(2) T.

IV. RESONANCE MODES FOR WEAK MAGNETIC FIELDS AT ARBITRARY

IN-PLANE ANGLES RELATIVE TO THE ANISOTROPY AXES

Here we consider the evolution of the modes when the external field is applied at an

arbitrary angle ϕ between the b̂ and â easy and intermediate axes. In this case, Hext =

H0(cos ϕ, sin ϕ, 0) and m̂eq
1(2) = (± cos χ1(2), sin χ1(2), 0).

The effective magnetic field acting on each sub-lattice is

H1(2) = [H0 cosϕ−HE(δm2(1)be
iωt ∓ cosχ2(1))]b̂

+ [H0 sinϕ−Ha(δm1(2)ae
iωt + sinχ1(2))−HE(δm2(1)ae

iωt + sinχ2(1))]â

+ [−Hcδm1(2)ce
iωt −HEδm2(1)ce

iωt]ĉ.

(30)
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FIG. S6: Equilibrium positions of sub-lattices with external field at an arbitrary angle ϕ

between the easy and intermediate axes.

At equilibrium, the net force on each sub-lattice is zero [2]

H0 sin (ϕ− χ1)−HE sin (χ1 + χ2)−Ha sinχ1 = 0

H0 sin (ϕ+ χ2)−HE sin (χ1 + χ2)−Ha sinχ2 = 0.
(31)

We consider the small field regime where H0 <
√
2HaHE, such that χ1, χ2 are small. Using

the small angle approximation, the equilibrium positions χ1,2 are given by the expression [2]

χ1(2) =
H0 sinϕ(Ha ∓H0 cosϕ)

H2
a + 2HaHE −H2

0 cos
2 ϕ

. (32)

The 6 × 6 matrix encapsulating the coupled L-L equations is

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−iw 0 M13 0 0 M16

0 −iw M23 0 0 M26

M31 M32 −iw M34 M35 0

0 0 M43 −iw 0 M46

0 0 M53 0 −iw M56

M61 M62 0 M64 M65 −iw

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (33)
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with the matrix elements

M13 = −γ((Ha −Hc) sinχ1 +HE sinχ2 −H0 sinϕ)

M16 = γHE sinχ1

M23 = −γ(Hc cosχ1 +HE cosχ2 +H0 cosϕ)

M26 = −γHE cosχ1

M31 = −γ(−Ha sinχ1 −HE sinχ2 +H0 sinϕ)

M32 = −γ(−Ha cosχ1 −HE cosχ2 −H0 cosϕ)

M34 = −γHE sinχ1

M35 = γHE cosχ1

M43 = γHE sinχ2

M46 = −γ((Ha −Hc) sinχ2 +HE sinχ1 −H0 sinϕ)

M53 = γHE cosχ2

M56 = γ(Hc cosχ2 +HE cosχ1 −H0 cosϕ)

M61 = −γHE sinχ2

M62 = −γHe cosχ2

M64 = γ(Ha sinχ2 +HE sinχ1 −H0 sinϕ)

M65 = −γ(Ha cosχ2 +HE cosχ1 −H0 cosϕ).

(34)

At this point we use the small angle approximation for χ1,2 in Eq. (32) and employ

matrix diagonalization to obtain an analytical solution for the resonance modes for the

small-field regime. Using exchange and anisotropy field strengths obtained from the fits to

the experiment at ϕ = 0◦ and 90◦ at 100 K, we plot the evolution of the modes for a range

of in-plane angles ϕ = 0◦ to 90◦ in Fig. S7a. We see that the upper and lower modes evolve

smoothly from the convex-paired optical and acoustic modes at ϕ = 90◦ to the concave-

paired RH and LH modes at ϕ = 0◦. In addition, fields applied at small angles away from

ϕ = 90◦ cause the acoustic/optical mode crossing to become gapped. This is analogous to

the mode anti-crossing induced by a symmetry breaking out-of-plane field for the resonance

modes in easy-plane CrCl3 [3]. In our case, the two-fold rotational symmetry existing for
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CrSBr with a field applied along the intermediate â axis can be broken with an in-plane field

component along the easy b̂ axis.

𝜇!H (T) 𝜇!H (T)

f (
G

H
z)

FIG. S7: Resonance modes calculated for external field at an arbitrary angles ϕ between

the easy and intermediate anisotropy axes, with the parameters (appropriate for 100 K)

µ0HE = 0.222(5) T, µ0Ha = 0.147(4) T, and µ0Hc = 0.63(1) T. The acoustic and optical

modes evolve smoothly to the RH and LH modes as the external field is rotated from the

intermediate axis (ϕ = 90◦) to the easy axis (ϕ = 0◦). For small angles away from the

intermediate axis, we see a gap opening at the mode crossings, associated with the

breaking of the two-fold rotation symmetry.

When the external field becomes comparable to the exchange and anisotropy, H0 >
√
2HaHE, the small angle approximation no longer holds (main text, Fig. 5). Here, we

numerically calculate the equilibrium positions χ1, χ2 by integrating the L-L equations for a

given field direction and field strength. We then use these equilibrium values to evaluate the

matrix elements in Eq. (34) and diagonalize the matrix for the resonance mode frequencies.
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V. COMPLETE SERIES OF SPECTRA AT DIFFERENT TEMPERATURES

Here we present the complete series ofH⊥ andH∥ spectra used to obtain the fit parameters

for the exchange and anisotropy fields from 5 - 160 K (Fig. 3 in the main text). Dashed

lines represent fits, while the red and blue dotted lines represent the predicted spin-flop and

fully-parallel spin alignment transition fields, respectively.
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FIG. S8: Transmission spectra at all measured temperatures with fitted magnetic

resonance modes. Red and blue dotted lines indicate the fitted spin-flop and ferromagnetic

alignment fields respectively.
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VI. SPECTRA FOR A SECOND CRYSTAL WITH ITS a-AXIS PARALLEL TO

THE COPLANAR WAVEGUIDE CENTER LINE

We have also measured the spectra of a second CrSBr crystal oriented with its long edge

(a-axis) parallel to the center line of the coplanar waveguide (Fig. S9). In this configuration,

for magnetic fields applied parallel to the easy-magnetic-anisotropy b axis (H∥) we measure

similar resonances compared to those in the main text – two modes at low fields followed by

a discontinuous jump leading eventually to a ferromagnetic-like mode. For applied magnetic

fields aligned along the intermediate-anisotropy a axis (H⊥), due to 2-fold rotational sym-

metry in this configuration (see supplementary information, Section VII), only the acoustic

mode is excited (the one odd under the symmetry). Figure S10 shows the anisotropy and

exchange field strengths as a function of temperature extracted from fits to these spectra.

All parameters are in reasonable agreement with those extracted for the sample analyzed in

the main text.
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FIG. S9: Transmission spectra at different temperatures for the second crystal, with a-axis

parallel to the center line of the coplanar waveguide.
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2, with a-axis ∥ to the center line of the coplanar waveguide. The dashed line indicates the

TN previously reported for bulk CrSBr [6, 7].
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VII. SELECTIVE EXCITATION OF MODES FROM 2-FOLD ROTATION SYM-

METRY CONSIDERATIONS

For the H⊥ configuration of crystal 2 with field applied along â (SI Section VI), we observe

only the acoustic modes, not the optical modes. This arises from symmetry considerations

previously discussed for CrCl3 [3], due to the system being symmetric under two-fold rotation

about the â-axis and exchange of the spin sublattices. Within same formalism used in ref.

[3], the two-fold rotational symmetry still applies for a sample with triaxial anisotropy, with

an intermediate anisotropy axis parallel to â. Including terms to first-order in precession

amplitudes, the applicable L-L equations are:

iωδm1 = γmeq
1 × (Heqδm1 +HEδm2 +Hc(δm1 · ĉ)ĉ+Ha(δm1 · â)â) + τ1

iωδm2 = γmeq
2 × (Heqδm2 +HEδm1 +Hc(δm2 · ĉ)ĉ+Ha(δm2 · â)â) + τ2.

(35)

Here, meq
1(2), δm

eq
1(2) are the equilibrium and displacement vectors of each sublattice, respec-

tively. τ1(2) are the torques due to the RF field HRF acting on each sublattice. Heq is

the magnitude of total effective magnetic field at the equilibrium condition: Heqm
eq
1(2) =

H⊥â − HEm2(1) − Ha(m1(2) · â)â. By balancing the torques at equilibrium, Heq = |Hâ −
HEm2 −Ha(m1 · â)â| = HE. Because the spin-flop configuration is 2-fold symmetric about

â, C2am̂
eq
1 = m̂eq

2 , where C2a is an operator for a 2-fold rotation about the a axis, we can

decouple Eqs. (35) by defining two orthogonal modes that are linear combinations of the

sublattice displacement vectors: δm± = δm1 ± C2aδm2, that obey the L-L equation

iωδm± = γmeq
1 × (Heδm± ±HeC2yδm± +Hc(δm± · ĉ)ĉ+Ha(δm± · â)â) + τ± (36)

Using the equilibrium position condition previously obtained through minimizing the free

energy (Eq. (7)): sinχ = H⊥/(2HE +Ha), Eq. (36) can be expanded to give a 6 × 6 block

diagonal matrix, with upper left and lower right quadrants corresponding to the + and −
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orthogonal modes respectively
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−iw 0 −γHc sinχ 0 0 0

0 −iw γHc cosχ 0 0 0

0 −γ(2HE +Ha) cosχ −iw 0 0 0

0 0 0 −iw 0 −γ(2HE +Hc) sinχ

0 0 0 0 −iw γ(2HE +Hc) cosχ

0 0 0 2γHE sinχ −γHa cosχ −iw

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (37)

Solving for the eigenvalues, we get the same solutions ω1,⊥ and ω2,⊥ previously calculated

from the coupled L-L equations (SI. IV, Eqs. (8,9)). We note that the acoustic mode is given

by the − mode (ω1,⊥ = ω−) where δmeq
1 and δmeq

2 rotate in-phase, while the optical mode

is given by the + mode ( ω2,⊥ = ω+), where δmeq
1 and δmeq

2 rotate out-of-phase.

The absence of the ω2,⊥ optical mode in our spectra can be understood as follows. In

general, we can split HRF into components that are even or odd upon 2-fold rotation about

â. For the even components, using m̂eq
1 = C2am̂

eq
2 and HRF = C2aHRF , we can deduce that

the torques on sublattices 1, 2 also have even symmetry.

τ1 = m̂eq
1 ×HRF = C2am̂

eq
2 × C2aHRF

= C2a(m̂
eq
2 ×HRF ) = C2aτ2

(38)

From the definitions of τ±, this gives τ− = 0 and τ+ ̸= 0. In other words, components of

HRF that are even with rotation about â, excite the optical mode but not the acoustic mode.

A similar argument can be made for HRF components that are odd with rotation about â,

which gives τ1 = −C2yτ2. This implies that τ+ = 0 while τ− ̸= 0 so only the acoustic mode

is excited.

For the H⊥ configuration of crystal 2, HRF only has an in-plane component along the b̂

axis and an out-of-plane component along the ĉ axis, both of which are odd with rotation

about â. Therefore, only the acoustic mode appears in the measured spectra. In the large

field regime for the H∥ configuration, the system is 2-fold symmetric around the applied

field, this time along b̂. Here, the in-plane component of HRF is even, while the out-of-plane

component is odd with rotation about â. Following the same arguments above, we deduce

that both the optical and the lower frequency ferromagnetic modes should be excited.
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VIII. MICROWAVE POWER DEPENDENCE

Here we present examples of spectra acquired using various applied microwave powers from

-40 dB to -5 dB at 100 K. As there is negligible variation in the measured resonance modes

with power, we conclude that there is no significant sample heating from microwave excitation

in our measurements. We use -20 dB for all measurements unless otherwise specified.
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FIG. S11: Absorption spectra at various applied microwave powers from -40 dB to -5 dB at

100 K.
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